
Workshop of Geometry Processing and Applications

Interval Methods in Computer Graphics

Luiz Henrique de Figueiredo (IMPA)

September 2004

Motivation

• How do I plot an implicit curve?

� Must solve f(x, y) = 0

� Solution is a curve, but where is it?

• How do I render an implicit surface?

� Must solve f(x, y, z) = 0 for (x, y, z) on a ray

� Solution is one or more points, but need point closest to eye!

• How do I intersect two parametric surfaces?

� Must solve f(u, v) = g(s, t)

� Solution is a set of curves in space and a set of curves in each
parametric plane. Where are they? How do they match?

Motivation

• How do I plot an implicit curve?

� Must solve f(x, y) = 0

� Solution is a curve, but where is it?

• How do I render an implicit surface?

� Must solve f(x, y, z) = 0 for (x, y, z) on a ray

� Solution is one or more points, but need point closest to eye!

• How do I intersect two parametric surfaces?

� Must solve f(u, v) = g(s, t)

� Solution is a set of curves in space and a set of curves in each
parametric plane. Where are they? How do they match?

Plotting an implicit curve

y2 − x3 + x = 0 Ω = [−2,2]× [−2,2]

Motivation

• How do I plot an implicit curve?

� Must solve f(x, y) = 0

� Solution is a curve, but where is it?

• How do I render an implicit surface?

� Must solve f(x, y, z) = 0 for (x, y, z) on a ray

� Solution is one or more points, but need point closest to eye!

• How do I intersect two parametric surfaces?

� Must solve f(u, v) = g(s, t)

� Solution is a set of curves in space and a set of curves in each
parametric plane. Where are they? How do they match?

Rendering implicit surfaces

4(x4 + (y2 + z2)2) + 17x2(y2 + z2)− 20(x2 + y2 + z2) + 17 = 0

Motivation

• How do I plot an implicit curve?

� Must solve f(x, y) = 0

� Solution is a curve, but where is it?

• How do I render an implicit surface?

� Must solve f(x, y, z) = 0 for (x, y, z) on a ray

� Solution is one or more points, but need point closest to eye!

• How do I intersect two parametric surfaces?

� Must solve f(u, v) = g(s, t)

� Solution is a set of curves in space and a set of curves in each
parametric plane. Where are they? How do they match?

Intersecting two parametric surfaces

(Snyder, 1992)

Interval arithmetic

Can we trust floating-point arithmetic?

Rump’s example – Evaluate this innocent-looking polynomial expression:

f = 333.75y6 + x2(11x2y2 − y6 − 121y4 − 2) + 5.5y8 + x/(2y),

for x = 77617 and y = 33096.

f:=333.75*y^6+x^2*(11*x^2*y^2-y^6-121*y^4-2)+5.5*y^8+x/(2*y);
f := 1.172603940

f:=33375/100*y^6+x^2*(11*x^2*y^2-y^6-121*y^4-2)+55/10*y^8+x/(2*y);
54767

f := - -----
66192

evalf(f,10);
-0.8273960599

Not Maple’s fault! Running gcc under Linux gives 5.76461× 1017.

Culprit is catastrophic cancellation of floating-point arithmetic!

Interval arithmetic

• To improve reliability of floating-point computations (Moore, 1960)

• Represent quantities as intervals:

x ∼ [a, b]⇒ x ∈ [a, b]

• Operate with intervals generating other intervals:

� Simple formulas for elementary operations and functions:

[a, b] + [c, d] = [a + c, b + d]

[a, b]× [c, d] = [min{ac, ad, bc, bd},max{ac, ad, bc, bd}]

[a, b] / [c, d] = [a, b]× [1/d,1/c]

[a, b]2 = [0,max(a2, b2)] when 0 ∈ [a, b]

exp [a, b] = [exp(a), exp(b)]

· · ·

� Automatic extensions for complicated expressions

� Rounding control available in modern floating-point units (IEEE 754)

Interval arithmetic

• Every expression f has an interval extension F :

xi ∈ Xi ⇒ f(x1, . . . , xn) ∈ F (X1, . . . , Xn)

• Interval computations not immune to roundoff errors
Wide results alert user of catastrophic cancellation

• Roundoff errors are not our main motivation!

