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Abstract

In this paper we introduce variable resolution 4–k meshes, a powerful structure for the representation of geometric
objects at multiple levels of detail. It combines most properties of other related descriptions with several advan-
tages, such as more flexibility and greater expressive power. The main unique feature of the 4–k mesh structure
lies in its variable resolution capability, which is crucial for adaptive computation.
We also give an overview of the different methods for constructing the 4–k mesh representation, as well as the
basic algorithms necessary to incorporate it in modeling and graphics applications.
Keywords: multiresolution, four-directional grids, restricted quad-trees, multi-triangulations, adapted meshes.

1. Introduction

Hierarchical structures are the embodiment of fundamental
abstraction mechanisms that allow us to deal with complex-
ity. For this reason, such structures are an integral part of
many tools in practically every area of human activity.

Hierarchies reflect dependency relations between entities
at different levels. The specific nature of these relationships
is determined by the application area, and by the problem to
be solved.

In Geometric Modeling and Computer Graphics, hierar-
chical structures are often used to represent objects with
multiple levels of detail. This type of hierarchy makes it pos-
sible to process an object at different resolutions. Thus, hi-
erarchical structures are essential for most algorithms that
require adapted computations. A typical example is the visu-
alization of 3D polygonal surfaces, where the size of polyg-
onal facets should be proportional to the projected area on
the screen.

The importance of multiple levels of detail representations
has motivated the development of various hierarchical struc-
tures which, in one way or another, support that capability.

In this paper, we present the variable resolution 4–k mesh
structure. It combines most properties of other multiple

level of detail representations and offers several advantages
over them. The 4-k mesh is a specialization of the gen-
eral variable resolution structure introduced independently
by De Berg et al.1 and by Puppo et al.2. The simplicity of
the 4-k mesh is the key to its representation power. From a
theoretical point of view it assures desirable properties, such
as high expressiveness, small depth and linear growth. From
a practical point of view it makes the implementation simple
and efficient.

The structure of this paper is as follows: Section 2 intro-
duces some basic notions used in the other sections; Sec-
tion 3 reviews general variable resolution triangulations;
Section 4 discusses four directional grids and their relation
to 4-k meshes; Section 5 investigates different ways to create
multiresolution structures from a 4–8 tessellation; Section 6
generalizes planar four directional grids to polygonal meshes
in three dimensions; Section 7 presents the variable resolu-
tion 4–k mesh that combines a four directional structure with
multiresolution. Section 8 gives an overview of construction
methods for 4–k meshes; Section 9 discusses level of detail
operations using 4–k meshes; and finally Section 10 makes
concluding remarks and points out directions for future re-
search.
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2. Basic Concepts

This section gives some definitions and basic notions that are
used throughout the paper.

2.1. Meshes

A mesh is a cell complex,K = (V;E; F ), whereV , E
and F are respectively sets of verticesvi 2 V , edges
(vi; vj) 2 E, and faces(vi; vj ; : : : ; vk) 2 F . The complex
K provides atopological structurefor the decomposition of
two dimensional domains.

A geometric realizationof the meshK is created, by
associating to each vertexvi 2 V , a coordinate value,
p(vi) 2 R

n . Whenn = 2, K is a planar mesh and when
n = 3,K is a surface in 3D.

The 1-neighborhoodN1(v) of a vertexv, consists of the
set of vertices that share a face withv. Thevalence(or de-
gree) of a vertex,v, is the number of edges incident inv.

A mesh can be classified according to various criteria.
Here we focus on the following three: cell type; mesh struc-
ture; and mesh geometry.

According to cell type, we usually work with homoge-
neous meshes, where 2D cells aren-sided faces, withn con-
stant. The most common ones are:triangle meshes(n = 3),
andquadrilateral meshes(n = 4). Note that it is always pos-
sible to triangulate ann-sided face. Therefore, it is sufficient
to consider only triangle meshes.

The mesh structure is related with the types of 1-
neighborhoods in the mesh. In aregular mesh, the valence
of all vertices is the same, while in anirregular meshthe
valence may differ from vertex to vertex in an arbitrary way.

The geometry of the mesh depends on its metric proper-
ties. Anuniform meshis a tessellation by regularn-gons, i.e.
all edges have the same size. Meshes without this property
are callednon-uniform. Note that uniform meshes are also
regular.

A related geometric property is theaspect ratio, which
measures how close a face is from a regularn-gon. We re-
mark that there are many ways to define this quantity.

The size of a mesh, denoted byjKj, is the number of faces
in the setF , ofK.

The resolutionof an uniform mesh is the number of ver-
tices per unit length. The resolution of an irregular mesh can
be determined locally from the length of its edges.

A mesh is calledconformingwhen faces that are spatially
adjacent share exactly edges and vertices on common bound-
aries.

Two meshesKm andKn arecompatible, if there is a sub-
set of facesFm 2 Km, that when it replaces a correspond-
ing subset of faces inKn, the result is a conforming mesh.
Correspondence in this case means spatial overlap.

