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Abstract

In this paper we introduce a new algorithm for simplifi-
cation of polygonal meshes. It generates a variable resolu-
tion structure called hierarchical 4-K mesh. This structure
is a powerful representation for non-uniform level of detail
that, among other things, allows simple and efficient extrac-
tion of conforming meshes.
Keywords: variable resolution, 4-k meshes, level of detail,
adaptation.

1 Introduction

The simplification of large polygonal models is an im-
portant problem in Computer Graphics. There are, at least,
two reasons that make its solution an essential component
in graphical applications.

First, geometric models are becoming extremely com-
plex, as the result of advances in CAD technology. So-
phisticated 3D input devices can capture real objects at
high resolution, producing very fine meshes with millions
of faces. These models are highly oversampled, and have to
be pre-processed before going into the graphics production
pipeline. One of the main tasks in this pre-processing step
is the elimination of redundant faces through mesh simpli-
fication [10].

Second, detailed geometric models can be quite large,
even after redundancy is eliminated. The sheer size of
huge polygonal representations can easily overwhelm most
graphics programs, rendering impractical their use in appli-
cations. The strategy to overcome such limitations is based
on multiresolution models, that allow processing geometry
at multiple levels of detail. Simplification algorithms con-
stitute an important component in the creation of multires-
olution representations.

The relevance of simplification methods motivated in-
tense research in this field. During the past years, many al-
gorithms have been developed [22, 21, 2, 7, 14, 9, 17, 11, 5,
8, 4, 24, 18]. As a whole, they investigate various aspects of
the problem, and provide solutions that contemplate differ-

ent practical trade-offs [3]. A shortcoming of most simpli-
fication methods is that they require a post-processing step
in order to construct a multiresolution structure.

In this paper, we propose a new simplification algorithm
that generates a variable resolution data structure well suited
to adaptive level of detail operations. We developed this
algorithm motivated by our previous work on hierarchical
4-k meshes [23]. Because of the characteristics of the 4-k

mesh our solution addresses issues that were not considered
in previous algorithms.

2 Background

A mesh simplification algorithm takes as input a polyg-
onal surface description and outputs a simpler mesh repre-
senting the same surface. The simplified mesh should have
fewer elements than the initial one and, at the same time,
approximate the original surface.

There are several ways to specify this problem. Two
common alternative criteria are based on mesh size or on
geometric error. In the first case, the goal is to produce a
mesh of sizen, that gives the best geometric approximation
of a surface. In the second case, the goal is to produce a
mesh with smallest size, that gives an approximation within
a tolerance of� of the surface.

It is apparent that this is an optimization problem to ob-
tain a surface approximation. Moreover, computing the op-
timal solution is NP-hard, since it requires time exponential
in the number of vertices of the mesh [1]. For the above
reasons, simplification algorithms resort to heuristics that
produce sub-optimal solutions.

Most algorithms are based on iterative methods, where a
simplification operator is repeatedly applied to the mesh ac-
cording to someoptimality criteria, until the desired result
is obtained.

The simplification operator, usually consists of a local
modification of the mesh that removes elements (i.e. ver-
tices, edges and faces), while maintaining topological con-
sistency. The optimality criteria is used to compare the ef-
fect of different candidate modifications.



The whole procedure can be summarized as:

while ( requirements not satisfied )do
(1) select candidate modifications
(2) apply simplification operator

Note that, the above simplification algorithm, actu-
ally generates a hierarchy of meshes of decreasing size,
(M0; : : : ;Mn), since it start with an initial meshM 0, and
at each iteration a simpler meshM j is produced.

Simplification algorithms can be classified according to
how they implement operations (1) and (2) in the main loop.

Thesimplification operator changes the connectivity and
geometry of a region of the mesh. The domain of the op-
erator consists of a submesh that is modified by it. Inte-
rior vertices of this submesh are eliminated and the local
connectivity is reconstructed. In addition, the geometry of
boundary vertices may be adjusted to improve mesh quality.