• Interval computations allow range estimates and avoid point sampling

F (X) ⊇ f(X) = {f(x) : x ∈ X}

For instance

0 6∈ F (X) ⇒ 0 6∈ f(X)

⇒ f = 0 has no solution in X

This is a computational proof!

Interval probing of implicit curve

y2 − x3 + x = 0

X = [−2,−1]

Y = [1,2]

X3 = [−8,−1]

−X3 = [1,8]

−X3 + X = [−1,7]

Y 2 = [1,4]

Y 2 −X3 + X = [0,11]

• Interval estimates not tight

f(X, Y) = [1,10] ⊂ [0,11]

• Interval estimates improve as intervals shrink

Interval probing of implicit curve

[−2,−1]× [1,2] [0,11] yes?

Interval probing of implicit curve

[−2,−1.5]× [1.5,2] [3.625,10.5] no

Interval probing of implicit curve

[−1.5,−1]× [1.5,2] [1.75,6.375] no

Interval probing of implicit curve

[−2,−1.5]× [1,1.5] [2.375,8.75] no

Interval probing of implicit curve

[−1.5,−1]× [1,1.5] [0.5,4.625] no

Interval probing of implicit curve

[−2,−1]× [1,2] [0.5,10.5] no!

Approximation of implicit curve

Robust adaptive enumeration

• Recursive exploration of domain Ω starts with explore(Ω)

• Discard subregions X of Ω when 0 6∈ F (X)

= proof that X does not contain any part of the curve!

explore(X):
if 0 6∈ F (X) then

discard X
elseif diam(X) < ε then

output X
else

divide X into smaller pieces Xi
for each i, explore(Xi)

• Output cells have the same size: only spatial adaption

Suffern–Fackerell (1991), Snyder (1992)

Robust adaptive approximation

• Estimate curvature by gradient variation

• G = inclusion function for the normalized gradient of f

• G(X) small⇒ curve approximately flat inside X

explore(X):
if 0 6∈ F (X) then

discard X
elseif diam(X) < ε or diam(G(X)) < δ then

approx(X)
else

divide X into smaller pieces Xi
for each i, explore(Xi)

• Output cells vary in size: spatial and geometrical adaption

Lopes–Oliveira–Figueiredo (2002)

Robust adaptive approximation

Approximation of implicit curve

Robust adaptive approximation

Robust adaptive approximation

Robust adaptive approximation

Offsets of parametric curves

Oliveira–Figueiredo (2003)

Offsets of parametric curves

Offsets of parametric curves

Offsets of parametric curves

Offsets of parametric curves

Offsets of parametric curves

Bisectors of parametric curves

Bisectors of parametric curves

Bisectors of parametric curves

Bisectors of parametric curves

Medial axis of parametric curves

Interval methods

• Robust: they don’t lie

� correctness depends on F (X) ⊇ f(X)

� can prove 0 6∈ f(X), not that 0 ∈ f(X)

• Converge: solutions get better

� F (X)→ {f(x)} as X → {x}

• Conservative: they tend to exagerate

� f(x, y) = y2 − x3 + x X = [−2,−1]× [1,2]

F (X) = [0,11] f(X) = [1,10]

� gets worse in complicated expressions and iterative methods

• Efficient?

� how much larger is F (X)?

� better estimates imply faster methods

The dependency problem in interval arithmetic

IA can’t see correlations between operands

g(x) = (10 + x)(10− x) for x ∈ [−2,2]

10 + x = [8,12]

10− x = [8,12]

(10 + x)(10− x) = [64,144] diam = 80

Exact range = [96,100] diam = 4

The dependency problem in interval arithmetic

IA can’t see correlations between operands

g(x) = (10 + x)(10− x) for x ∈ [−u, u]

10 + x = [10− u,10 + u]

10− x = [10− u,10 + u]