2.2. Hierarchical Structures

A mesh hierarchy, H, is a sequence of meshes,H =

(Kj)j=1;::: ;n�1, such that the size of the meshKj increases
monotonically with the indexj. Furthermore, there is a de-
pendency relation between faces at two subsequent levelsj

andj + 1, whose support overlap.

Based on these dependency relations, it is possible to con-
struct a hierarchical structure that defines the increasing se-
quence of meshesH. It is also possible to define there-
verseof the hierarchy, which is the sequence in reverse order,
where the mesh size is decreasing.

A mesh hierarchy is usually constructed by local modifi-
cations that either refine or simplify some initial mesh. Thus,
one can start with a coarse mesh and subdivide it by apply-
ing a refinement operator; or, alternatively, one can start with
a fine mesh and coarsify it by applying a simplification op-
erator. Figure 1 shows a scheme of this process.

�! Refinement �!

K0 K1 K2

 � Simplification  �

Figure 1: Mesh hierarchy and construction mechanisms.

Note that the modification operator provides the depen-
dency relations necessary to build a hierarchical structure
encoding the mesh hierarchy.

The nature of these operators and the method by which
they are applied determines the properties of the hierarchy.

Here, we distinguish between hierarchical structures of
two kinds:non-adaptiveandadaptive.

Non-adaptive hierarchical structure: defines only one
mesh hierarchy. Examples of this kind of structure are mul-
tiresolution and progressive meshes.

In amultiresolution mesh, the modifications are applied in
parallel to a set of independent regions that completely cover
the mesh. Each step of this process changes the mesh resolu-
tion globally. The corresponding hierarchical data structure
is a tree. A multiresolution structure is usually constructed
using refinement3.

In a progressive mesh, the modifications are applied se-
quentially to only one region of the mesh at time. Each step
of the process changes the mesh resolution locally. The cor-
responding data structure is a list. The progressive structure
is usually constructed using simplification4.
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Adaptive hierarchical structure : defines a family of mesh
hierarchies. One example of this kind of structure is a vari-
able resolution mesh.

In a variable resolution mesh, local modifications are ap-
plied to a set of independent regions, such that, the boundary
of each region remains unchanged. Note that this set of re-
gions may not cover the mesh completely. Because of the
boundary constraint, there is no interference between local
modifications at each level, which can be applied indepen-
dently of each other. The above property makes it possible
to generate many sequences of meshes using permutations
of independent local modifications. The corresponding data
structure is a directed acyclic graph (DAG), that encodes de-
pendencies across levels. A variable resolution mesh can be
constructed either by refinement or simplification5.

We remark that, in some cases, it is possible to generate
an adaptive hierarchical structure from a non-adaptive struc-
ture. This conversion process usually takes advantage of the
underlying multiresolution structure to compute a set of lo-
cal independent modifications at each level6; 7

3. Variable Resolution Triangulations

This section defines more precisely some basic notions con-
cerning adaptive hierarchical structures.

The idea of a variable resolution triangulation was intro-
duced independently by Floriani et al.8 and De Berg et al.1.
Subsequently, Puppo developed an extensive theoretical
framework for general variable resolution structures2, which
he calledMulti-Triangulations. Below, we review the main
concepts of this framework.

3.1. Definitions

As mentioned in Section 2, hierarchical mesh structures are
based on local modifications. In the variable resolution set-
ting, it is necessary to employ a restricted class of local mod-
ifications: the ones that are minimally compatible

A minimally compatible local modification, W (Ki), to a
sub-meshKi � K of a meshK = (V;E;F ), is a substitu-
tion ofKi byW (Ki) in K, such that:

1. The boundary edges ofKi are not altered;
2. The interior edges ofKi are replaced by new edges.

The sub-meshesKi and W (Ki) are, respectively, the
pre-imageand image of the modification operatorW .

Compatibility is enforced by condition (1). Since the
boundary@Ki does not change, the new sub-meshW (Ki)

is compatible withKi and the modification operator pro-
duces a conforming mesh.

Minimality is addressed by condition (2). Since the inte-
rior of Ki changes completely, there is minimal redundancy
between the sub-meshesKi andW (Ki).

The modification operatorW is called increasing if
jW (Ki)j > jKij. This means thatW is a refinement oper-
ator. Similarly,W is calleddecreasingif jW (Ki)j < jKij.
In this case, it is a simplification operator.

A compatible sequence of meshes, (K0; K1; : : : ; Kn),
is generated by the application of a sequence of mod-
ifications (W1;W2; : : : ;Wn�1), starting with an ini-
tial mesh K0. This produces the sequence of meshes
(K0;W1(K1); : : : ;Wn�1(Kn�1)), where

Kj = Wj�1(Wj�2(� � �W1(K1))) (1)

for j > 0.

Note that, given an intermediate mesh,Km, and two inde-
pendent modificationsWj andWl, that are compatible with
Km, we can apply either one of them toKm, in order to pro-
duce a new meshKm+1 = Wj(Kj) or Km+1 = Wl(Kl),
with Kj ; Kl � Km.

