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A B S T R A C T

We describe a simple method for reconstructing regions in the plane from well-distributed
point samples. For that, we introduce the sphere-of-influence diagram, a planar diagram
extracted from the Delaunay triangulation and the sphere-of-influence graph. The
sphere-of-influence diagram is simple to understand and to implement, and supports an
intuitive scaling parameter to handle variations in the distribution of samples. We report
experiments reconstructing regions from point clouds of varying shape and density. We
compare our results with those obtained by α-shapes and by CT-shapes.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The reconstruction of shapes from point samples is an impor-
tant task in pattern recognition, computer vision, and geometry
processing. We consider here the reconstruction of a region in
the plane from a well-distributed point sample. When such a
sample is presented to a human as a dot pattern using small disks,
the shape of the region is immediately perceived (see Fig. 1).
The algorithmic challenge is that the computer cannot see the
dot pattern, only the coordinates of the points.

Region reconstruction from samples is an ill-posed problem.
While humans easily perceive a shape from a dot pattern, they
do not always agree on the perceived shape. Region recon-
struction is a hard problem because there is no clear notion of
optimal shape that can be used as a proxy for perception [1].
Moreover, in some formulations it is an NP-hard problem [2].
Most methods for region reconstruction (including ours) start
from the Delaunay triangulation of the sample points and sculpt
the boundaries of the region by removing edges and faces, an
approach known as Delaunay filtering.

Toussaint [3] coined the term computational morphology for
the use of geometric algorithms to extract shape information and
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introduced the sphere-of-influence graph [4, 5] as a tool for com-
putational morphology. He argued that the sphere-of-influence
graph is markedly different from other proximity graphs because
it captures shapes naturally, identifying connected components
and holes without human intervention or tuning of parameters.

In this paper, we introduce the sphere-of-influence diagram
of a set of points in the plane: it is the planar diagram induced
by intersecting the sphere-of-influence graph with the Delaunay
triangulation. Surprisingly, to the best of our knowledge this
natural diagram has not been studied or used before. We report
experiments that show how the sphere-of-influence diagram of
the samples reconstructs the boundaries of a region from a well-
distributed point sample. We compare our results with those
obtained by the widely used α-shapes [6] and also by the recent
CT-shapes [7].

The sphere-of-influence diagram introduced here is simple to
understand and to implement. It reconstructs regions from spa-
tially uniformly distributed point samples without intervention.
It handles samples that are less well distributed by tuning an
intuitive scaling parameter µ ≥ 1. Tuning µ closes false holes,
fixes topological irregularities, and also improves the smooth-
ness of the reconstructed boundaries. When needed, choosing
a suitable µ for the sphere-of-influence diagram is easier than
choosing a suitable α for α-shapes because µ = 1 gives a good
starting point and the range of possible values of µ is much
smaller than the range of possible α .
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2. Related work

The seminal work on shape reconstruction was done in the
1980s. Edelsbrunner, Kirkpatrick, and Seidel [6] proposed the
family of α-shapes, which are widely used. Kirkpatrick and
Radke proposed β -skeletons [8]. Radke [9] discussed these and
other proximity graphs, including a variant of the sphere-of-
influence graph that uses a parameter for scaling nearest neigh-
bor disks, which we have adopted here. Toussaint organized a
volume on computational morphology [3] and introduced the
sphere-of-influence graph [4].

Medeiros et al. [10] restricted ball-pivoting to the plane to
compute solid α-shapes directly without computing a Delaunay
triangulation. Ball-pivoting traverses the sample points using a
ball of fixed radius. They also discussed how to adapt the radius
to the density of the samples. Klein and Zachmann [11] pro-
posed extensions of the sphere-of-influence graph to reconstruct
implicit surfaces from noisy point clouds. They used the kth near-
est neighbor instead of the standard first nearest neighbor. They
also proposed anisotropic sphere-of-influence graphs which use
ellipsoids instead of spheres. Vital Brazil and Figueiredo [12]
used radial basis functions with Gaussian kernels to find an ap-
proximation of a fuzzy membership function for a region in the
plane from a noisy point cloud, without using proximity graphs.

