# Approximating Parametric Curves with Strip Trees using Affine Arithmetic 

Luiz Henrique de Figueiredo (IMPA) Jorge Stolfi (UNICAMP)

Luiz Velho (IMPA)

## Strip trees

- Multi-resolution representation for polygonal curves (Ballard, 1981)
$\diamond$ tree of rectangles enclosing pieces of the curve
- Many applications:
$\diamond$ display at given resolution
$\diamond$ curve intersection
$\diamond$ approximate length computation
$\diamond$ testing point proximity
$\diamond$ testing point location
- We shall extend strip trees to general parametric curves

$$
\begin{aligned}
& c^{2} \text { is } \\
& \text { is }
\end{aligned}
$$

## Strip trees for polygonal curves

- Start with whole curve $\mathcal{C}=p_{1} \ldots p_{n}$
- Find bounding rectangle
- Choose splitting point $p_{k}$
- Recursively build strip trees for two halves $p_{1} \ldots p_{k}$ and $p_{k} \ldots p_{n}$.



## Strip trees for parametric curves

- Parametric curve $\mathcal{C}=\gamma(I)$ given by $\gamma: I \subseteq \mathbf{R} \rightarrow \mathbf{R}^{2}$
- Strip tree for $\mathcal{C}$ is the result of strip-tree $(I)$
strip-tree $(T)$ :
$B \leftarrow$ bounding rectangle for $\mathcal{P}=\gamma(T)$
if leaf $(T, B)$ then return $\langle T, B$, nil, nil $\rangle$
else
split $T$ into $T_{1}$ and $T_{2}$ return $\left\langle T, B\right.$, strip-tree $\left(T_{1}\right)$, strip-tree $\left.\left(T_{2}\right)\right\rangle$
- Crucial steps:
$\diamond$ bounding rectangle: use affine arithmetic to avoid heuristics
$\diamond$ split $T$ at midpoint
$\diamond$ stop recursion with application-dependent predicate (leaf)


## Affine arithmetic

- Tool for validated numerics introduced in SIBGRAPI'93
- Used in robust solution of several graphics problems as a replacement for interval arithmetic
- Represents a quantity $x$ with an affine form

$$
\widehat{x}=x_{0}+x_{1} \varepsilon_{1}+\cdots+x_{n} \varepsilon_{n}
$$

Noise symbols $\varepsilon_{i} \in \mathbf{U}=[-1,+1]$, independent but otherwise unknown

- We can compute arbitrary formulas on affine forms
- Key feature: ability to handle correlations


## Geometry of affine arithmetic

Affine forms that share noise symbols are not independent:

$$
\begin{aligned}
\hat{x} & =x_{0}+x_{1} \varepsilon_{1}+\cdots+x_{n} \varepsilon_{n} \\
\widehat{y} & =y_{0}+y_{1} \varepsilon_{1}+\cdots+y_{n} \varepsilon_{n}
\end{aligned}
$$

The region containing $(x, y)$ is

$$
Z=\left\{(x, y): \varepsilon_{i} \in \mathbf{U}\right\}
$$

$Z$ is the image of $\mathrm{U}^{n}$ under an affine $\operatorname{map} \mathbf{R}^{n} \rightarrow \mathbf{R}^{2}$ and so $Z$ is a centrally symmetric convex polygon, a zonotope.


## Geometry of affine arithmetic

Affine forms that share noise symbols are not independent:

$$
\begin{aligned}
& \widehat{x}=x_{0}+x_{1} \varepsilon_{1}+\cdots+x_{n} \varepsilon_{n} \\
& \widehat{y}=y_{0}+y_{1} \varepsilon_{1}+\cdots+y_{n} \varepsilon_{n}
\end{aligned}
$$

The region containing $(x, y)$ is

$$
Z=\left\{(x, y): \varepsilon_{i} \in \mathbf{U}\right\}
$$

$Z$ is the image of $\mathrm{U}^{n}$ under an affine $\operatorname{map} \mathbf{R}^{n} \rightarrow \mathbf{R}^{2}$ and so $Z$ is a centrally symmetric convex polygon, a zonotope.