The purpose of a variable resolution structure is to en-
code all possible mesh hierarchies that can be generated
from a sequence of modifications(Wi)i=1;::: ;n�1. In order
to achieve this goal, we need to distinguish betweendepen-
dentandindependentmodifications.

A variable resolution mesh, V = (K0;W;�) is defined
by an initial meshK0, a set of minimally compatible local
modificationsW = fW1;W2; : : : ;Wn�1g, and a partial
order relation� onW , satisfying the following conditions:

1. Dependency: Wi � Wj , if and only if there is a face
f 2 Fi in the pre-imageKi of Wi that belongs to the
imageWj(Kj) of Wj . In other words, precedence is de-
termined by compatibility of dependent modifications.

2. Non-redundancy: f 2 Fi ofWi(Ki) implies thatf 62 Fj

of Wj(Kj) for all j 6= i. In other words, there are no
duplicate faces.

3.2. Representation

The partial order relations can be described by a directed
acyclic graph (DAG), where the nodes are associated with
modificationsWi, and there is an arc fromWi toWj when-
everWj is the successor ofWi according to the partial order
relation�.

In order to complete the description of a variable resolu-
tion, we construct alattice representationmesh by adding a
source and a drain to the DAG. In this representation, each
face,f is referenced by exactly two nodes. It appears in the
image and in the pre-image of a modification. The node hav-
ing f in its pre-image is calledsuccessorof f , and the node
havingf in its image is calledpredecessorof f .

The source node is associated with a constructor of the
initial meshK0, and the drain node is associated with the
application of all modificationsWi, i = 1; : : : ; n � 1, to
K0, that produces the final meshKn. Appropriate arcs are
added to and from these two special nodes.
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A cut of a DAG consists of a set of nodes disconnecting
it. A front in a lattice is a cut which contains exactly one arc
for each path from the source to the drain.

Figure 14 illustrates the Lattice Representation of a 4-k
mesh; and Figure 18 shows a front in this lattice.

3.3. Properties

The effectiveness of a variable resolution structure can be
analyzed according to the following criteria, as discussed
in 2:

� Expressive Power: the number of different meshes that
can be built from a variable resolution structure. It is equal
to the number of distinct fronts in the lattice represen-
tation. This property is relevant to the adaptivity of the
mesh;
� Depth: the number of levels of the longest path from

source to drain in the lattice representation. This property
is relevant to structure traversal operations, such as point
location.
� Growth Rate: the ratio between the size of the longest se-

quence of modifications and the size of its cumulative ap-
plication to a mesh. When this rate is bounded by a con-
stant, the growth is linear. This property is relevant to the
performance of selective refinement operations.

4. Four Directional Grids

This section gives some background on four directional tes-
sellations of the plane, which are the basis of hierarchical
4-8 meshes.

4.1. [4:82] Laves Tilings

Laves tilings are crystallographic groups that generalize reg-
ular planar tilings9. They are monohedral tilings with regu-
lar vertices.

In a monohedral tiling, all tiles are congruent to a sin-
gle tile, called aprototile. Therefore, all tiles have the same
shape and size.

A vertex, v of a tiling is calledregular if the angle be-
tween consecutive edges incident inv is 2�=d, whered is
the valence ofv.

Laves tilings are classified by the valences of the vertices
of their prototiles.

There are eleven types of Laves tilings. Here, we focus on
the[4:82] Laves tiling, for which the prototile is an isosceles
triangle with vertices of valence 4, 8, and 8. This tiling is
shown in Figure 2.

This tiling has a rich fourfold set of symmetries. Also
note that the[4:82] Laves tiling is atriangulated quadran-
gulation. Thus, it combines the advantages of triangular and
quadrilateral meshes.

Figure 2: [4:82] Laves tiling

4.2. Quincunx Lattices

Thequincunx lattice10 is the set of pointsQ = fMx; x 2

Z�Zg, whereM is thequincunx matrix.

M =

�
1 1

1 �1

�
(2)

In a [4:82] Laves tiling, we can divide the vertices into two
classes: valence 4 vertices,v 2 V4, with deg(v) = 4; and
valence 8 vertices,v 2 V8, with deg(v) = 8.

The verticesV = V8 [ V4 of the [4:82] tiling belong to
two interleaved quincunx lattices. That is,v 2 V8 ) p(v) 2

Q0 = fMx;x 2 Z
2
g, and v 2 V4 ) p(v) 2 Q1 =

f(1; 0) +Mx;x 2 Z2g. See Figure 3. Note that, the union
of Q0 andQ1 is the integer latticeZ�Z.

(a) (b) (c)

Figure 3: Interleaved quincunx lattices and[4:82] tiling

4.3. The Four Directional Grid and Box Splines

4–8 tessellations are closely related with the four directional
grid that is generated by the set of vectors(e1; e2; e1 +

e2; e1 � e2), wheree1 = (1; 0) ande2 = (0; 1). See Fig-
ure 4.

Figure 4: Four direction vectors.

The four directional grid is well known in the theory of
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Box splines11. Box splines are piecewise polynomial func-
tions created by convolution along a prescribed set of direc-
tions.