Motivated by geographic applications, Galton and Duckham
[13] discussed the shape of a set of points in the plane attempt-
ing to characterize the region they occupy. They introduced the
swinging arm algorithm, a generalization of the gift wrapping
algorithm for computing convex hulls [14] that uses a line seg-
ment of fixed length instead of an infinite half-line. A similar
approach was proposed by Jarvis [15].

Later work on region reconstruction focused on Delaunay fil-
tering. Duckham et al. [16] introduced χ-shapes, a single simple
polygon that characterizes the shape of a set of points in the
plane. Their algorithm repeatedly removes long edges from the
Delaunay triangulation of the points until no long edges remain,
subject to the regularity constraint that the external boundary of
the resulting triangulation is a simple polygon. Their algorithm
is controlled by a user-supplied length parameter and does not
handle multiple components or holes. Zhong and Duckham [17]
extended χ-shapes to χ-outlines, which can handle multiple
components and outliers from noisy data. Zhong and Duckham
[18] described an incremental algorithm for computing χ-shapes
that supports insertions and deletions, and handles streaming
individual points and multiple point sets.

Peethambaran and Muthuganapathy [19] combined a relaxed
Gabriel graph with a structural characterization of holes to recon-
struct regions having a single connected component. Methiru-
mangalath et al. [20] presented a unified reconstruction method
that handles both boundary samples and dot patterns. External
edges are successively removed subject to empty circle and reg-
ularity constraints. The resulting boundary is a simple closed
curve. Methirumangalath et al. [21] described how to detect
holes using empty circle criteria and applied that to reconstruct
external and internal boundaries. The recent work of Thayyil
et al. [7, 22] handles region reconstruction from both boundary
samples and dot patterns and includes extensive comparative
evaluations of existing methods.

3. Problem statement and background

Input. The input data is a set S of n points sampling a bounded
region in the plane. The region may have several connected com-
ponents and the components may have holes. Each component
has one external boundary and possibly also internal boundaries
that define holes. All boundaries are assumed to be piecewise
smooth. The sample points are assumed to be well distributed
inside the region. Spatially uniform distributions, such as created
by blue noise sampling, are ideal input. The boundaries are not
assumed to be sampled, except by accident. The sample points
are given by their Cartesian coordinates.

Output. To reconstruct the region, we seek a description the
external and internal boundaries of its connected components
by simple closed polygonal lines whose vertices come from the
point sample. Every sample point is inside exactly one polygon.

Spheres of influence. To each sample point p, we associate the
disk centered at p whose radius r(p) is the distance from p to
the nearest sample point: r(p) = min{dist(p,q) : q ∈ S,q , p},
where dist is Euclidean distance. We call this disk the nearest
neighbor disk of p and its radius the nearest neighbor radius
of p. Toussaint’s insight [4] was that the nearest neighbor disk of
a point is a measure of its influence in the sample, and two points
exert mutual influence when their disks intersect. This insight
led him to call nearest neighbor disks as spheres of influence and
to define three related structures that reflect mutual influence: the
sphere-of-influence hull, shape, and graph, which we describe
below. Radke [9] introduced a parameter µ ≥ 1 that controls
influence by scaling nearest neighbor disks. The scaled nearest
neighbor radius of a sample point p is R(p) = µr(p). We use
this parameter µ to handle samples that are less well distributed
than spatially uniformly distributed samples. In what follows,
all nearest neighbor disks and radii are implicitly scaled by µ .
Toussaint’s remarks when µ = 1 apply equally well when µ > 1.

Sphere-of-influence hull. The union of all nearest neighbor disks
is the sphere-of-influence hull of the points. When the sample
is well distributed, the sphere-of-influence hull with µ = 1 is a
fairly good outer approximation of the region [4, 9] (see Fig. 1).
This observation by Toussaint is the underlying motivation for
this paper. However, computing the boundary of the sphere-of-
influence hull is not simple: it requires identifying and inter-
secting boundary circles, and identifying and ordering boundary
arcs. These are complicated and numerically delicate geometric
tasks. The boundary has size O(n) and, in principle, can be
found in time O(n logn) using the Laguerre Voronoi diagram of
the points [23] (but we know of no actual implementation).

The change on the sphere-of-influence hull as µ varies is rem-
iniscent of dilation in mathematical morphology and filtration
in persistent homology for topological data analysis. However,
in both these examples all disks have the same radius whereas
the change on the sphere-of-influence hull as µ varies is a non-
uniform dilation that respects local sample density.

