Interval Methods in Computer Graphics

Luiz Henrique de Figueiredo (IMPA)

September 2004

Motivation

- How do I plot an implicit curve?
\diamond Must solve $f(x, y)=0$
\diamond Solution is a curve, but where is it?
- How do I render an implicit surface?
\diamond Must solve $f(x, y, z)=0$ for (x, y, z) on a ray
\diamond Solution is one or more points, but need point closest to eye!
- How do I intersect two parametric surfaces?
\diamond Must solve $f(u, v)=g(s, t)$
\diamond Solution is a set of curves in space and a set of curves in each parametric plane. Where are they? How do they match?

Motivation

- How do I plot an implicit curve?
\diamond Must solve $f(x, y)=0$
\diamond Solution is a curve, but where is it?
- How do I render an implicit surface?
\diamond Must solve $f(x, y, z)=0$ for (x, y, z) on a ray
\diamond Solution is one or more points, but need point closest to eye!
- How do I intersect two parametric surfaces?
\diamond Must solve $f(u, v)=g(s, t)$
\diamond Solution is a set of curves in space and a set of curves in each parametric plane. Where are they? How do they match?

Plotting an implicit curve

$$
y^{2}-x^{3}+x=0 \quad \Omega=[-2,2] \times[-2,2]
$$

Motivation

- How do I plot an implicit curve?
\diamond Must solve $f(x, y)=0$
\diamond Solution is a curve, but where is it?
- How do I render an implicit surface?
\diamond Must solve $f(x, y, z)=0$ for (x, y, z) on a ray
\diamond Solution is one or more points, but need point closest to eye!
- How do I intersect two parametric surfaces?
\diamond Must solve $f(u, v)=g(s, t)$
\diamond Solution is a set of curves in space and a set of curves in each parametric plane. Where are they? How do they match?

Rendering implicit surfaces
$4\left(x^{4}+\left(y^{2}+z^{2}\right)^{2}\right)+17 x^{2}\left(y^{2}+z^{2}\right)-20\left(x^{2}+y^{2}+z^{2}\right)+17=0$

Motivation

- How do I plot an implicit curve?
\diamond Must solve $f(x, y)=0$
\diamond Solution is a curve, but where is it?
- How do I render an implicit surface?
\diamond Must solve $f(x, y, z)=0$ for (x, y, z) on a ray
\diamond Solution is one or more points, but need point closest to eye!
- How do I intersect two parametric surfaces?
\diamond Must solve $f(u, v)=g(s, t)$
\diamond Solution is a set of curves in space and a set of curves in each parametric plane. Where are they? How do they match?

Intersecting two parametric surfaces

(Snyder, 1992)

Interval arithmetic

Can we trust floating-point arithmetic?

Rump's example - Evaluate this innocent-looking polynomial expression:

$$
\begin{aligned}
& f=333.75 y^{6}+x^{2}\left(11 x^{2} y^{2}-y^{6}-121 y^{4}-2\right)+5.5 y^{8}+x /(2 y), \\
& \text { for } x=77617 \text { and } y=33096 \text {. } \\
& \mathrm{f}:=333.75 * \mathrm{y}^{\wedge} 6+\mathrm{x}^{\wedge} 2 *\left(11 * \mathrm{x}^{\wedge} 2 * \mathrm{y}^{\wedge} 2-\mathrm{y}^{\wedge} 6-121 * \mathrm{y}^{\wedge} 4-2\right)+5.5 * \mathrm{y}^{\wedge} 8+\mathrm{x} /(2 * \mathrm{y}) \text {; } \\
& \mathrm{f}:=1.172603940 \\
& \mathrm{f}:=33375 / 100 * \mathrm{y}^{\wedge} 6+\mathrm{x}^{\wedge} 2 *\left(11 * \mathrm{x}^{\wedge} 2 * \mathrm{y}^{\wedge} 2-\mathrm{y} \wedge 6-121 * \mathrm{y}^{\wedge} 4-2\right)+55 / 10 * \mathrm{y}^{\wedge} 8+\mathrm{x} /(2 * \mathrm{y}) \text {; } \\
& 54767 \\
& \text { f := - ----- } \\
& 66192 \\
& \text { evalf(f,10); } \\
& -0.8273960599
\end{aligned}
$$

Not Maple's fault! Running gcc under Linux gives 5.76461×10^{17}. Culprit is catastrophic cancellation of floating-point arithmetic!