Some common simplification operators are: vertex dec-
imation, vertex clustering, face merge, and edge collapse
[20, 3]. It can be shown that any simplicial complex could
be transformed into a simpler one by a sequence of edge
swaps and edge collapses [13]. As a consequence, a topol-
ogy preserving simplification operator can be implemented
as the combination of these two basic operations.

In anedge swap, an edge shared by two faces is replaced
by another edge linking the opposite vertices of the two
faces. In anedge collapse, two vertices connected by an
edge are replaced by a single vertex – the edge and two
faces are removed.

In an edge collapse, there is a choice of where to posi-
tion the new vertex. When the position of the new vertex
is restricted to be one of the edge endpoints, the operator is
called ahalf-edge collapse.

The decision ofwhere the simplification operator should
be applied in the mesh is based on an error metric. The
metric gives an estimate of the distortion introduced by ap-
plying the modification to the mesh.

Several aspects must be considered, such as surface ge-
ometry, shape and attributes. Since the simplification op-
erator affects the mesh locally, it makes sense to employ a
criterion based on local surface properties. For this purpose
concepts from differential geometry, adapted to the discrete
setting, can be used to characterize the polygonal surface.

These properties are all defined in a neighborhoodN(p)
of a vertexp of the mesh. They include, geometric error,
distortion, and curvature [15].

The local geometric error,E(p), measures the distance
between the original surface and its approximation. Differ-
ent metrics can be used to estimated this distance. For ex-
ample, the Hausdorf distance or the mean square distance.

The local distortion,R(p), can be estimated from the as-
pect ratio of faces.

The local curvature,C(p), can be estimated from the di-
hedral angle between adjacent faces.

Note that the geometric error is an extrinsic property of
the mesh related with surface approximation, while the dis-
tortion and curvature are intrinsic properties of the mesh,
related with fairness of the surface.

The mesh quality criteria takes into account both approx-
imation and fairness of the simplified surface. These com-
ponents are combined into an adaptation functional with
distinct weights for each of them

F (K) =
X
p2K

�E(p) + �R(p) + 
C(p) (1)

There are two basic strategies to apply the simplification
operator using the adaptation functional discussed above.
They are: sequential and parallel application.

In the sequential application, one region of the mesh is
selected at each step. In theparallel application, a set of
independent regions that cover most of the mesh is selected
at each step.

The main difference between these two strategies is the
type of hierarchical structure that they generate. Sequential
application produces a progressive mesh, in which the reso-
lution changes locally, while parallel application produces a
multiresolution mesh, in which the resolution changes glob-
ally.

3 Variable Resolution 4-k Meshes

A variable resolution structure allows non-uniform level
of detail operations with a polygonal surface and it is well
suited to adaptive geometric computations [20]. It consists
of a directed acyclic graph (DAG) in which nodes represent
local modifications to a mesh and arcs give the dependen-
cies between modifications [19].

Level of detail operations fall into three categories:mesh
extraction, spatial search; andtopological queries.

The usefulness of a variable resolution representation
depends on certain properties that guarantee efficient im-
plementation of level of detail operations. These desir-
able properties are:high expressive power; linear growth,
bounded width, andlogarithmic height [6].

Expressive power is the number of different meshes that
can be generated from the structure. This property is impor-
tant for the adaptivity of all level of detail operations.

Growth rate is the ratio between the number of local
modifications and the size of the mesh produced by them.
This property is important for mesh extraction operations,
such as view dependent mesh adaptation.

Structure height is the maximum length of a path from
the top to the bottom of the dependency graph. This prop-
erty is important for spatial search operations, such as point
location.
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Structure width is the maximum number of dependency
relations of a local modification. This property is important
for topological queries, such as neighborhood computation.

The properties of a variable resolution structure are de-
termined by the methods used to construct it.

The 4-k mesh is a particular kind of variable resolution
structure that exhibits most of the above desirable proper-
ties [23].

The power of the 4-k mesh comes largely from the fact
that is built from two simple local modifications: edge
swap; and degree 4 vertex removal. These two modifica-
tions form a complete set of topology preserving mesh sim-
plification operators.