Sphere-of-influence graph. The sphere-of-influence graph de-
scribes mutual influence across the whole sample. The vertices
are the sample points. Two vertices u and v define an edge
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Fig. 1. From left to right: point sample (n = 258), sphere-of-influence hull, Delaunay triangulation, sphere-of-influence graph, sphere-of-influence diagram,
and region boundaries extracted from sphere-of-influence diagram (all computed with µ = 1).

when their scaled nearest neighbor disks intersect, that is, when
dist(u,v) ≤ R(u)+R(v), where dist is Euclidean distance and
R is the scaled nearest neighbor radius. Toussaint [4] noticed
that, when µ = 1, this simple notion of proximity captures the
local structure of the data. In particular, like the hull, the sphere-
of-influence graph automatically identifies the connected com-
ponents of the region. Other proximity graphs are either too
sparse (like the nearest neighbor graph) or too connected (like
the Euclidean minimum spanning tree and all proximity graphs
that contain it, such as the Delaunay triangulation). Moreover,
when µ = 1, the sphere-of-influence graph has size O(n) and can
be found in optimal time O(n logn) [5]. When µ is sufficiently
large, the sphere-of-influence graph is the complete graph.

Sphere-of-influence diagram. Even when µ = 1, the sphere-of-
influence graph is typically not planar, despite having linear
size: it tends to contain small cliques and so edges that cross
(see Fig. 1). Thus, the sphere-of-influence graph cannot be used
directly to extract boundaries because it has no natural faces. On
the other hand, the Delaunay triangulation of the points is planar,
but it joins different components, closes holes, and insists on a
single convex boundary enclosing all points.

We introduce here the sphere-of-influence diagram as the
planar diagram induced by intersecting the sphere-of-influence
graph with the Delaunay triangulation. The vertices are the
sample points. The edges of the sphere-of-influence diagram
are the Delaunay edges that are also in the sphere-of-influence
graph. The faces of the sphere-of-influence diagram are the
Delaunay faces whose edges are all in the sphere-of-influence
graph. Thus, by construction, the sphere-of-influence diagram
is a simplicial complex contained in the Delaunay triangulation
and so is planar and has size O(n). When µ is sufficiently large,
the sphere-of-influence diagram coincides with the Delaunay
triangulation.

As a simplicial complex contained in the Delaunay triangu-
lation, the sphere-of-influence diagram is composed of vertices
which are points, edges which are line segments, and faces which
are triangles (see Fig. 1). There are three types of edges in the
diagram: internal edges, which belong to two faces, external
edges, which belong to only one face, and free edges, which
belong to no face. The external edges compose the boundaries
of the sphere-of-influence diagram. The free edges play no role.

The sphere-of-influence diagram provides an inner approx-

imation of the region and serves much the same purpose as
the sphere-of-influence hull, but it is much easier to compute.
Our main empirical observation is that, already for µ = 1, the
sphere-of-influence diagram of a spatially uniformly distributed
sample is a regular simplicial complex, and so has well-defined
boundaries that are easily extracted using standard topological
procedures. Moreover, we also observe empirically that we can
reconstruct regions from samples that are less well distributed
by tuning µ > 1. See the results reported in §5.

4. Method

Finding the sphere-of-influence diagram. The sphere-of-
influence diagram is extracted easily in linear time from the
Delaunay triangulation, which can be found in optimal O(n logn)
time. Indeed, since a point and its nearest neighbor always define
a Delaunay edge and the Delaunay triangulation has O(n) edges,
the nearest neighbor radii can be found in linear time. Once
we know these radii, we can find the edges and faces in the
sphere-of-influence diagram by performing a simple O(1) test
on the O(n) edges and faces of the Delaunay triangulation.

The algorithm in Fig. 2 gives some details. The procedure
sid extracts the sphere-of-influence diagram from the Delaunay
triangulation of the point sample S and tags each extracted edge
with the number of faces it belongs to: 2 for internal edges, 1 for
external edges, and 0 for free edges. These tags are used to
identify boundary points (see below); they may not be needed
if a topological data structure is used. The procedure nn-radii
(omitted) visits the edges of the Delaunay triangulation and fills
a table R with the scaled nearest neighbor radius of each point:
R(p) = µr(p). These scaled radii are used in the predicate sig to
decide whether an edge belongs to the sphere-of-influence graph
(which is never fully built): two points define an edge when their
scaled nearest neighbor disks intersect.