The simplest smooth box spline over a four directional
grid is the Zwart-Powell element12. This function is piece-
wise quadratic, withC1 continuity across grid lines. It is
defined by the set of directionsD, shown in matrix form be-
low

D =

�
1 0 1 1

0 1 1 �1

�
(3)

Note that this is the same set of vectors associated with
the four directional grid.

Figure 5 shows the support of the Zwart-Powell function
on the underlying grid.

Figure 5: Support of the Zwart-Powell function.

5. Multiresolution 4–8 Structures

This section discusses how to define a representation for
multiresolution meshes based on[4:82] tilings.

5.1. Construction

4–8 tessellations arerefinable tilings. This property means
that it is possible to subdivide a coarse[4:82] tiling and ob-
tain a finer self-similar tiling. Therefore, we can construct a
multiresolution 4–8 tessellation using refinement.

There are two alternative construction methods: quater-
nary subdivision and interleaved binary subdivision.

Thequaternary subdivisionrefinement procedure of a 4-8
meshK = (V;E; F ), is as follows:

1. Split all edgese 2 E at their midpointsm;
2. Subdivide all facesf 2 F into four new faces, by linking

the degree 4 vertex,v 2 V4, to the midpointm of the
opposite edge, and also linkingm to the midpoints of the
two other edges.

Figure 6 shows the corresponding quaternary subdivision
template.

The interleaved binary subdivisionis as follows:

Figure 6: Quaternary subdivision template.

Repeat two times:

1. Split the edgese = (vi; vj) 2 E that are formed by
two vertices of valence 8,vi; vj 2 V8.

2. Subdivide all facesf 2 F into two sub-faces, by link-
ing the degree 4 vertex,v 2 V4, to the midpointm of
the opposite edge.

Figure 7 shows the corresponding interleaved binary sub-
division template template.

Figure 7: Binary subdivision template.

This recursive interleaved binary subdivision is also called
red-black refinement, because at even levels “red” edges are
subdivided and at odd levels “black” edges are subdivided.

5.2. Representation

A multiresolution 4–8 mesh can be represented using a tree
structure of triangles. Depending on the type of refinement
used, we have either a quaternary or a binary tree. See Fig-
ure 8.

(a) (b)

Figure 8: Quaternary (a) and binary (b) tree representation
of 4–8 mesh.
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These data structures are calledhierarchy of right trian-
gles13; 14; 15. Note that, in the regular case, the structure does
not need to be explicitly represented.

Alternatively, we can group adjacent triangles into quadri-
laterals and represent the multiresolution 4–8 mesh as a tri-
angulated quadtree3; 16; 7.

Note that, because of the special structure of the 4–8 tes-
sellation, each node of the quadtree consists of four triangles
created by subdivision of one diagonal of the triangulated
quadrilateral. In fact, we have two interleaved quadtrees, one
rotated by 45 degrees in relation to the other. This type of
structure was exploited in17. See Figure 9.

quadtree

rotated quadtree

Figure 9: Interleaved quadtrees.

6. 4–8 Meshes

This section generalizes planar 4–8 tessellations into a fam-
ily of mesh structures with similar properties. These meshes
are all constructed by some form of 4–8 subdivision.

6.1. Regular 4–8 Meshes

A regular 4–8 meshis a homogeneous simplicial complex
that has the same connectivity of a[4:82] tiling. All vertices
in a regular 4–8 mesh have valence 4 or 8, and are called
regular vertices. Moreover, the 1-neighborhood of every ver-
tex of valence 4 has only neighbors of valence 8, and the 1-
neighborhood of every vertex of valence 8 consists of a ring
of vertices with alternating valences 4 and 8 (The term reg-
ular is used here in a broader sense, since the 4–8 mesh has
more than one type of regular vertex).

A finer regular 4–8 mesh can be obtained from a coarse
regular 4–8 mesh by refinement. (See Section 5.) Figure 10
shows a regular 4–8 mesh.

Figure 10: Regular 4–8 mesh.

6.2. Semi-Regular 4–8 Meshes

A semi-regular 4–8 meshis a tessellation which contains iso-
lated extraordinary vertices with valence different than 4 or
8.

This mesh structure is created from a coarse irregular
mesh by applying a semi-regular 4–8 refinement method that
introduces only regular vertices18. In that way, as the mesh is
refined, extraordinary vertices from the initial mesh are sur-
rounded by regular vertices with valence 4 or 8. Figure 11
shows a semi-regular 4–8 mesh.

Figure 11: Semi-Regular 4–8 mesh.

6.3. Quasi-Regular 4–8 Meshes

A quasi-regular 4–8 meshis a tessellation in which most
vertices have regular valence 4 or 8, but irregular vertices
are not guaranteed to be isolated. Therefore, this mesh does
not possesses the 1-neighborhood structure of a regular 4–8
mesh.

This type of mesh is created by processes that almost al-
ways introduce vertices with regular valence19.

submitted to COMPUTER GRAPHICSForum(5/2000).