The basic block in a 4-k mesh is a submesh composed
by two adjacent faces sharing an edge. This submesh can be
produced either by an edge swap operation that transforms
a two-face cluster into another two-face cluster (see Fig-
ure 1(a)), or by a degree 4 vertex removal, that transforms
a four-face cluster into a two-face cluster (see Figure 1(b)).
Figure 1 shows these two operations.

(a) edge swap.

(b) degree 4 vertex removal.

Figure 1. Local modifications of a 4-k mesh structure.

Note that the boundary of the submesh is not changed
by both operators. This property is essential for building
variable resolution structures.

Another important remark is that the degree 4 vertex
removal is equivalent to a restricted half edge collapse in
which one endpoint of the edge is a vertex of valence 4.

It is also easy to see that an edge collapse can be decom-
posed into a sequence of edge swaps followed by a degree
4 vertex removal. The purpose of the edge swap operations
is to change the 1-neighborhood of the internal vertex of the
submesh to have exactly 4 incident edges, so that the degree
4 vertex removal can be applied. Figure 2 shows an example
of the decomposition of a general edge collapse into these
basic operations.

general edge collapse

edge swap deg(4) vertex removal

Figure 2. Decomposition of a general edge collapse

The combination of edge swap and degree 4 vertex re-
moval operations is responsible for the bounded width of
the 4-k mesh structure.

The logarithmic height property is achieved through a
parallel application of local modifications such that they
cover most of the mesh at each simplification step.

4 Simplification using Four-Face Clusters

The main goal of the four-face cluster simplification al-
gorithm is to produce a variable resolution 4-k mesh. In
order to accomplish this objective we use a simplification
algorithm based on the parallel application of edge swaps
and valence 4 vertex removal.

The outline of the method is as follows:

Repeat forN refinement levels:

1. Rank vertices based on mesh quality criteria;

2. Select an independent set of clusters that covers
most of the mesh;

3. simplify clusters using edge swaps and
degree 4 vertex removals;

Note that, because we are building a variable resolution
mesh, the termination criteria is the height of the hierarchi-
cal structure, instead of mesh size or surface approximation.
Nonetheless, the variable resolution structure can be used
for extracting a mesh that fulfills either one of these two
requirements.

The first step of the method classifies vertices of the
mesh according to a mesh quality criteria that includes ap-
proximation error as well as surface fairness.

The error introduced by candidate simplifications is
computed using a quadric error metric [8]. This metric gives
an efficient way to estimate the geometric error between the
original and simplified surfaces.
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Below we summarize the main results of Garland and
Heckbert concerning the quadric error metric.

A quadric error metric has the form:

Q(v) = vTAv + 2bT v + c (2)

where the quadricq is given byQ = (A; b; c), andA is a
3� 3 matrix,b a 3-vector andc a scalar.

Each vertex,v of the mesh is associated with a set of
planespi, of facesfi adjacent tov. The sum of squared
distancesd(w) of an arbitrary pointw to this set of planes
is

d(w) =
X

(pTi w)
2 (3)

wherepi = (nx; ny; nz; d) represents the support plane of
the facefi. The quadric error is derived by rewriting equa-
tion (2) as

d(w) =
X

(wT pi)(p
T
i w)

= wT
X

(pip
T
i )w

= wT (
X

Ki)w

whereK is related to the quadricQ

K = ppT =

0
BB@

n2x nxny nxnz nxd

nxny n2y nynz nyd

nxnz nynz n2z nzd

nxd nyd nzd d2

1
CCA =

�
A b

b c

�

The main advantage of using this scheme is that the
quadric provides a mechanism to keep track of the history
of local modifications to the mesh, by accumulating planes
of the surface in the neighborhood of vertices of the mesh.

In that way, at each simplification operation, when a ver-
tex is eliminated, its quadric is added to the quadrics associ-
ated with its neighbors. The quadric is also used to evaluate
the cost of a simplification to the mesh.

