Quadrilateral Meshing using 4-8 Clustering

Luiz Velho

Visgraf Laboratory
IMPA - Instituto de Matemática Pura e Aplicada
Rio de Janeiro, Brasil

Outline

- Problem Statement
- Motivation
- Description of the Method
- 2D / 3D Results

Problem Statement

Generate a Quadrangulation a 2D Domain

- Two Cases:

1. Boundary \rightarrow Quadrangulate Interior
2. Triangulation \rightarrow Convert to Quadrangulation

* We will consider case 2

Motivation

Quadrilateral Meshes are Required in many Applications

- Engineering
- FEM Analysis
- CAD / CAM
- NURBS
- Graphics
- Subdivision Surfaces (4-8 Box Splines)

Intuition

Difficult Problem

- Find Main Direction Curves

- Build Well-Shaped Elements

- More Global than Triangulation (Edelsbrunner)

Basic Approaches

- Global Solution
(Optimization + Heuristics)
- Pros: Good Meshes, Few Elements
- Cons: Costly, Complex
- Local Solution
(Re-tesselation + Rules)
- Pros: Fast, Simple
- Cons: Bad Meshes, Many Elements

Proposed Solution

Hybrid Approach

- Global
- Find Large Areas with Good Quad-Patch Structure
- (4-8 Two-Face Clustering)
- Local
- Join Areas with Compatible Structure
- (Catmull-Clark Subdivision)

Algorithm

(1) Find an independent set of two-triangle clusters, and identify the remaining isolated triangle faces;
(2) Perform a hybrid binary subdivision step;
(3) Perform one step of binary subdivision;
(4) Remove internal edges of triangulated blocks.

Step 1 - Cluster Marking

- Mesh Analysis

(based on longest edge)

Step 2 - Hybrid Barycentric Subdivision

- Internal Block Structure

Step 3 - Final 4-8 Subdivision

- Boundary Matching

Step 4 - Tri-Quad Conversion

- Mesh Output

Discussion

- Relation with Catmull-Clark Subdivision

- Equivalent to:
- Quad Identification
- C-C Subdivision

Results

- Examples
- Planar Meshes
- 3D Meshes

Hexagonal Disk

- Simple example (3 regions)

Coarse Mesh

- Diagonal Directions

Fine Mesh

- Non-Uniform Triangulation (merged directions)

Four Directional Mesh

- Uniform Triangulation (recovered the grid)

Torus

- 3D Mesh (parametric lines)

Stanford Bunny

- Digitized 3D Object (uniform patches)

Viewpoint Cow

- Shape Library

Venus

- (adaptation to shape)

Mannequin Head - Quadrangulation

- Test Model for Subdivision

Mannequin Head - 4-8 Subdivision

- 2 Levels of Subdivision

Ear - Quadrangulation

- Detail (transition)

Ear (Detail) - 4-8 Subdivision

- Detail (smoothing)

Conclusions

- Simple, but Effective Approach
- Reasonable Quality Tessellation
- Moderate Mesh Size Increase
- Works well for Subdivision
- Can be used in other Applications