Velho and Gomes / Variable Resolution 4–k Meshes 7

7. Variable Resolution 4–k Meshes

This section describes a hierarchical structure to encode the
family of multiresolution 4–8 meshes discussed in Section 6.
This structure also allows to generate a larger class of mesh
hierarchies, which we call variable resolution 4–k meshes.

A variable resolution 4–k meshis a hierarchical structure
that contains at each level approximately half of its vertices
of valence 4 and other vertices of arbitrary valencek.

The variable resolution 4–k mesh is a special case of the
variable resolution triangulation, defined in Section 3. Be-
cause of its particular nature, it has unique desirable proper-
ties not available in general hierarchical structures.

7.1. The Hierarchical 4–k Structure

The hierarchical structure of variable resolution 4–k mesh is
built from a restricted set of local modifications defined on a
cluster of two triangular faces. These two modifications are:

i. Internal edge split: the edge shared by two adjacent faces
is subdivided, and the two faces are replaced by four
faces. See Figure 12.

Figure 12: Internal edge split.

ii. Internal edge swap: The edge shared by two adjacent
faces is replaced by another edge linking the opposite ver-
tices in each face. See Figure 13

Figure 13: Internal edge swap.

Note that these modifications make sense only if the two-
face cluster is convex. Also note that modification (i) is ex-
actly the binary subdivision step of 4–8 refinement applied
to adjacent faces. The inverse of (i) is an edge collapse. It
can be shown that these operations are sufficient to make
any topology preserving transformation to a mesh20.

Figure 14: Lattice representation of a variable resolution
mesh (from2).

Figure 14 shows an illustration of the lattice representa-
tion of a variable resolution 4-k mesh.

Another important observation is that both (i) and (ii) are
edge-based modifications. We exploit this fact to design data
structures for representing variable resolution meshes.

The description combines edge and face elements. Mod-
ifications of type (i) are associated with an edge that splits
or collapses. The edge points out to the two faces sharing it.
Additionally, a face points out to its parent and two children.

This representation is illustrated in Figure 15.

e

fa fb

fb.0

fb.1

fa.0

fa.1

Figure 15: Edge-face 4–8 variable resolution structures

The specification of these data structures in pseudo-C is
given below. A face is represented by the structure:

Face {
Hedge* edge[3];
Face* parent, children[2];

}
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where we adopt the convention that the split edge of a face
is edge[0] (i.e. split_edge(f):=f.edge[0]). When a
face is bisected its edges are cyclically shifted so that
split_edge(f) = f.edge[0].

An edge is represented using an augmented half-edge data
structure, where a pointer to the subdivided face (fbase) is
included:

Hedge {
Vertex* point;
Hedge* mate;
Face* fbase;

}

These two data structures provide a compact way to en-
code the variable resolution 4–k mesh, as well as its inverse.
They also make possible the efficient implementation of all
relevant operations. For example, the pre-image of a refine-
mentW (e) is

Set pre_image_w(Hedge e)
{

return make_set(e.fbase, e.mate.fbase);
}

The image of a refinementW (e) is

Set image_w(Hedge e)
{

return make_set(e.fbase.children[0],
e.fbase.children[1],
e.mate.fbase.children[0],
e.mate.fbase.children[1]);

}

The successor refinement of a facef is

Hedge* successor_f(Face f)
{

return split_edge(f);
}

The predecessor refinement of a facef is

Hedge* predecessor_f(Face f)
{

return split_edge(f.parent);
}

The representation of type (ii) modification, correspond-
ing to an edge swap, it uses the same data structures. The
implementation is very similar. We take advantage of the
fact the each face has only one child in the context of this
operation. Thus, we setf.children[1]=NULL.

We actually test the pointerf.children[1] to determine
the type of modification operator.

int modification_type(Hedge e)
{

if (e.fbase.children[1] == NULL &&
e.mate.fbase.children[1] == NULL)

return EDGE_SWAP;
else
return EDGE_SPLIT;

}

To implement the operations for type (ii) modifica-
tions the only function that needs to be changed is
image_w. The functionssuccessor_f, predecessor_f,
andpre_image_w are exactly the same.

This revised implementation ofimage_w works for both
type (i) and type (ii) modifications.

Set image_w(Hedge e)
{
if (modification_type(e) == EDGE_SWAP)

return make_set(e.fbase.children[0],
e.mate.fbase.children[1]);

else
return make_set(e.fbase.children[0],

e.fbase.children[1],
e.mate.fbase.children[0],
e.mate.fbase.children[1]);

}

7.2. Analysis

The DAG representation of a 4-k mesh structure may be
composed by two types of nodes: asplit node and aswap
node, that correspond respectively to modifications of type
(i) and (ii).

The split node has some special characteristics because
of the nature of the refinement operatorW . The number of
faces in the imageWi(Ki) of Wi is always 4, and the num-
ber of faces in the pre-image ofKi of Wi is always 2. As
a consequence, a nodeWi has exactly two incoming arcs
(the two nodes that generate the faces in the pre-image of
Wi), and four outgoing arcs (the four nodes that reference
one of the faces in the image ofWi). This is illustrated in
Figure 16.