Extracting boundaries from the sphere-of-influence diagram.
The triangulation of the sample points provided by the sphere-of-
influence diagram is already useful for drawing the region and for
deciding whether a query point in the plane is inside or outside it.
Nevertheless, the boundaries of the sphere-of-influence diagram
typically require much less data than the original sample points
and thus provide a more concise description of the region. The
procedure boundaries extracts the boundaries of a point sample S.
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procedure sig(u,v)
return dist(u,v)≤ R(u)+R(v)

end
procedure sid-edges(E)

for (u,v) ∈ E do
if sig(u,v) then

tag(u,v)← 0
else

delete (u,v) from E
end

end
end
procedure sid-faces(F)

for (u,v,w) ∈ F do
if sig(u,v) and sig(v,w) and sig(w,u) then

increment tag(u,v), tag(v,w), tag(w,u)
else

delete (u,v,w) from F
end

end
end
procedure sid(S)

E,F ← Delaunay(S)
nn-radii(E,µ)
sid-edges(E)
sid-faces(F)

end
procedure boundaries(S)

sid(S)
B← boundary-points(E)
for v ∈ B do

boundary-at(v)
end

end

Fig. 2. Extracting boundaries from the sphere-of-influence diagram.

After finding the sphere-of-influence diagram of S, it selects
the boundary points as those adjacent to external edges. The
boundary points are put into a set B. Then it finds the boundaries
of the diagram by following the external edges of boundary
points until it comes back to the starting point of each boundary
polygon (code omitted). Boundary points are removed from B
once they are visited to ensure that boundaries are traversed
exactly once. This is a standard topological procedure.

Classifying external and internal boundaries. The procedure
boundaries finds all boundaries of the diagram, but makes no
distinction between external and internal boundaries. To classify
a boundary polygon P as external or internal, consider its lowest
vertex v (the one with smallest y-coordinate). If all vertices adja-
cent to v in the sphere-of-influence diagram are above v (that is,
their y-coordinates are greater than or equal to that of v), then
P is an external boundary; otherwise, P is an internal boundary.
Once classified, the boundaries can be oriented consistently:
counterclockwise for external boundaries, clockwise for internal
boundaries. This orientation is important when filling polygonal

Fig. 3. Topological irregularities: free edges (top), split vertex (bottom);
original region and samples (left), reconstructed region with µ = 1 (middle)
and with µ > 1 (right): µ = 1.15 (top), µ = 1.09 (bottom).

regions using the non-zero winding rule, the default in the SVG
image format. Considering P as a circular list, let u be the vertex
in P before v and let w be the vertex in P after v. If P is an
internal boundary, then reverse the list if ccw(u,v,w). If P is
an external boundary, then reverse the list unless ccw(u,v,w).
Here, ccw(u,v,w) is the standard orientation predicate: it deter-
mines whether the triangle uvw is oriented counterclockwise by
checking the sign of its oriented area, a 2×2 determinant.

Handling non-manifold boundary points. The procedure bound-
aries relies on each boundary point being adjacent to exactly two
external edges. A boundary point that is adjacent to more than
two external edges is a non-manifold boundary point (see Fig. 3).
This topological irregularity in the sphere-of-influence diagram
may occur when the sample is not well distributed. For topologi-
cal robustness, we split each non-manifold boundary point into
distinct topological vertices having the same position, one vertex
for each fan of faces around the original non-manifold boundary
point. This restores the requirement that each boundary point is
adjacent to exactly two external edges and allows the algorithm
to find the boundaries of all connected components, even if some
components now touch. We flag the existence of non-manifold
boundary points so that the user can tune µ to remove them.

Handling free edges. The other kind of topological irregularity
that may occur when the sample is not well distributed are free
edges joining parts of the diagram (see Fig. 3). By definition,
free edges are not attached to faces and so cannot be boundary
edges. Therefore, our algorithm never follows free edges. This
may lead to extraneous connected components. The algorithm
will find these components but not any isolated points. We flag
the existence of free edges so that the user can tune µ to remove
them if necessary.

