Seminário Simplético
Conjunto no Rio

O Seminário Simplético Conjunto é uma iniciativa de pesquisadores do IMPA, PUC-RJ, UFF e UFRJ, com encontros mensais rotativos. Cada encontro conta com duas palestras, ministradas por pesquisadores locais ou convidados, em temas relacionados à geometria simplética (num sentido amplo). Alunos são particularmente encorajados a participar.

The Joint Symplectic Seminar is organized by IMPA, PUC-RJ, UFF and UFRJ, and consists of monthly meetings that alternate among these institutions. Each meeting features two talks on topics related to symplectic geometry (in a broad sense). Students are particularly encouraged to attend the seminars.

2018 2017 2016 2015 2014


Encontros 2018
# Quinta-feira 07/junho @ UFRJ, Sala C116, Instituto de Matematica, Bloco C, Centro de Tecnologia (CT).
14:00 - 15:00 Daniele Sepe (UFF) Classificação dos sistemas integráveis: questões locais and (semi)globais
Os sistemas Hamiltonianos integráveis (de dimensão finita) surgem naturalmente no estudo da mecânica clássica por ser modelos e aproximações de vários modelos físicos (e.g. spinning tops, átomos de hidrogénio em campos elétricos e magnéticos fracos, etc.). Do ponto de vista matemático, tais sistemas podem ser vistos como ações Hamiltonianas "integráveis" do grupo de Lie abeliano simplesmente conexo, isto é, os espaços reduzidos pela ação são de dimensão zero. Neste sentido, os sistemas Hamiltonianos integráveis generalizam as ações tóricas integráveis, que foram completamente classificadas em trabalhos do Delzant (no caso em que a variedade simplética é compacta) e de Karshon e Lerman (no caso geral), usando trabalhos fundamentais de Atiyah, Guillemin-Sternberg and Marle. A classificação dos sistemas Hamiltonianos integráveis é uma pergunta guia (e muito difícil!) em mecânica Hamiltoniana e geometria simplética, com conexões a muitas outras áreas da matemática, da mecânica quantíca, da física e da espectroscopia. O objetivo desta palestra é apresentar algumas perguntas básicas (abertas) sobre a classificação destes sistemas a nível local (isto é, perto de um ponto ou de uma órbita compacta), semiglobal (perto de uma fibra da aplicação momento) e global. Se houver tempo, alguns resultados novos de natureza semiglobal serão apresentados. O ponto de vista e os resultados apresentados são frutos de conversas com o Rui Loja Fernandes, Susan Tolman and San Vu Ngoc, entre outros.
15:30 - 16:30 Matias del Hoyo (UFF) Deformations of compact Hausdorff foliations
In a recent work with R. Fernandes we show that a compact Hausdorff foliation over a compact connected manifold is rigid, in the sense that every one-parameter deformation of it is trivial. We study the foliation by means of its holonomy groupoid, a Lie groupoid integrating it, and combine some classical stability properties of foliations with our linearization results for Lie groupoids involving Riemannian metrics. In this talk I will present our theorem, relate it with classic results, and discuss cohomological aspects.
# Sexta-feira 11/maio @ PUC, Sala de reuniões do Decanato, CTC, 12do andar, predio Leme.
14:00 - 15:00 Hassan Alishah (UFMG) Asymptotic Poincaré Maps along the edges of Polytopes and their Hamiltonian character
In this talk, I will start by describing a linear flow which encapsulates the asymptotic dynamics of flows on polytopes along the heteroclinic network formed by polytope's edges. Using this method informations such as detection of chaotic behavior and existence of normally hyperbolic stable and unstable manifolds associated to heteroclinic cycles along the polytope's edges can be obtained. In the second part, I will introduce the polymatrix replicator systems which contains several important models in Evolutionary Game Theory. Studying these systems were the main motivation for this work. I will also talk about the Hamiltonian character of these systems which will include subjects in Poisson reduction, linear Dirac structures and linear big-isotropic structures. At the end, it will be shown that in the case of Hamiltonian Polymatrix games, the linear flow encapsulating the asymptotic dynamic inherits the Hamiltonian character of the Polymatrix game. I will illustrate the results with an example. This is a joint work with Pedro Duarte and Telmo Peixe From Lisbon University.
15:30 - 16:30 Thiago Fassarella (UFF) Conexões sobre curvas elípticas
Nesta palestra vamos introduzir o espaço de moduli de conexões logarítmicas com $n$ polos e com resíduos fixados sobre uma curva de gênero $g$. Tal espaço admite uma estrutura de variedade algébrica, simplética de dimensão 2N, onde N=3g-3+n. Pretendemos descrever esta estrutura no caso n=2 e g=1. Em particular obtemos um resultado do tipo Torelli que diz que levando em consideração a estrutura simplética, podemos recuperar os dados iniciais: a curva com dois pontos marcados, o divisor de polos e os resíduos. Trabalho em colaboração com Frank Loray.
# Terça 3/abr @ IMPA, Auditório 1.
14:00 - 15:00 Rui Loja Fernandes (UIUC) Local Lie groupoids.
Local Lie groups is an old subject which has attracted much attention recently due to the solution of the local version of Hilbert's fifth problem by Golbring (see, e.g., the recent monograph by T. Tao). In this talk, I will give a survey of the theory of local Lie groupoids, which is the subject of the thesis of my PhD student Dan Michiels. One particularly important new aspect that will be discussed is the relationship between monodromy (obstructions to integrability of a Lie algebroid) and associators (obstructions to globalizability of a local groupoid).
15:30 -16:30 Maxim Zabzine (Uppsala) Morita equivalence and the generalized Kahler potential
I will start by reviewing the generalised Kahler geometry and explain the original idea behind the generalized Kahler potential. I will give the mathematical explanation for generalized Kahler potential when the generalized Kahler geometry of symplectic type. The construction is related holomorphic symplectic Morita equivalence. This talk is based on the joint work with Francis Bischoff and Marco Gualtieri.