Wi

Figure 16: Split node of the 4–8 DAG

The split node encodes a modification that changes the
resolution of the mesh. In contrast, the swap node does not
change the resolution, just the local topology of the mesh.
The number of faces in the pre-image of this modification
operator is the same as the number of faces in the image
of the operator. This number is always 2. The node has two
incoming arcs and two outgoing arcs. This is illustrated in
Figure 17.
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Ws

Figure 17: Swap node of the 4–8 DAG

The 4–k mesh has all the desirable properties, accord-
ing to the three criteria used to analyze a variable resolution
structure discussed in Section 3.

Below we will consider the case of a semi-regular vari-
able resolution 4–8 mesh, which features optimal proper-
ties among the family of 4–k meshes. Subsequently, we will
point out where it differs from the 4–k general case.

The semi-regular 4–8 mesh contains only split nodes. The
initial meshK0 has arbitrary size,jK0j = n. For a hier-
archical structure withm levels, at each refinement step,
j = 1; m, binary subdivision is applied to an independent set
of two-face clusters that completely cover the mesh. More-
over, all clusters at subsequent levelsj andj + 1 are inter-
leaved. As a consequence, there are2

j nodes in the DAG at
each even levelj. The size of the refined mesh produced by
applying all modifications up to levelj is 2

j n.

The variable resolution structure of a regular 4–8 mesh
has the following properties:

� High expressive power: It can be shown that the number,
p, of distinct meshes produced by the 4–8 structure with
m levels is equal to

p =

mX
j=1

2
jX

k=0

 
2
j

k

!
(4)

As an example, form = 6, the expressive power isp =

18446744078004584724.
� Logarithmic depth: the number of levels of a 4–8 structure

with q = 2
m nodes is approximatelyl = log2 q.

� Linear Growth: the growth rate is bounded by the ratio
between the sizes of the image and pre-image of the
modifications, which in the case of internal edge split is
2. It can be shown that the growth rateg of a 4–8 structure
is bounded by

g =
n+ 2

n+ 1
(5)

Note that the semi-regular 4–8 mesh can be encoded by a
pointerless structure, which implies in a compact represen-
tation.

The general 4-k mesh contains both split and swap nodes.
In this case the variable resolution structure is monotonic,
but not strictly monotonic. Therefore, we cannot claim the
optimal properties of the semi-regular 4–8 mesh. Nonethe-
less, general 4–k meshes inherit most of the representation
power of the 4–8 counterpart, as a consequence, they work
very well in practice. Moreover, the actual properties of a
variable resolution structure are largely determined by the
methods employed to construct it, as will bi discussed next.

8. Construction Methods

This section gives an overview of the methods used to gen-
erate a variable resolution 4–k mesh.

We remark that it is important to have a variety of con-
struction methods, so that they can be applied in distinct
modeling situations, such as free form modeling, surface ap-
proximation, and conversion of representations, to name a
few.

The main categories of methods are the ones based on
refinement and simplification.

8.1. Refinement-Based Methods

We subdivide the refinement-based methods into three types:
semi-regular; quasi-regular; and irregular.

The semi-regular refinement method employs topology
based subdivision. It generalizes the regular 4–8 mesh re-
finement and uses interleaved edge splits. A complete de-
scription of the algorithm can be found in18.

The method produces semi-regular meshes suitable for
implementing stationary subdivision schemes. Figure 19
shows various subdivision surfaces generated with such
schemes. The shape in this example is the “Stanford Bunny”.
The control polyhedron, shown in Figure 19(a), is a coarse
mesh obtained from the original data through simplifica-
tion 21.

The most natural scheme to implement using 4–8 semi-
regular meshes is a generalization of subdivision for Box
splines defined on four directional grids18. Figure 19(e)
shows aC1 subdivision surface based on the Zwart-Powell
element. Figure 19(f) shows aC4 subdivision surface based
on a degree 6 Box spline.

Because of the quadrangulated structure of semi-regular
4–8 meshes, it is also suitable for the implementation of
subdivision schemes originally designed for quadrilateral
meshes22; 23. This is achieved through a decomposition of
primal and dual quadrilateral refinement into interleaved bi-
nary subdivision steps24. Figure 19(c) shows a biquadratic
B-spline surface based on the Doo-Sabin scheme. Fig-
ure 19(d) shows a bicubic B-spline surface based on the
Catmull-Clark scheme.
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The quasi-regular refinement method employs geometry
sensitive subdivision. At each level, it covers the mesh with
two-face clusters selected using an edge length criteria. This
method produces a mesh that combines quasi-regular 4–8
topology with almost uniform geometric features. A com-
plete description of the algorithm can be found in19.

The quasi-regular mesh structure allows the implementa-
tion of quasi-stationary subdivision schemes. Figure 19(d)
shows an example of a quasi 4–8 subdivision surface.

