Quadrilateral Meshing using 4-8 Clustering

Luiz Velho

Visgraf Laboratory IMPA – Instituto de Matemática Pura e Aplicada Rio de Janeiro, Brasil

Outline

- Problem Statement
- Motivation
- Description of the Method
- 2D / 3D Results

Generate a Quadrangulation a 2D Domain

- Two Cases:
 - 1. Boundary \rightarrow Quadrangulate Interior
 - 2. Triangulation \rightarrow Convert to Quadrangulation
- * We will consider case 2

Motivation

Quadrilateral Meshes are Required in many Applications

- Engineering
 - FEM Analysis
- CAD / CAM
 - NURBS
- Graphics
 - Subdivision Surfaces (4-8 Box Splines)

Intuition

Difficult Problem

- Find Main Direction Curves

- Build Well-Shaped Elements

• More Global than Triangulation (Edelsbrunner)

Basic Approaches

- Global Solution
 - (Optimization + Heuristics)
 - Pros: Good Meshes, Few Elements
 - Cons: Costly, Complex
- Local Solution
 (Re-tesselation + Rules)
 - Pros: Fast, Simple
 - Cons: Bad Meshes, Many Elements

Hybrid Approach

- Global
 - Find Large Areas with Good Quad-Patch Structure
 - (4-8 Two-Face Clustering)
- Local
 - Join Areas with Compatible Structure
 - (Catmull-Clark Subdivision)

Algorithm

- Find an independent set of two-triangle clusters, and identify the remaining isolated triangle faces;
- (2) Perform a hybrid binary subdivision step;
- (3) Perform one step of binary subdivision;
- (4) Remove internal edges of triangulated blocks.

Step 1 - Cluster Marking

• Mesh Analysis

(based on longest edge)

Step 2 - Hybrid Barycentric Subdivision

• Internal Block Structure

Step 3 - Final 4-8 Subdivision

• Boundary Matching

Step 4 - Tri-Quad Conversion

• Mesh Output

Discussion

Relation with Catmull-Clark Subdivision

- Equivalent to:
 - Quad Identification
 - C-C Subdivision

Results

- Examples
 - Planar Meshes
 - 3D Meshes

Hexagonal Disk

• Simple example (3 regions)

Coarse Mesh

• Diagonal Directions

Fine Mesh

• Non-Uniform Triangulation (merged directions)

Four Directional Mesh

• Uniform Triangulation (recovered the grid)

• 3D Mesh (parametric lines)

Stanford Bunny

• Digitized 3D Object (uniform patches)

Viewpoint Cow

• Shape Library

Venus

• (adaptation to shape)

Mannequin Head - Quadrangulation

• Test Model for Subdivision

Mannequin Head - 4-8 Subdivision

• 2 Levels of Subdivision

Ear - Quadrangulation

• Detail (transition)

Ear (Detail) - 4-8 Subdivision

• Detail (smoothing)

Conclusions

- Simple, but Effective Approach
- Reasonable Quality Tessellation
- Moderate Mesh Size Increase

- Works well for Subdivision
- Can be used in other Applications