The surface fairness is estimated using a measure of tri-
angle compactness and dihedral angle. The triangle com-
pactness measure,tc is equivalent to the aspect ratio [9],
and is given by

tc =
4
p
3a

l21 + l22 + l23
(4)

wherea is the area of a triangle andli are the length of its
edges.

Taking into account the aspect ratio of triangles helps to
select swap operations that improve mesh quality.

Now we explain in detail the three steps of the algorithm.
Before entering the loop there is an initialization that as-
signs a quadricQv to every vertex,v, of the mesh. It is

computed as the weighted sum of the fundamental quadrics
associated with facesfi that are adjacent tov

Qv =
X

aiQi (5)

where ai is the area of facefi, Qi = (Ai; bi; ci) =
(nin

T
i ;�Aiv; v

TAi; vAiv), andni the unit normal vector
to fi.

The first step computes the cost associated with remov-
ing vertices of the mesh. Since a simplification operation is
a combination of edge swaps and degree 4 vertex removal,
the errorE(v), incurred by removing a vertexv of the mesh
is computed as the sum of the costs of performing these se-
quence of operations

E(v) = �C(v) + �S(v) (6)

whereC(v) is the cost of removing vertexv andS(v) is the
cost of edge swaps necessary to makev a vertex of valence
4. In our implementation� = 0:75 and� = 0:25.

The cost of a vertex removal is defined as

C(v) = min(Qv +Qu)(u) (7)

whereQu are the quadrics associated with the set of ver-
tices,u 2 N1(v), in the star ofv. Note that this is equiva-
lent to the vertex pair contraction cost used by Garland and
Heckbert [8].

The costS(v) is the sum of the costs of edge swaps in the
1-NeighborhoodN1(v) of the vertexv to makev a vertex
of valence 4. The quadric metric is also used to compute the
cost of swapping an edgee = (u; v). It is defined as

S(u; v) = Qs(t) (8)

wheres and t are the opposite vertices to the edgee =
(u; v) of the faces sharinge. The reason we employ this
measure is because the quadric errorQs(t) can be inter-
preted also as the squared volume of the tetrahedron defined
by the vertices(u; v; s; t) [16]. This gives an estimate of the
error incurred by replacing the edge(u; v) by (s; t).

We select a sequence of of independent edge swaps
based onS(u; v) andtc.

Note that the cost of vertex removal measures the ap-
proximation error, while the cost of edge swap also mea-
sures the change in surface fairness.

The second step of the method tries to cover most of the
mesh with an independent set of four-face clusters. This is
accomplished through a cluster marking strategy. Vertices
are first sorted according to increasing errorE(v) into a pri-
ority queue. Then, while the queue is not empty, the vertex
v with smallest error is extracted from the queue. Ifv is not
marked, the sequence of edge swaps is performed and the
resulting four-face cluster is marked, i.e., the four vertices
in the star ofv are marked. Note that the vertices taken out
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of the star ofv are not marked and, therefore, they remain as
valid candidates for another simplification operation. (See
Figure 3).

Figure 3. Cluster Marking.

The third step of the method corresponds to actually per-
forming the vertex removal to simplify the four-face cluster
selected in step (2).

The simplification operation removes the internal vertex,
but there is a choice of how to triangulate the submesh to
form the resulting two-face cluster. (See Figure 4).

v0

v1

v2

v3

v4

v1

v2

v3

v4

(b) (v1; v3)

v1

v2

v3

v4

(c) (v2; v4)

Figure 4. Options for vertex removal.

The option with smaller cost is the one that will be cho-
sen. Hence, the internal edge after simplification is either
(v1; v3) or (v2; v4), depending of the costsC(vi), as given
by equation 7.

After simplification, the quadricQ0, associated with the
removed vertexv0, is added to the quadricsQa andQb of
the endpoints of the new edge(va; vb)

Qi = (Q0 + ÆiQi); i = a; b (9)

whereÆi = 1� Ci

Ca+Cb

.

The costs of the verticesw 2 N1(va) [N1(vb), that are
neighbors ofva andvb, need to be recomputed, and their
position in the priority queue must be updated.