Theirregular refinement method employs adaptive subdi-
vision. It is based on multiresolution edge sampling. This
method produces hierarchical meshes that conform to the
shape of existing objects. A complete description of the al-
gorithm can be found in25.

The irregular 4–8 mesh structure is suitable to adaptive
surface tessellation. Because the subdivision algorithm is
very general, it can work with both parametric or implicit
surface descriptions.

Figure 20 gives some examples of surfaces approximated
by adapted irregular 4–8 meshes.

Figures 20(a) and (b) show a torus, defined implicitly by

f(x; y; z) = (x
2
+ y

2
+ z

2
� r

2
� 1)

2
� 4r

2
(1� z

2
)

x; y 2 [�3; 3]; z 2 [�1; 1]; r = 1:6:

In Figure 20(a), we have an orthogonal projection of the base
mesh together with the 3D grid; and Figure 20(b), the polyg-
onal approximation, which contains 1324 triangles. The base
mesh was constructed using a Coxeter-Freudenthal decom-
position on a4� 4� 2 grid.

Figures 20(c) and (d), show the same torus, defined para-
metrically by

x = cos u(r + cos v); y = sin u(r+ cos v); z = sin v

u; v 2 [0; 2�]; r = 1:6:

In Figure 20(c) we have the adapted decomposition of the
parameter domain; and in Figure 20(d), the polygonal ap-
proximation, which contains 516 triangles. The base mesh
was simply the subdivision of the rectangle[0; 2�]� [0; 2�]

along its diagonal into two triangles. The algorithm has
structured the parameter domain into a 4–8 hierarchy with
three layers.

Note that the algorithm produces consistent results using
either the parametric or implicit description of a surface.

Figures 20(e) and (f), show a digitized bust of Spock. The
Cyberware data had 87040 points, structured into a regular
cylindrical grid. In Figure 20(f), we have an adaptive mesh
which approximates the surface within a prescribed toler-
ance, and in Figure 20(e), we have the corresponding domain
decomposition. The facial details are clearly visible, because
the regions of high curvature are sampled more densely than
the rest of the surface.

8.2. Simplification-Based Methods

Simplification-based methods construct the reverse of an in-
creasing variable resolution 4-k mesh. They start with a fine
mesh and coarsify it using the inverse of an edge split opera-
tion – an edge collapse. Therefore, they produce a decreasing
hierarchical structure. For several reasons, it is advisable to
establish the convention that the canonical lattice representa-
tion is an increasing structure, in which the source is a coarse
mesh and the drain is a fine mesh. In this context, a simpli-
fication method builds the variable resolution representation
“bottom-up”.

In order to perform the simplification of a mesh with regu-
lar 4–8 connectivity, it is sufficient to apply the internal edge
collapse operator that transforms a cluster of four faces into
a cluster of two faces (see21). Moreover, the simplification
procedure has to ensure that clusters at subsequent levels are
interleaved. Unfortunately, this type of method is only prac-
tical for regular 4–8 meshes.

In the case of arbitrary meshes, it is necessary to use also
the edge swap operator. The reason is that, since an irregular
mesh does not have 4–8 connectivity, it may not be possible
to cover the mesh with clusters of four faces sharing a degree
4 vertexv 2 V4. The edge swap operator is used to modify
the mesh at each level, producing the required set of four-
face clusters that cover most of the mesh21.

Figure 21 shows an example of 4–k simplification. It is
a cow model distributed with SGI’s powerflip demo. The
initial mesh, shown in Figure 21(a) contains 5800 trian-
gles. The sequence of simplified meshes at levels 3 to 7,
is shown in Figures 21(b) through (f). They contain respec-
tively, 1200, 700, 400, 300, and 200 faces.

9. Level of Detail Operations

This section considers the application of variable resolution
4-k meshes for managing level of detail of large geometric
models. It defines the relevant operations and gives some ex-
amples. The concept of level of detail operations used in this
section was developed by Floriani and Puppo26.

9.1. Variable Resolution Queries

A level of detail operation consists in extracting a meshK

from a variable resolution structureV = (K0;W;�). As
we have seen in section 3, this meshK � V , corresponds
to a front in the lattice representation ofV , i.e., a set of arcs
containing exactly one arc for each path from the source to
the drain.

The collection of all nodes which can be reached from the
source without traversing the arcs of the front, correspond to
modifications to the mesh that are consistent with the partial
order� and produce the extracted meshK. See Figure 18.
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Figure 18: A front in the lattice representation.

We can abstract this level of detail operation as ageomet-
ric query, Q, to the variable resolution structureV .

This general query operation can be specified by the fol-
lowing parameters26.

� An adaptation function: � : Kj ! f0; 1g, that computes
some measure overV to determine if a facef produced
by a modification should be accepted or not.
� A focus set: S � R

3 , that defines a region of interest
where�(f) is evaluated.

The answer to the queryK, is the smallest conforming
mesh such that�(f) = 1 andf \ F 6= ;, for all f 2 Kj .

We remark thatK could be either a mesh representing the
whole surface, or a sub-mesh containing just the elements in-
side the region of interest. In the first case, the query is called
globally defined and in the second case,locally defined 26.