(10 + x)(10− x) = [(10− u)2, (10 + u)2] diam = 40u

Exact range = [100− u2,100] diam = u2

The dependency problem in interval arithmetic

g(x) =
√

x2 − x + 1/2/
√

x2 + 1/2

g g ◦ g

gn→ c = fixed point of g ≈ 0.5586, but intervals diverge

Interval estimates may get too large in long computations

Affine arithmetic

Affine arithmetic

AA represents a quantity x with an affine form

x̂ = x0 + x1ε1 + · · ·+ xnεn

• Noise symbols εi ∈ [−1,+1]: independent, but otherwise unknown

• Can compute arbitrary formulas on affine forms

� Need affine approximations for non-affine operations

� New noise symbols created during computation due to
approximation and rounding

• Can replace IA

� x ∼ x̂ ⇒ x ∈ [x0 − r, x0 + r] for r = |x1|+ · · ·+ |xn|

� x ∈ [a, b] ⇒ x ∼ x̂ = x0 + x1ε1
x0 = (b + a)/2 x1 = (b− a)/2

The dependency problem in interval arithmetic – AA version

AA can see correlations between operands

g(x) = (10 + x)(10− x) for x ∈ [−u, u], x = 0 + u ε

10 + x = 10− u ε

10− x = 10 + u ε

(10 + x)(10− x) = 100− u2 ε

range = [100− u2,100 + u2] diam = 2u2

Exact range = [100− u2,100] diam = u2

AA

The dependency problem in interval arithmetic – AA version

AA can see correlations between operands

g(x) = (10 + x)(10− x) for x ∈ [−u, u], x = 0 + u ε

10 + x = 10− u ε

10− x = 10 + u ε

(10 + x)(10− x) = 100− u2 ε

range = [100− u2,100 + u2] diam = 2u2

Exact range = [100− u2,100] diam = u2

IA

The dependency problem in interval arithmetic – AA version

g(x) =
√

x2 − x + 1/2/
√

x2 + 1/2

g

g ◦ g

IA AA

Replacing IA with AA for plotting implicit curves

x2 + y2 + xy − (xy)2/2− 1/4 = 0

IA (246 cells, 66 exact) (Comba–Stolfi, 1993) (70 cells) AA

Replacing IA with AA for surface intersection

Tensor product Bézier surfaces of degree (p, q):

f(u, v) =
p

∑

i=0

q
∑

j=0

aijB
p
i (u)B

q
j (v), Bn

i (t) =
(n

i

)

ti (1− t)n−i

(2,1) (3,3)

Replacing IA with AA for surface intersection

(2,1) IA (3,3)

AA (Figueiredo, 1996)

Exploiting the correlations given by AA

Geometry of affine arithmetic

Affine forms that share noise symbols are not independent:

x̂ = x0 + x1ε1 + · · ·+ xnεn

ŷ = y0 + y1ε1 + · · ·+ ynεn

The region containing (x, y) is

Z = {(x, y) : εi ∈ U}

This region is the image of Un under
an affine map Rn → R2. It’s a
centrally symmetric convex polygon,
a zonotope.

Geometry of affine arithmetic

Affine forms that share noise symbols are not independent:

x̂ = x0 + x1ε1 + · · ·+ xnεn

ŷ = y0 + y1ε1 + · · ·+ ynεn

The region containing (x, y) is

Z = {(x, y) : εi ∈ U}

This region is the image of Un under
an affine map Rn → R2. It’s a
centrally symmetric convex polygon,
a zonotope.

The region would be a rectangle if
x and y were independent.

Approximating parametric curves

Given a parametric curve C = γ(I), where γ: I → R2 and T ⊆ I,
compute a bounding rectangle for P = γ(T).

Approximating parametric curves

Given a parametric curve C = γ(I), where γ: I → R2 and T ⊆ I,
compute a bounding rectangle for P = γ(T).

Approximating parametric curves

Given a parametric curve C = γ(I), where γ: I → R2 and T ⊆ I,
compute a bounding rectangle for P = γ(T).

Approximating parametric curves

Given a parametric curve C = γ(I), where γ: I → R2 and T ⊆ I,
compute a bounding rectangle for P = γ(T).