Summary. To reconstruct a region in the plane from a point
sample using our method, compute the sphere-of-influence di-
agram of the sample using µ = 1 and extract the boundaries
as described above. Our experience is that µ = 1 suffices for
spatially uniformly distributed sample. Otherwise, if the sample
is less well distributed and topological irregularities are found
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and are undesirable, increase µ > 1 slowly until no topologi-
cal irregularities exist. This is best done interactively or using
binary search guided by the user. Note that the Delaunay trian-
gulation and the table of unscaled nearest neighbor radii need to
be computed only once. Moreover, the value of µ at which each
Delaunay face appears in the sphere-of-influence diagram can
be computed a priori. See the discussion on parameter tuning at
the end of §5.

5. Experimental results and discussion

We now describe our experiments, starting with using µ = 1
for reconstructing regions from spatially uniformly and smooth
non-uniformly distributed samples (Figs. 4–9). Then we report
how tuning µ > 1 allows the reconstruction of regions from
samples that are less well distributed, removing false holes and
topological irregularities (Figs. 11–13). We also report quali-
tative and quantitative results that show that our method gives
essentially the same results as existing methods: the widely used
α-shapes [6] and the recent CT-shapes [7].

Tools and data. Here is the workflow used in our experiments.
We computed Delaunay triangulations using Fortune’s algorithm
and code [24] and also qdelaunay from the qhull suite [25];
both are command-line C programs. A program in Lua reads
the points and the Delaunay triangles, computes the sphere-of-
influence diagram (or alpha shape), and outputs a PostScript
picture. We generated Poisson-disk point samples using the
algorithm and code by Dunbar and Humphreys [26] and our own
implementation of the algorithm by McCool and Fiume [27].
As data, we used country outlines extracted from the χ-shapes
demo [28] and examples from the papers [7, 29].

Spatially uniformly distributed samples. For such samples,
µ = 1 works well. Fig. 4 shows an example reconstruction.
Note how all connected components and holes are automatically
identified and correctly reconstructed (in the sense that the topol-
ogy is correct as perceived by a human). Fig. 5 shows additional
examples. For a more extensive test, we generated samples in-
side polygonal regions describing country outlines by mapping
a 7000-point blue noise sample in the square [−1,1]× [−1,1]
linearly without distortion to a square containing the region, and
then selecting the samples inside the region. Fig. 6 shows some
examples.

Effect of sampling density. Fig. 7 illustrates how the
reconstruction using µ = 1 behaves when varying sam-
pling densities. The original region is given implicitly by
f (x,y) = 0.004 + 0.110x − 0.177y − 0.174x2 + 0.224xy −
0.303y2 − 0.168x3 + 0.327x2y − 0.087xy2 − 0.013y3 +
0.235x4 − 0.667x3y + 0.745x2y2 − 0.029xy3 + 0.072y4 ≤ 0
[30]. We generated samples of different densities in the square
[−1,1]× [−1,1] using Poisson-disk sampling for varying radii.
Then we mapped the samples linearly without distortion to
the square [−1.6,2.4]× [−1.6,2.4], which contains the region.
Finally, we selected the samples inside the region by evaluating
the implicit function. Fig. 7 shows the boundaries reconstructed
from samples whose size is roughly halved each time. Fig. 8

Fig. 4. Using µ = 1 works well for reconstructing regions from spatially
uniformly distributed samples. All connected components and holes are
automatically identified and correctly reconstructed.

shows that the reconstruction using µ = 1 behaves well even
with non-uniform densities, provided the density changes
smoothly. In these examples, the sample points were extracted
from the vertices of an adaptive triangular mesh. The example
in Fig. 8 (right) differs from all other examples in that it contains
both interior and boundary samples. The reconstruction works
well because the boundaries and the interior are well sampled,
and the interior samples are nicely away from the boundaries,
respecting the density of the boundary samples. Fig. 9 shows
that reconstruction using µ = 1 may fail when the density
changes abruptly; a correct reconstruction is found with µ > 1.