9.2. Adapted Mesh Extraction

Examples of variable resolution query operations are: point
location; region intersection; neighbor search and adapted
mesh extraction. The last one is particularly important, be-
cause it appears in many graphics applications, such as, pro-
gressive rendering, real-time visualization and interactive
modeling.

Adaptive mesh extraction is implemented through a selec-
tive mesh refinement procedure using the variable resolution
structure26; 27.

This procedure can use a non-incremental or an incremen-
tal algorithm. Thenon-incremental algorithm is a special-
ization to 4-k meshes of the algorithms described in2 for
general variable resolution structures. It starts with an initial
front that contains all the arcs leaving the source node, and
gradually advances the front, in a top-down fashion, based

on the evaluation of the adaptation function and intersection
with the focus set.

The incremental algorithm uses an existing front, and up-
dates it, moving the front up or down if necessary, according
to the adaptation function.

We remark that the variable resolution structure guaran-
tees that an extracted mesh is conformingby construction.

Another nice feature of this framework is that, the mesh
extraction procedure is independent of the query specifica-
tion. As a consequence, it is straightforward to incorporate it
in completely different application domains. This gives a lot
of flexibility from the system design point of view.

In that context, what distinguishes two adapted mesh ex-
traction operations is the nature of the adaptation function.
Some common types of applications are related to: shape ap-
proximation; view dependent geometry, etc.

The practical performance of level of detail operations is
highly influenced by the properties of the underlying struc-
ture, as noted by Puppo2. This is significant in the case of
4–k meshes.

Next, we demonstrate the capabilities of the 4–k mesh
structure in the context variable resolution queries.

Figure 22 exhibits few examples of adapted mesh extrac-
tion, using a variety of adaptation functions, as well as, vari-
able resolution meshes constructed using different methods.

Figures 22(a) and (b) show two meshes representing a
“saddle” surface that was defined parametrically by

x = u; y = v; z = (uv)
3

u 2 [0; 1]; v 2 [0; 1]:

The variable resolution structure was constructed using
adaptive refinement. The adaptation criteria used in Fig-
ure 22(a) was triangle size. In Figure 22(b) the criteria was
intersection with a rectangular region in the parametric do-
main.

Figures 22(c) and (d) show two versions of the “Stan-
ford Bunny”. The one in Figure 22(c) was constructed using
theC4 Box-spline subdivision scheme; and the one in Fig-
ure 22(d) was constructed using simplification. The adapta-
tion criteria is the same for both models: it is a linear ramp
in the horizontal direction determining triangle size.

Figures 22(e) and (f) show an example of point location
using the cow model of Figure 21. In Figure 22(e) we have
the complete mesh, in which the smallest triangle was picked
by pointing at the screen. A detail of the area surrounding
this point is shown in Figure 22(d).

We close this section with some remarks about a useful
capability of the 4–k mesh structure that allows the con-
struction of a triangle strip representation of the extracted
mesh28. Similarly to selective refinement, this algorithm
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starts with a path, defined on the coarsest mesh, and the path
is refined while traversing the variable resolution structure.
In particular, if the model has semi-regular 4–8 connectivity,
it is possible to maintain a Hamiltonian path for all extracted
meshes. See Figure 23 for examples.

10. Conclusions

This section concludes the paper with a review of the results
and a discussion of future work.

10.1. Overview

A framework for variable resolution description of surfaces
was presented. It is based on the hierarchical 4-k mesh struc-
ture. This representation has several desirable properties for
multiresolution applications.

We described various methods for constructing the 4–k

representation that contemplate most modeling situations.
We also demonstrated the practical use of the 4–k represen-
tation, for the implementation of level of detail operations.

10.2. Future Work

Future work in this area includes: hierarchical parametriza-
tions; multiresolution decomposition; mesh compression;
and the development of an integrated application framework.
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(a) Base Mesh (b) Quasi 4-8

(c) Doo-Sabin (d) Catmull-Clarck

(e) Zwart-Powell (f) C4 Box Spline

Figure 19: Surfaces generated by different subdivision schemes based on quasi 4–8 refinement (b), and semi-regular 4–8
refinement (c-f)
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(a) spatial decomposition (b) implicit torus

(c)UV domain (d) parametric torus

(e)UV domain (f) Spock head

Figure 20: Surface Approximations using adaptive 4–8 refinement of implicit (a-b), parametric (c-d), and sampled (e-f) models.
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(a) 5800 faces (b) 1200 faces

(c) 700 faces (d) 400 faces

(e) 300 faces (f) 200 faces

Figure 21: 4-k Simplification of a cow model.
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(a) uniform resolution (b) region intersection

(c) linear ramp from refinement (d) linear ramp from simplification

(e) point location (f) detail of (e)

Figure 22: Adapted variable resolution 4-k mesh extraction.
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(a) uv domain (b) sphere

(c) uv domain (d) torus

(e) uv domain – torus (f) uv domain – torus

Figure 23: Hamiltonian paths on semi-regular 4–8 meshes.
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