Good Approximations for the Relative Neighbourhood Graph

Diogo Vieira Andrade (PUC-Rio)

Luiz Henrique de Figueiredo (IMPA)

Outline

- Computational morphology
- The relative neighbourhood graph
- Computing the relative neighbourhood graph
- The Urquhart graph
- Results
- Conclusion
- Open problems

Computational morphology

Computational morphology = computational extraction of perceptually meaningful structure from dot patterns.

Toussaint (1980) introduced RNG as tool for computational morphology.

The relative neighbourhood graph

S = set of points in the plane.

The edges in RNG(S) are defined by $p, q \in S$ with empty lune.

The relative neighbourhood graph

S =set of points in the plane.

The edges in RNG(S) are defined by $p, q \in S$ with empty *lune*.

 $\mathsf{RNG}(S) \subseteq \mathsf{GG}(S) \subseteq \mathsf{DT}(S)$

Computing the relative neighbourhood graph

- Brute-force algorithm from definition takes time $O(n^3)$.
- Restriction to DT(S) gives extraction in time $O(n^2)$.
- Supowit (1983) extracts in time $O(n \log n)$.
- Jaromczyk & Kowaluk (1987) extract in time $O(n \alpha(n, n))$.
- Jaromczyk, Kowaluk & Yao (1991?) extract in time O(n).
- Lingas (1994) extracts in time O(n)
 - simple algorithm, never implemented.

The Urquhart graph

- Idea by Urquhart (1980): test only Delaunay neighbours!
 - remove longest edge from each Delaunay triangle
 - common mistake!
 - \diamond new graph: Urquhart graph $RNG(S) \subseteq UG(S) \subseteq GG(S)$
- Toussaint (1980) proposed UG(S) as approximation to RNG(S)
- Our theme: how good is this approximation?
 - \diamond How close is UG(S) to RNG(S)?
 - compare number of edges.
 - \diamond Is UG(S) good for computational morphology?
 - · see pictures!

Results: random points in a square

Results: random points in a square

RNG 1241 edges

UG 1263 edges

Results: random points in a square

RNG 1241 edges

UG 1263 = 1241 + 22 edges

Results: random points on a spiral

Results: random points on a spiral

RNG 1291 edges

UG 1301 edges

Results: random points on a spiral

RNG 1291 edges

UG 1301 = 1291 + 10 edges

Results: random point on line art: earth

Results: random point on line art: earth

RNG 1089 edges

UG 1116 edges

Results: random point on line art: earth

RNG 1089 edges

UG 1116 = 1089 + 27 edges

Results: random point on line art: man

Results: random point on line art: man

RNG 663 edges

UG 682 edges

Results: random point on line art: man

RNG 663 edges

UG 682 = 663 + 19 edges

Conclusion

- UG(S) good approximation to RNG(S):
 - only about 2% additional edges for random samples
- Easy to extract UG(S) from DT(S) in linear time.
- Good, free, robust, optimal implementations of DT(S) at *netlib*:
 - ⋄ Triangle, by Jonathan Richard Shewchuk
 - ⋄ sweep2, by Steve Fortune

Open problems

- Compare implementations
 - ♦ Supowit (1983)
 - ♦ Lingas (1994)

- Probabilistic results à la Devroye (1988):
 - $\diamond E_{\mathsf{GG}}(N) \sim 2N$
 - $\diamond E_{\mathsf{RNG}}(N) \sim (1.27 + o(1))N$
 - $\diamond E_{\mathsf{UG}}(N) \sim ??? N$

Thanks

- Godfried Toussaint
- Therese Biedl
- CNPq (Brazilian agency)
- You all for your attention!