Effect of sample quality. As illustrated in Fig. 7, sample density
does not seem to affect the reconstruction using µ = 1, as long
as the sample is spatially uniform distributed: the reconstruction
works equally well with samples of high and low density. On the
other hand, the sphere-of-influence diagram is sensitive to the
spatial distribution of points in the sample. When the points are
not spatially uniformly distributed, small false holes may appear
in the diagram when µ = 1, even though they are not present
in the hull (see Fig. 11). If no holes are expected in the region,
then false holes can be ignored: the external boundaries of the
components describe the region. Otherwise, we have to discrim-
inate true holes from false ones. Closing holes with few vertices,
specially three and four, or small area are natural choices, but
we have not experimented with doing this automatically. Instead,
we just tuned µ: increasing µ closes all false holes. Figs. 11–
13 show examples where false holes appear when µ = 1 and
show the first µ > 1 when false holes disappear and the correct
topology of the region is found (again, correct in the sense of
human perception). The coliseum example in Fig. 12 (bottom)
uses stippling data [29], which has non-uniform but smoothly
varying spatial distribution; again, false holes are closed and
true holes are preserved. Fig. 13 also shows the first µ when the
border is reasonably smooth visually. Higher values of µ may
yield further smoothness, but if µ is too high, true holes will be
closed and different connected components will be merged. (See
the animation in the supplementary material.)
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cart crown dog2 duck knight

Fig. 5. µ = 1 suffices for reconstructing regions from spatially uniformly distributed samples.

Cyprus Mexico Spain Zaire

Fig. 6. Country outlines and samples (top); reconstructed regions using µ = 1 (bottom).
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Fig. 7. Effect of sampling density with µ = 1. Poisson-disk sampling with r = 0.005,0.007,0.010,0.014,0.020 yielding n = 7270,3685,1814,944,451 points.

Fig. 8. Reconstruction behaves well with smooth non-uniform densities, even
with µ = 1.

Fig. 9. Reconstruction of non-smooth non-uniform densities: sample points
(left), false holes with µ = 1 (middle) do not appear when µ = 1.59 (right).

Topological irregularities. Recall that two kinds of topologi-
cal irregularities may occur when the sample is not well dis-
tributed: non-manifold boundary points and free edges (Fig. 3).
We remove topological irregularities by increasing µ until they
disappear (Figs. 11–13). We stress that, in our experiments re-
constructing country outlines, topological irregularities are due
to undersampling of the original geometry because the samples
have fixed density, do not stay away from boundaries, do not
include boundary samples, and so do not capture thin features.

Jagged boundaries. The boundary polygons found by our
method are not smooth because their vertices are sample points
that come from the interior of the region, not from its boundaries.
Thus, the boundary vertices may be far from the actual (un-
known) boundary. For country outlines, this is not too noticeable
(Fig. 6). For regions with smooth boundaries, the reconstructed

boundaries may look jagged (Fig. 4), but can be improved using
a method that extracts smooth curves from polygonal lines [31].

Qualitative comparison. Our results are visually the same as
those obtained by other methods, such as α-shapes [6] and
CT-shapes [7]. Fig. 14 shows some reconstructions using α-
shapes; see also the supplementary material. They show the
critical α and the first α and µ that recover the topology of the
region. Although the reconstructions are quite similar, choosing
an appropriate α is not automatic and there is no clear starting
value. Choosing an appropriate µ is easier because we can start
with µ = 1, which frequently works already. See below for a
discussion on parameter tuning.

The sphere-of-influence diagram tends to produce smoother
boundaries, especially when µ > 1. As a consequence, some-
times sample points that appear to a human as concave boundary
vertices are smoothed out in the reconstruction. For instance,
consider the intro example in Figs. 12 and 14. In the lower part
where the tail joins the body, a natural concave boundary vertex
appears in the data and in the reconstructions with α = 11.65
and µ = 1 but becomes an interior point when µ > 1. This
subtle behavior of the sphere-of-influence diagram may happen
when the sample points are taken from a near-regular square
grid. In this case, the edges of sphere-of-influence diagram typ-
ically join a sample point to its immediate grid neighbors in
the sample, including the diagonal ones. Therefore, locally, the
border of the sphere-of-influence diagram almost coincides with
the orthogonal polygon containing the samples, except that the
sphere-of-influence diagram prefers diagonal edges and so is
slightly smoother (see also Fig. 10).

