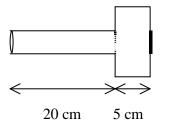
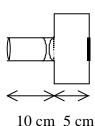
IMPA – 2004 Visão Computacional 1ª Prova 30/1/2004

Considere que, em uma câmera fotográfica, a superfície sensível esteja a 5 cm do
ponto de entrada de luz. Deseja-se construir uma lente tele-objetiva, com distância
focal igual a 25 cm. Se for utilizada uma lente delgada simples, o centro óptico da
lente teria que se projetar 20 cm além da câmera, para que seu foco estivesse sobre a
superfície sensível. O objetivo deste problema é projetar uma lente mais compacta,
com a mesma distância focal, formada pela combinação de duas lentes delgadas,
montadas de modo a estarem separadas uma distância d =10 cm uma da outra.





- a) Qual deve ser a distância focal de cada uma das lentes?
- b) Para modelar a lente assim obtida através de uma câmera pin-hole, onde devem se situar o centro de projeção e o plano de formação da imagem? São dadas as equações referentes à combinação de lentes com distâncias focais f_1 e f_2 , separadas por uma distância d.

Distância focal equivalente: $\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$

Posição do foco imagem (medida a partir da 2ª lente): $s' = \frac{f_2(f_1 - d)}{f_1 + f_2 - d}$

Posição do foco objeto (medida a partir da 1ª lente): $s = \frac{f_1(f_2 - d)}{f_1 + f_2 - d}$

Posição do ponto principal imagem (medida a partir da 2^a lente): $p' = \frac{-f_2 d}{f_1 + f_2 - d}$

Posição do ponto principal objeto (medida a partir da 1ª lente): $p = \frac{-f_1 d}{f_1 + f_2 - d}$

- 2. Uma câmera está colocada no ponto (10, 0, 2) no sistema do mundo (suposto positivo), olhando na direção negativa do eixo x. A imagem registrada tem 640×480 pixels de forma quadrada. O centro óptico se projeta sobre o centro da imagem e o ângulo de visão α segundo a menor dimensão é tal que tan $\alpha/2 = 1/2$.
 - a) Escreva a equação de projeção da câmera na forma fatorada, supondo que as coordenadas na imagem têm origem no canto inferior esquerdo.
 - b) Encontre o ponto de fuga da direção (-5, 1, 1) do mundo.

- 3.
- a) Seja H uma transformação projetiva bidimensional e m a transformada de uma reta l por H. Mostre que m^{T} é da forma k l l l l l l onde l é diferente de zero.
- b) Sejam l_1 e l_2 retas do plano projetivo e sejam x_1 e x_2 pontos que não pertencem nem a l_1 nem a l_2 . Mostre que a expressão $\frac{(l_1^T x_1)(l_2^T x_2)}{(l_1^T x_2)(l_2^T x_1)}$ é invariante por uma transformação projetiva.
- 4. Uma câmera com parâmetros [K, R, t] observa uma imagem projetada por um projetor com parâmetros [K, R, t] sobre o plano $\Pi = \{(x, y, 0) | x, y \in \mathbb{R}\}$.
 - a) Mostre que a transformação projetiva entre Π e a imagem formada na câmera é dada por $H = K[\mathbf{r}_1, \mathbf{r}_2, t]$, onde \mathbf{r}_1 e \mathbf{r}_2 são as duas primeiras colunas de R.
 - b) Mostre que a imagem capturada pela câmera é o resultado da aplicação de uma transformação projetiva sobre a imagem projetada pelo projetor. Expresse esta transformação projetiva em termos de *K*, *R*, *t*, *K*', *R*', *t*'.