Steps (2) and (3) are repeated until the priority queue is
empty, and the marked four-face clusters cover most of the
mesh. The pseudo-code of the whole process is shown in
Algorithm 1.

Algorithm 1 : Simplify 4k(M, n)
assign quadrics;
for all (v 2 M) do

computeE(v)
for (j = 1 to n)do

putv 2 V j into queue
while (queue not empty)do

getv from queue
if (v not marked)then

perform edge swaps inN1(v)
remove vertex(v) and mark cluster
recompute quadricsQa andQb

update queue forw 2 N1(va) [N1(vb)

We remark that Algorithm 1 can be easily modified to
apply the simplification operators sequentially, instead of in
parallel.

5 Examples

Now we show some results of applying the four-face
cluster simplification algorithm to various models.

The first example is a planar triangulation. Figure 5(a)
shows the initial mesh at level 0 containing 186 triangles.
Figures 5(b) through (f) show intermediate meshes at levels
1, 3, 5, 7, and 9, containing, respectively, 132, 69, 35, 19,
and 6, triangles.

The second example is a height surface. Figure 6(a)
shows the initial mesh at level 0 containing 2432 triangles.
Figures 6(b) through (f) show intermediate meshes at levels
1, 2, 3, 4, and 5, containing respectively, 1594, 1103, 749,
500, and 338 triangles.

The third example is a cow model. Figure 6(a) shows
the initial mesh at level 0 containing 5800 triangles. Fig-
ures 6(b) through (f) show intermediate meshes at levels 1,
3, 5, 7, and 9, containing respectively, 1200, 700, 400, 300,
200, triangles.

The last example is the Stanford Bunny. Figure 6(a)
shows the initial mesh at level 0 containing 10000 triangles.
Figures 6(b) through (f) show intermediate meshes at levels
2, 4, 6, 8, and 10, containing respectively, 4577, 2106, 988,
463, 245 triangles.

These examples show that our algorithm produces sim-
plified meshes of similar quality of the ones generated by
Garland and Heckbert. The main difference is that the vari-
able resolution data structure constructed by our algorithm
allows the extraction of conforming meshes based on any
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adaptation criteria. The hierarchical 4-k representation en-
sures that the resulting meshes are free of any degeneracy.
This is not true for other multiresolution structures, such as
vertex hierarchies [24, 12].

Figure 9 shows two meshes extracted from the Bunny
model using different adaptation criteria. In Figure 9(a) the
criteria was surface curvature, while in Figure 9(b) the cri-
teria was region selection.

6 Conclusions

We presented an algorithm for simplification of polyg-
onal meshes. It is based on simple local operators for
mesh modification: edge swap and degree 4 vertex removal.
These operators are applied in parallel to an independent set
of four-face clusters. The mesh quality criteria employs a
quadric error metric and a triangle compactness measure.
The method generates a variable resolution 4-k mesh struc-
ture.

Future work includes the use of spatial subdivision to
handle very large meshes in the implementation of out-
of-the-core simplification, and the analysis of local edge
smoothness to create tagged meshes.
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(a) original mesh (b) level 1 (c) level 3

(d) level 5 (e) level 7 (f) level 9

Figure 5. Planar triangulation. Simplified meshes with 186, 132, 69, 35, 19, 6 triangles

(a) original mesh (b) level 1 (c) level 2

(d) level 3 (e) level 4 (f) level 5

Figure 6. Height surface. Simplified meshes with 2432, 1594, 1103, 749, 500, 338 triangles
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(a) original mesh (b) level 1 (c) level 3

(d) level 5 (e) level 7 (f) level 9

Figure 7. Cow model. Simplified meshes with 5800, 1200, 700, 400, 300, 200 triangles

(a) original mesh (b) level 2 (c) level 4

(d) level 6 (e) level 8 (f) level 10

Figure 8. Stanford Bunny. Simplified meshes with 10000, 4577, 2106, 988, 463, 245 triangles
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(a)

(b)

Figure 9. Adapted meshes
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