The region would be a rectangle if $x$ and $y$ were independent.


## Approximating parametric curves

Given a parametric curve $\mathcal{C}=\gamma(I)$, where $\gamma: I \rightarrow \mathbf{R}^{2}$ and $T \subseteq I$, compute a bounding rectangle for $\mathcal{P}=\gamma(T)$.


## Approximating parametric curves

Given a parametric curve $\mathcal{C}=\gamma(I)$, where $\gamma: I \rightarrow \mathbf{R}^{2}$ and $T \subseteq I$, compute a bounding rectangle for $\mathcal{P}=\gamma(T)$.


## Approximating parametric curves

Given a parametric curve $\mathcal{C}=\gamma(I)$, where $\gamma: I \rightarrow \mathbf{R}^{2}$ and $T \subseteq I$, compute a bounding rectangle for $\mathcal{P}=\gamma(T)$.


## Approximating parametric curves

Given a parametric curve $\mathcal{C}=\gamma(I)$, where $\gamma: I \rightarrow \mathbf{R}^{2}$ and $T \subseteq I$, compute a bounding rectangle for $\mathcal{P}=\gamma(T)$.

Solution with AA:

- Write $\gamma(t)=(x(t), y(t))$.
- Represent $t \in T$ with an affine form:

$$
\hat{t}=t_{0}+t_{1} \varepsilon_{1}, \quad t_{0}=(b+a) / 2, \quad t_{1}=(b-a) / 2
$$

- Compute coordinate functions $x$ and $y$ at $\hat{t}$ using AA:

$$
\begin{aligned}
& \widehat{x}=x_{0}+x_{1} \varepsilon_{1}+\cdots+x_{n} \varepsilon_{n} \\
& \widehat{y}=y_{0}+y_{1} \varepsilon_{1}+\cdots+y_{n} \varepsilon_{n}
\end{aligned}
$$

- Use bounding rectangle of the $x y$ zonotope.


## Approximating parametric curves



## Approximating parametric curves



Approximating parametric curves


Approximating parametric curves


## Approximating parametric curves (example)

- $\mathcal{C}=$ line segment given by $\gamma(t)=(1,1)+t(4,6)$, for $t \in[0,1]$

$$
\begin{aligned}
& \hat{t}=0.5+0.5 \varepsilon_{1} \\
& \hat{x}=1+4 \hat{t}=3+2 \varepsilon_{1} \\
& \hat{y}=1+6 \hat{t}=4+3 \varepsilon_{1}
\end{aligned}
$$

Separately: $(x, y) \in[1,5] \times[1,7]$

Jointly: $(x, y)$ is exactly on the line segment


## Approximating parametric curves (example)

- $\mathcal{C}=$ parabolic segment given by $\gamma(t)=\left(t^{2}, t\right)$, for $t \in[0,2]$

$$
\begin{aligned}
& \widehat{x}=\widehat{t}^{2}=1.5+2 \varepsilon_{1}+0.5 \varepsilon_{2} \\
& \widehat{y}=\widehat{t}=1+1 \varepsilon_{1}
\end{aligned}
$$

Separately: $(x, y) \in=[-1,4] \times[0,2]$
Jointly: $(x, y)$ is in parallelogram


## Examples of strip-tree approximations



Spiral
Butterfly

Strip tree for circle


Strip tree for spiral


Strip tree for butterfly


Strip tree for butterfly


## Strip tree for butterfly



Strip tree for butterfly


Strip tree for butterfly


## Strip treee for limaçon

## Strip tree for limaçon

## Strip tree for limaçon

## Strip tree for limaçon



## Strip tree for limaçon

Distance field for butterfly

## Offsets for butterfly



Distance field for limaçon


## Offsets for limaçon



## Conclusion

- Strip trees for general parametric curves
$\diamond$ non-aligned bounding rectangles from zonotopes given by affine arithmetic
- Implicit approximation of parametric curves via distance fields
- Future work: Surfaces
$\diamond$ non-aligned rectangular boxes from 3D zonotopes (how?)
$\diamond$ domain decomposition (how?)
. 4-8 meshes seem to be convenient for affine arithmetic