- To improve reliability of floating-point computations (Moore, 1960)
- Represent quantities as intervals:

$$
x \sim[a, b] \Rightarrow x \in[a, b]
$$

- Operate with intervals generating other intervals:
\diamond Simple formulas for elementary operations and functions:

$$
\begin{aligned}
{[a, b]+[c, d] } & =[a+c, b+d] \\
{[a, b] \times[c, d] } & =[\min \{a c, a d, b c, b d\}, \max \{a c, a d, b c, b d\}] \\
{[a, b] /[c, d] } & =[a, b] \times[1 / d, 1 / c] \\
{[a, b]^{2} } & =\left[0, \max \left(a^{2}, b^{2}\right)\right] \text { when } 0 \in[a, b] \\
\exp [a, b] & =[\exp (a), \exp (b)]
\end{aligned}
$$

\diamond Automatic extensions for complicated expressions
\diamond Rounding control available in modern floating-point units (IEEE 754)

- Every expression f has an interval extension F :

$$
x_{i} \in X_{i} \Rightarrow f\left(x_{1}, \ldots, x_{n}\right) \in F\left(X_{1}, \ldots, X_{n}\right)
$$

- Interval computations not immune to roundoff errors Wide results alert user of catastrophic cancellation
- Roundoff errors are not our main motivation!
- Interval computations allow range estimates and avoid point sampling

$$
F(X) \supseteq f(X)=\{f(x): x \in X\}
$$

For instance

$$
\begin{aligned}
0 \notin F(X) & \Rightarrow 0 \notin f(X) \\
& \Rightarrow f=0 \text { has no solution in } X
\end{aligned}
$$

This is a computational proof!

Interval probing of implicit curve

$$
\begin{aligned}
y^{2}-x^{3}+x & =0 \\
X & =[-2,-1] \\
Y & =[1,2] \\
X^{3} & =[-8,-1] \\
-X^{3} & =[1,8] \\
-X^{3}+X & =[-1,7] \\
Y^{2} & =[1,4] \\
Y^{2}-X^{3}+X & =[0,11]
\end{aligned}
$$

- Interval estimates not tight

$$
f(X, Y)=[1,10] \subset[0,11]
$$

- Interval estimates improve as intervals shrink

Interval probing of implicit curve

Approximation of implicit curve

Robust adaptive enumeration

- Recursive exploration of domain Ω starts with explore (Ω)
- Discard subregions X of Ω when $0 \notin F(X)$
$=$ proof that X does not contain any part of the curve!
explore (X) :
if $0 \notin F(X)$ then discard X
elseif $\operatorname{diam}(X)<\varepsilon$ then output X
else
divide X into smaller pieces X_{i} for each i, explore $\left(X_{i}\right)$
- Output cells have the same size: only spatial adaption

Suffern-Fackerell (1991), Snyder (1992)

Robust adaptive approximation

- Estimate curvature by gradient variation
- $G=$ inclusion function for the normalized gradient of f
- $G(X)$ small \Rightarrow curve approximately flat inside X

```
explore \((X)\) :
        if \(0 \notin F(X)\) then
        discard \(X\)
        elseif diam \((X)<\varepsilon\) or diam \((G(X))<\delta\) then
            approx( \(X\) )
        else
            divide \(X\) into smaller pieces \(X_{i}\)
            for each \(i\), explore \(\left(X_{i}\right)\)
```

- Output cells vary in size: spatial and geometrical adaption

Robust adaptive approximation

Approximation of implicit curve

Robust adaptive approximation

Robust adaptive approximation

Robust adaptive approximation

Offsets of parametric curves

Bisectors of parametric curves

Bisectors of parametric curves

Bisectors of parametric curves

Bisectors of parametric curves

Medial axis of parametric curves

- Robust: they don't lie
\diamond correctness depends on $F(X) \supseteq f(X)$
\diamond can prove $0 \notin f(X)$, not that $0 \in f(X)$
- Converge: solutions get better
$\diamond F(X) \rightarrow\{f(x)\}$ as $X \rightarrow\{x\}$
- Conservative: they tend to exagerate

$$
\begin{aligned}
& \diamond f(x, y)=y^{2}-x^{3}+x \quad X=[-2,-1] \times[1,2] \\
& \\
& F(X)=[0,11] \quad f(X)=[1,10]
\end{aligned}
$$