Quantitative comparison. We compared our results with those
obtained by CT-shape for the point clouds shown in Figs. 5,
11–13. There is no ground truth for these point clouds, even
though their shapes are easily perceived. We selected CT-shape
as a proxy for ground truth because: it is a recent method that
does not require parameter tuning; its code and data are readily
available; and it has been extensively and favorably compared
with previous methods. Table 1 shows that our reconstruction is
quite close to the one by CT-shape. (Quite similar results would
be obtained for α-shapes computed with a suitable value of α .)
The vertex column shows the fraction of boundary vertices in



8 preprint accepted for publication / SIBGRAPI 2022 / Computers & Graphics (2022)

µ vertex length area
alien 1.26 0.987 0.968 1.004
cart 1.00 0.993 0.996 1.001

cathole 1.20 0.969 0.983 1.001
crown 1.00 0.996 0.958 1.012
deer 1.25 0.986 0.961 1.011
dog 1.46 0.991 0.956 1.014
dog2 1.00 0.991 0.975 1.007
dove 1.12 0.992 0.965 1.013
duck 1.00 0.996 0.973 1.008
fish 1.05 0.994 0.958 1.018
head 1.03 0.989 0.965 1.008
intro 1.42 1.000 0.943 1.007
jig 1.35 0.994 0.956 1.016

knight 1.00 0.995 0.974 1.008
multfish 1.31 0.997 0.950 1.014

Table 1. Quantitative comparison with CT-shape: fraction of coincident
boundary vertices, ratio of boundary lengths, and ratio of region areas.

our reconstruction that appear in the reconstruction using CT-
shape. The length column shows the ratio of the length of our
boundary to the length of the boundary found by CT-shape. The
area column shows the ratio of the area of our region to the
area of the region found by CT-shape. We see that virtually all
our vertices appear in CT-shape and the lengths and areas agree
quite closely. This means that both boundaries are quite close to
each other, except for minor local variations (see Fig. 10). Our
boundaries are slightly shorter and our regions slightly larger
because they tend to be smoother for µ > 1.

For the country outlines, we had ground truth: the original
polygons. However, the samples we generated have fixed density,
are mostly away from the boundaries, and do not capture thin
features. Thus, a direct comparison of boundaries would be
meaningless. We opted to compare areas, with the expectation
that the area of our reconstruction would be slightly less than
the area of the original polygon. Nevertheless, the areas agree
closely even when µ = 1: the areas of all 154 reconstructed
regions were at least 82% of the original. Moreover, the areas
of 93% of all reconstructed regions were at least 90% of the
original. For the regions in Fig. 6, the ratio of the areas are 0.92
for Cyprus, 0.90 for Mexico, and 0.96 for Spain and Zaire.

Parameter tuning. It is natural that a method for region re-
construction using Delaunay filtering includes a parameter t to
control which edges and faces are removed. For concreteness,
we follow α-shapes [6] and assume that, as we vary t from 0
to ∞, the corresponding t-shapes grow monotonically from the
isolated sample points to the full Delaunay triangulation. The
t-spectrum of the sample is the finite ordered sequence of param-
eter values at which the shapes change topology. Focusing solely
on the faces, we assign a threshold to each Delaunay triangle:
the value of t at which the triangle first enters the shape. The
spectrum is then the finite ordered sequence of thresholds. In
α-shapes, the threshold of a Delaunay triangle is the radius of its
circumcircle. In our method, the threshold of a Delaunay triangle
uvw is µ(u,v,w) = max(µ(u,v),µ(v,w),µ(w,u)), where

µ(u,v) =
dist(u,v)

r(u)+ r(v)

and r is the unscaled nearest neighbor radius.

Fig. 10. Comparing our reconstruction using µ = 1.03 (blue) with CT-shape
(red). Both boundaries follow each other quite closely, except for minor
local variations. (Part of the head example shown in Fig. 12.)

The key task is how to choose a suitable value of t to recon-
struct the region. This is typically done interactively or using
binary search guided by the user. To help in this task, we can
analyze the spectrum of the sample and take its critical value:
the smallest parameter value for which the shape includes all
sample points (a notion borrowed from the α-shape toolbox in
MATLAB). The critical value is a good starting point for region
reconstruction, but frequently cannot be used directly because
including all points does not ensure the absence of false holes.