Solution:

• Write γ(t) = (x(t), y(t)).

• Represent t ∈ T with an affine form:

t̂ = t0 + t1 ε1, t0 = (b + a)/2, t1 = (b− a)/2

• Compute coordinate functions x and y at t̂ using AA:

x̂ = x0 + x1ε1 + · · ·+ xnεn

ŷ = y0 + y1ε1 + · · ·+ ynεn

• Use bounding rectangle of the xy zonotope.

Approximating parametric curves

Approximating parametric curves

Approximating parametric curves

Approximating parametric curves

Approximating parametric curves

Approximating parametric curves

Approximating parametric curves

Approximating parametric curves

(Figueiredo–Stolfi–Velho, 2003)

Ray casting implicit surfaces

• Implicit surface
h:R3 → R

S = {p ∈ R3 : h(p) = 0}

• Ray
r(t) = E + t · v, t ∈ [0,∞)

• Ray intersects S when
f(t) = h(r(t)) = 0

• First intersection occurs at smallest
zero of f in [0,∞).

• Paint pixel with color based on
normal at first intersection point

Ray casting implicit surfaces

• Implicit surface
h:R3 → R

S = {p ∈ R3 : h(p) = 0}

• Ray
r(t) = E + t · v, t ∈ [0,∞)

• Ray intersects S when
f(t) = h(r(t)) = 0

• First intersection occurs at smallest
zero of f in [0,∞).

• Paint pixel with color based on
normal at first intersection point

4(x4 + (y2 + z2)2) + 17x2(y2 + z2)− 20(x2 + y2 + z2) + 17 = 0
(Custatis–Figueiredo–Gattass, 1999)

Interval bisection

• Solve f(t) = 0 using inclusion function F for f :

F (T) ⊇ f(T) = {f(t) : t ∈ T}, T ⊆ I

• 0 6∈ F (T)⇒ no solutions of f(t) = 0 in T

• 0 ∈ F (T)⇒ there may be solutions in T

interval-bisection([a, b]):
if 0 ∈ F ([a, b]) then

c← (a + b)/2
if (b− a) < ε then

return c
else

interval-bisection([a, c]) ← try left half first!
interval-bisection([c, b])

Start with interval-bisection([0, t∞]) to find the first zero.

Ray casting implicit surfaces with affine arithmetic

• AA exploits linear correlations of x, y, z in f(t) = h(r(t))

• AA provides additional information

� root must lie in smaller interval

� quadratic convergence near simple zeros

Sampling procedural shaders

IA

AA (Heidrich–Slusallek–Seidel)

Conclusion

Interval methods have a place for solving computer graphics problems:

• Give reliable way to probe the global behavior of functions

• Lead naturally to robust, adaptive algorithms

• Several good libraries available on the internet

Affine arithmetic is a useful tool for interval methods

• AA more accurate than IA

• AA provides additional information that can be exploited

• AA locally more expensive than IA but globally more eficient

• AA has geometric flavor

Lots more to be done!

Some references

• Mudur–Koparkar, IEEE CG&A, 1984
general philosophy

• Toth, SIGGRAPH, 1985
ray tracing parametric surfaces

• Mitchell, Graphics Interface, 1990
ray tracing implicit surfaces

• Suffern–Fackerell, Computers & Graphics, 1991
interval methods in computer graphics

• Mitchell, SIGGRAPH Course Notes, 1991
three applications

Some references

• Duff, SIGGRAPH, 1992
implicit functions and constructive solid geometry

• Snyder, SIGGRAPH, 1992; also book
interval analysis for computer graphics

• Gleicher–Kass, Graphics Interface, 1992
intersection of parametric surfaces

• Barth–Lieger–Schindler, The Visual Computer, 1994
ray tracing parametric surfaces

• Heidrich–Slusallek–Seidel, ACM TOG, 1998
sampling procedural shaders

• Tupper, MSc thesis, Toronto, 1996; also SIGGRAPH, 2001
plotting implicit relations with GraphEq