\diamond gets worse in complicated expressions and iterative methods

- Efficient?
\diamond how much larger is $F(X)$?
\diamond better estimates imply faster methods

The dependency problem in interval arithmetic

IA can't see correlations between operands

$$
\begin{aligned}
& g(x)=(10+x)(10-x) \text { for } x \in[-2,2] \\
& 10+x=[8,12] \\
& 10-x=[8,12] \\
&(10+x)(10-x)=[64,144] \\
& \text { Exact range }=[96,100] \quad \text { diam }=80 \\
& \text { diam }=4
\end{aligned}
$$

The dependency problem in interval arithmetic

IA can't see correlations between operands

$$
\begin{array}{rlrl}
g(x) & =(10+x)(10-x) \text { for } x \in[-u, u] \\
10+x & =[10-u, 10+u] & \\
10-x & =[10-u, 10+u] & \\
(10+x)(10-x) & =\left[(10-u)^{2},(10+u)^{2}\right] & & \text { diam }=40 u \\
\text { Exact range } & =\left[100-u^{2}, 100\right] & & \text { diam }=u^{2}
\end{array}
$$

The dependency problem in interval arithmetic

$$
g(x)=\sqrt{x^{2}-x+1 / 2} / \sqrt{x^{2}+1 / 2}
$$

g
$g^{n} \rightarrow c=$ fixed point of $g \approx 0.5586$, but intervals diverge

Interval estimates may get too large in long computations

Affine arithmetic

Affine arithmetic

AA represents a quantity x with an affine form

$$
\widehat{x}=x_{0}+x_{1} \varepsilon_{1}+\cdots+x_{n} \varepsilon_{n}
$$

- Noise symbols $\varepsilon_{i} \in[-1,+1]$: independent, but otherwise unknown
- Can compute arbitrary formulas on affine forms
\diamond Need affine approximations for non-affine operations
\diamond New noise symbols created during computation due to approximation and rounding
- Can replace IA

$$
\begin{aligned}
& \diamond x \sim \widehat{x} \Rightarrow x \in\left[x_{0}-r, x_{0}+r\right] \text { for } r=\left|x_{1}\right|+\cdots+\left|x_{n}\right| \\
& \diamond x \in[a, b] \Rightarrow x \sim \widehat{x}=x_{0}+x_{1} \varepsilon_{1} \\
& \quad x_{0}=(b+a) / 2 \quad x_{1}=(b-a) / 2
\end{aligned}
$$

The dependency problem in interval arithmetic - AA version

AA can see correlations between operands

$$
\begin{aligned}
g(x)=(10+x) & (10-x) \text { for } x \in[-u, u], & & x=0+u \varepsilon \\
10+x & =10-u \varepsilon & & \\
10-x & =10+u \varepsilon & & \\
(10+x)(10-x) & =100-u^{2} \varepsilon & & \\
\text { range } & =\left[100-u^{2}, 100+u^{2}\right] & & \text { diam }=2 u^{2} \\
\text { Exact range } & =\left[100-u^{2}, 100\right] & & \text { diam }=u^{2}
\end{aligned}
$$

The dependency problem in interval arithmetic - AA version

AA can see correlations between operands

$$
\begin{aligned}
g(x)=(10+x) & (10-x) \text { for } x \in[-u, u], & & x=0+u \varepsilon \\
10+x & =10-u \varepsilon & & \\
10-x & =10+u \varepsilon & & \\
(10+x)(10-x) & =100-u^{2} \varepsilon & & \\
\text { range } & =\left[100-u^{2}, 100+u^{2}\right] & & \text { diam }=2 u^{2} \\
\text { Exact range } & =\left[100-u^{2}, 100\right] & & \text { diam }=u^{2}
\end{aligned}
$$