Although α-shapes are widely used for shape reconstruction,
finding a suitable α is challenging because the α-spectrum typi-
cally has values of widely different scales, including very large
values corresponding to thin triangles near the boundary of the
convex hull. (For the point sample in Fig. 4, the α-thresholds
range from 5.73 to 52923.99; the critical value is 9.85.) More-
over, the α-spectrum is not scale-invariant. In contrast, the
µ-spectrum is scale-invariant, which accounts for its much re-
duced range: the largest µ is essentially the length of the longest
Delaunay edge, normalized by the distance between neighboring
points. (For the point sample in Fig. 4, the µ-thresholds range
from 0.50 to 20.80; the critical value is 0.94.) Moreover, our
method starts with µ = 1, which already gives a fairly good
reconstruction, frequently a topologically correct reconstruc-
tion for well-distributed samples. When there are false holes, a
suitable µ is not very far from µ = 1 (see Figs. 11–13).

6. Conclusion

The sphere-of-influence diagram is a natural subset of the
Delaunay triangulation that works remarkably well for recon-
structing regions from spatially uniformly distributed point sam-
ples, already for µ = 1. It automatically identifies connected
components and holes, which seems to be the hardest algorithmic
task but the easiest perceptual one. When the sample has lower
spatial quality, tuning the scaling parameter µ helps to close
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false holes and to handle topological irregularities. Tuning µ

also improves the smoothness of the reconstructed boundaries.
Choosing a suitable µ for the sphere-of-influence diagram is eas-
ier than choosing a suitable α for α-shapes because we can start
at µ = 1 and the µ-spectrum has a much reduced range. (The
µ-spectrum is scale-invariant, whereas the α-spectrum is not.)
Like α-shapes, exploring the µ-spectrum interactively is effi-
cient because the Delaunay triangulation and the µ-thresholds
need to be computed only once. Finally, the sphere-of-influence
diagram is easily extracted in linear time from the Delaunay
triangulation: it relies on a simple geometric predicate that re-
moves Delaunay edges and faces. The whole process takes thus
O(n logn) asymptotic time. This coincides with the complexity
of other methods, which use at most O(n logn) time to perform
Delaunay filtering. We expect that these qualities will make our
region reconstruction method attractive in applications, such as
geometric processing of geographic queries and pattern recogni-
tion from images.

Further work. A natural direction for further work is to relax the
requirements on the output. The description of the boundaries by
polygonal lines whose vertices come only from the point sample
is not a hard requirement for reconstructing the region. Relaxing
this requirement would allow boundaries described by simpler
polygonal lines and nice smooth splines. The requirement that
every sample point is inside exactly one contour is a harder
requirement. Relaxing this requirement depends on defining and
identifying outliers in the sample and may be useful for handling
noisy samples.

Regarding the input, our experiments show that the sphere-of-
influence diagram reconstructs the boundaries of a region from
a well-distributed sample. We use ‘well-distributed’ informally.
A theoretical analysis that made this hypothesis precise and
provided guarantees that our method works for some concrete
classes of sample distributions, such as Poisson-disk sampling,
would nicely complement our experimental work. A natural start-
ing point is to consider r-samplings [21, 22], perhaps amended
to ensure good separation of interior samples.
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camel µ = 1 µ = 1.05

dog µ = 1 µ = 1.46

dove µ = 1 µ = 1.12

fish µ = 1 µ = 1.05

Fig. 11. First µ that recovers the correct topology of the region (last column).
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head µ = 1 µ = 1.03

intro µ = 1 µ = 1.42

jig µ = 1 µ = 1.35

coliseum µ = 1 µ = 1.42

Fig. 12. First µ that recovers the correct topology of the region (last column).



12 preprint accepted for publication / SIBGRAPI 2022 / Computers & Graphics (2022)

alien µ = 1 µ = 1.26 µ = 1.65

cathole µ = 1 µ = 1.20 µ = 1.27

deer µ = 1 µ = 1.25 µ = 1.33

multfish µ = 1 µ = 1.31 µ = 1.37

Fig. 13. First µ that recovers topology (third column); next µ that gives smooth reconstruction (fourth column).
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critical α = 1.62 α = 1.72 µ = 1

critical α = 1.42 α = 1.71 µ = 1

critical α = 10.04 α = 11.65 µ = 1.42

critical α = 15.31 α = 17.08 µ = 1.31

Fig. 14. Critical α and the first α and µ that recover the topology of the region.
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