Warping and Morphing Techniques

Lucia Darsa
The Transformation Process

User

Specification

Representation

Computation

Results
Objective

- Some specific warping and attribute combination techniques:
 - computation/specification dependencies
 - applicability to different types of GO’s
 - implementation guidelines
Warping Specification

- Coordinate system mapping definition
- Simply maps areas in the domain of definition
- Graphical Object independent
Warping Computation

- How can the map be extended to the entire domain?
- How can the map be applied to a GO?
- Ideally the solutions are not coupled
Extending the Specification

- Graphical object $f : U \subseteq R^n \rightarrow R^m$
- Mapping for all points of the domain: $W : U \rightarrow U$
- Interpolation/extrapolation of sparse data
Map Application

- Apply given W to GO

- Depends on GO:
 - Polyhedral objects
 - Images and volumes
 - Implicit objects
 - etc.
Mapping Polyhedral Objects

- Replace each point \(p \) by \(W(p) \)
Mapping Implicit Objects

- Given implicit object with characteristic function

\[f : \mathbb{R}^n \rightarrow \mathbb{R} \]

- Warped implicit object is

\[g(x) = f(W(x)) \]
Mapping Implicit Objects

\[f(x, y, z) = x^6 + y^6 + z^6 - 1 \]

\[g(p) = f(W(p)) \]
Mapping Images (or Volumes)

- Grid requires resampling
 - Sampling and reconstruction problems
- Forward or inverse mapping
Warping Techniques

- Barycentric mapping
- Field-based mapping
- Radial basis functions - RBF
- Free-form deformation - FFD
- Multi-pass spline mesh
- Physically-based warping
Barycentric Mapping

- Triangulate the specification
 - Partitions the domain
- Triangle pair mapped using barycentric coordinates
Barycentric Coordinates

\[\lambda_3 = 0 \]
\[\lambda_2 = 0 \]
\[\lambda_1 = 0 \]

\[p = \lambda_1 a + \lambda_2 b + \lambda_3 c \]
\[p' = \lambda_1 a' + \lambda_2 b' + \lambda_3 c' \]

\[\lambda_1 + \lambda_2 + \lambda_3 = 1 \]
Barycentric Mapping

- Triangle mesh foldover
 - Invalid partitions
- Discontinuous along edges
 - Each triangle mapped independently
- Higher order triangle interpolations
Field-based Mapping

- Each feature pair defines one mapping

- 2D or 3D features: points, lines, boxes
Field-based Mapping

- Final map is a weighted average

\[W(p) = p + \frac{\sum w_i \Delta p_i}{\sum w_i} \]

\[w_i = \left(\frac{l_i^p}{a + d_i} \right)^b \]

\[\Delta p_i = W_i(p) - p \]
Field-based Mapping

\[p \]

\[F_1 F_2 \]

\[F_1' F_2' \]

Mapped point
Field-based Mapping Example
Field-based Mapping

- Global mapping
 - Modify weight function
- Ghosting
- Singularities at crossovers
Radial Basis Functions

- **Affine + Radial:**
 \[W(p) = A(p) + R(p) \]
 \[A(p) = Mp + b \]
 \[R(p) = (R_x(p), R_y(p)) \]

- **Radial basis function:**
 - Function of distance to anchors
 \[g : R \rightarrow R \]
Radial Basis Function

■ Radial component:

\[R_i(p) = \sum_{i=1}^{N} a_i g\left(\| p - p_i \| \right) \]

■ Given specification with \(N \) anchors \(p_i, p_i' \)

\[W(p_i) = p_i' \]

◆ Solve linear system to obtain coefficients \(a_i \)
Radial Basis Function Example

\[g(t) = e^{-t^2 / \sigma^2} \]
Radial Basis Functions

- Locality can be controlled
- Elastic component
 - Anchor points displacement limited by locality factor
Free-form Deformation - FFD
Free-form Deformation - FFD

- **Bernstein polynomial:**
 \[B_i^d(v) = \binom{d}{i} v^i (1 - v)^{d-i} \]

- **Warping function:**
 \[W(s, t, u) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} P_{i,j,k} B_i^{n-1}(s) B_j^{n-1}(t) B_k^{n-1}(u) \]
Free-form Deformation

- Global
- High degree polynomials
- Control points in a grid
Multi-pass Spline Mesh Warping

- Images or volumes
- Separable transformation
 - reduces problem to 2 (or 3) 1D problems
Horizontal Pass Overview

- Decompose displacements
- Construct vertical splines without vertical displacements
- Intersect scanline with vertical splines
- Construct spline for scanline mapping
Decompose & Construct Splines

Horizontal displacements

Vertical Splines
Scanline Intersection

- Intersect splines with scanline
Scanline Map

- Construct spline with intersections
 - 1D map
2-pass Spline Mesh Example
Multi-pass Spline Mesh

- Efficient
- Bottleneck problem
- Laborious specification
- Splines cannot cross
Physically-based Warping

- Deformation derived from physical models:
 - Springs
 - Fluids
 - Cloth
 - etc.
Introduction

Warping Techniques

Blending Techniques

Attribute Combination Techniques

Conclusion
Blending Techniques

- Morphing
- Compatibilization of shape of GO’s
 - different genus
 - different combinatorial topology
Blending Techniques

- Physically-based blending
- Merging of Combinatorial Structures
- Exponential blending
Physically-based Blending

- 2D or 3D polyhedral objects
- Energy Model:
 - Wireframe object
 - Optimization problem
 - Minimize work for stretching and bending
 - Vertex insertion for object compatibilization
Physically-based Example

- Automatic feature association
Merge of Combinatorial Structures

- Two 2D or 3D polyhedral objects
 - Different combinatorial structures

- Overview:
 - Projection of structures onto sphere
 - Combination of structures (clipping)
 - Reprojection onto original geometry
Merge Example
Exponential Blending

- Two implicitly defined objects
 - different topologies

- Exponential blending:

\[B_t(x, y) = -\log[(1-t)e^{-x} + te^{-y}] \]
Exponential Blending Example
Introduction
Warping Techniques
Blending Techniques
Attribute Combination Techniques
Conclusion
Attribute Combination

- Attributes
 - Properties associated with object shape
 - Color, texture, depth, vector fields, etc.
 - GO’s shapes must be registered
 - GO’s topologies must be compatible
Attribute Combination

- Dependent on attribute’s nature:
 - Linear interpolation
 - Slerping
 - Exponential blending
 - etc.

- There may be interdependencies
Example: Texture Combination

Color Space

Parameter Space
Applications

- Morphing is not just a special effect:
 - Lens distortion correction
 - Graphical objects modeling
 - Motion capture data interpolation
 - Accelerated Rendering
 - etc.
Example: Image-based Rendering

- Images are pre-rendered
 - Triangulated cubical environment map
 - Attributes: color, depth, fragment quality

- Real-time morphing:
 - Warping by visualization parameters
 - Complex attribute combination
Cubical Environment Map
Blending two nodes
Conclusion

- **Matching specification & computation**
- **Warping techniques**
 - Reconstruction of the transformation
- **Blending techniques**
 - Topology merge
- **Attribute combination techniques**