IA

The dependency problem in interval arithmetic - AA version

$$
g(x)=\sqrt{x^{2}-x+1 / 2} / \sqrt{x^{2}+1 / 2}
$$

Replacing IA with AA for plotting implicit curves

$$
x^{2}+y^{2}+x y-(x y)^{2} / 2-1 / 4=0
$$

IA (246 cells, 66 exact)
(Comba-Stolfi , 1993)
(70 cells) AA

Replacing IA with AA for surface intersection

Tensor product Bézier surfaces of degree (p, q):

$$
f(u, v)=\sum_{i=0}^{p} \sum_{j=0}^{q} a_{i j} B_{i}^{p}(u) B_{j}^{q}(v), \quad B_{i}^{n}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}
$$

$(2,1)$

Replacing IA with AA for surface intersection

$(2,1)$

IA
$(3,3)$

AA
(Figueiredo, 1996)

Exploiting the correlations given by AA

Geometry of affine arithmetic

Affine forms that share noise symbols are not independent:

$$
\begin{aligned}
\hat{x} & =x_{0}+x_{1} \varepsilon_{1}+\cdots+x_{n} \varepsilon_{n} \\
\widehat{y} & =y_{0}+y_{1} \varepsilon_{1}+\cdots+y_{n} \varepsilon_{n}
\end{aligned}
$$

The region containing (x, y) is

$$
Z=\left\{(x, y): \varepsilon_{i} \in \mathbf{U}\right\}
$$

This region is the image of \mathbf{U}^{n} under an affine map $\mathbf{R}^{n} \rightarrow \mathbf{R}^{2}$. It's a centrally symmetric convex polygon, a zonotope.

Geometry of affine arithmetic

Affine forms that share noise symbols are not independent:

$$
\begin{aligned}
\hat{x} & =x_{0}+x_{1} \varepsilon_{1}+\cdots+x_{n} \varepsilon_{n} \\
\widehat{y} & =y_{0}+y_{1} \varepsilon_{1}+\cdots+y_{n} \varepsilon_{n}
\end{aligned}
$$

The region containing (x, y) is

$$
Z=\left\{(x, y): \varepsilon_{i} \in \mathbf{U}\right\}
$$

This region is the image of \mathbf{U}^{n} under an affine map $\mathbf{R}^{n} \rightarrow \mathbf{R}^{2}$. It's a centrally symmetric convex polygon, a zonotope.

The region would be a rectangle if x and y were independent.

Approximating parametric curves

Given a parametric curve $\mathcal{C}=\gamma(I)$, where $\gamma: I \rightarrow \mathbf{R}^{2}$ and $T \subseteq I$, compute a bounding rectangle for $\mathcal{P}=\gamma(T)$.

Approximating parametric curves

Given a parametric curve $\mathcal{C}=\gamma(I)$, where $\gamma: I \rightarrow \mathbf{R}^{2}$ and $T \subseteq I$, compute a bounding rectangle for $\mathcal{P}=\gamma(T)$.

Approximating parametric curves

Given a parametric curve $\mathcal{C}=\gamma(I)$, where $\gamma: I \rightarrow \mathbf{R}^{2}$ and $T \subseteq I$, compute a bounding rectangle for $\mathcal{P}=\gamma(T)$.

Approximating parametric curves

Given a parametric curve $\mathcal{C}=\gamma(I)$, where $\gamma: I \rightarrow \mathbf{R}^{2}$ and $T \subseteq I$, compute a bounding rectangle for $\mathcal{P}=\gamma(T)$.

Solution:

- Write $\gamma(t)=(x(t), y(t))$.
- Represent $t \in T$ with an affine form:

$$
\hat{t}=t_{0}+t_{1} \varepsilon_{1}, \quad t_{0}=(b+a) / 2, \quad t_{1}=(b-a) / 2
$$

- Compute coordinate functions x and y at \hat{f} using AA:

$$
\begin{aligned}
& \hat{x}=x_{0}+x_{1} \varepsilon_{1}+\cdots+x_{n} \varepsilon_{n} \\
& \hat{y}=y_{0}+y_{1} \varepsilon_{1}+\cdots+y_{n} \varepsilon_{n}
\end{aligned}
$$

- Use bounding rectangle of the $x y$ zonotope.

Approximating parametric curves

Approximating parametric curves

Approximating parametric curves

Approximating parametric curves

Approximating parametric curves

Approximating parametric curves

Approximating parametric curves

Approximating parametric curves

(Figueiredo-Stolfi -Velho, 2003)

Ray casting implicit surfaces

- Implicit surface

$$
\begin{aligned}
& h: \mathbf{R}^{3} \rightarrow \mathbf{R} \\
& S=\left\{p \in \mathbf{R}^{3}: h(p)=0\right\}
\end{aligned}
$$

- Ray

$$
r(t)=E+t \cdot v, \quad t \in[0, \infty)
$$

- Ray intersects S when

$$
f(t)=h(r(t))=0
$$

- First intersection occurs at smallest zero of f in $[0, \infty)$.
- Paint pixel with color based on normal at first intersection point

Ray casting implicit surfaces

- Implicit surface

$$
\begin{aligned}
& h: \mathbf{R}^{3} \rightarrow \mathbf{R} \\
& S=\left\{p \in \mathbf{R}^{3}: h(p)=0\right\}
\end{aligned}
$$

- Ray

$$
r(t)=E+t \cdot v, \quad t \in[0, \infty)
$$

- Ray intersects S when

$$
f(t)=h(r(t))=0
$$

- First intersection occurs at smallest zero of f in $[0, \infty)$.
- Paint pixel with color based on normal at first intersection point

$$
4\left(x^{4}+\left(y^{2}+z^{2}\right)^{2}\right)+17 x^{2}\left(y^{2}+z^{2}\right)-20\left(x^{2}+y^{2}+z^{2}\right)+17=0
$$

(Custatis-Figueiredo-Gattass, 1999)

- Solve $f(t)=0$ using inclusion function F for f :

$$
F(T) \supseteq f(T)=\{f(t): t \in T\}, \quad T \subseteq I
$$

- $0 \notin F(T) \Rightarrow$ no solutions of $f(t)=0$ in T
- $0 \in F(T) \Rightarrow$ there may be solutions in T

$$
\text { interval-bisection }([a, b]):
$$

if $0 \in F([a, b])$ then
$c \leftarrow(a+b) / 2$
if $(b-a)<\varepsilon$ then return c
else
interval-bisection $([a, c]) \quad \leftarrow$ try left half first! interval-bisection $([c, b])$

Start with interval-bisection $\left(\left[0, t_{\infty}\right]\right)$ to find the first zero.

Ray casting implicit surfaces with affine arithmetic

- AA exploits linear correlations of x, y, z in $f(t)=h(r(t))$
- AA provides additional information
\diamond root must lie in smaller interval
\diamond quadratic convergence near simple zeros

Sampling procedural shaders

IA

AA (Heidrich-Slusallek-Seidel)

Conclusion

Interval methods have a place for solving computer graphics problems:

- Give reliable way to probe the global behavior of functions
- Lead naturally to robust, adaptive algorithms
- Several good libraries available on the internet

Affine arithmetic is a useful tool for interval methods

- AA more accurate than IA
- AA provides additional information that can be exploited
- AA locally more expensive than IA but globally more eficient
- AA has geometric flavor

Lots more to be done!

- Mudur-Koparkar, IEEE CG\&A, 1984 general philosophy
- Toth, SIGGRAPH, 1985 ray tracing parametric surfaces
- Mitchell, Graphics Interface, 1990
ray tracing implicit surfaces
- Suffern-Fackerell, Computers \& Graphics, 1991 interval methods in computer graphics
- Mitchell, SIGGRAPH Course Notes, 1991
three applications
- Duff, SIGGRAPH, 1992 implicit functions and constructive solid geometry
- Snyder, SIGGRAPH, 1992; also book interval analysis for computer graphics
- Gleicher-Kass, Graphics Interface, 1992 intersection of parametric surfaces
- Barth-Lieger-Schindler, The Visual Computer, 1994 ray tracing parametric surfaces
- Heidrich-Slusallek-Seidel, ACM TOG, 1998 sampling procedural shaders
- Tupper, MSc thesis, Toronto, 1996; also SIGGRAPH, 2001 plotting implicit relations with GraphEq

