Acquiring Periodic Tilings of Regular Polygons from Images

José Ezequiel Soto Sánchez • IMPA
Asla Medeiros e Sá • FGV
Luiz Henrique de Figueiredo • IMPA

Visgraf vision and
impa

Instituto de Matemática
Pura e Aplicada

Motivation: tile the plane with regular polygons

Rigidity: only 15 vertex neighborhoods

Rigidity: only 11 tilings are 1-uniform

$\left(4^{4}\right)$

$\left(6^{3}\right)$

($3^{3} \cdot 4^{2}$)

(3 ${ }^{2}$.4.3.4)

(3.4.6.4)

$\left(3.12^{2}\right)$

(4.6.12)

Goal: represent, synthesize, and analyze complex k-uniform tilings

Outline

image

Outline

image

Outline

Outline

- Tile arbitrarily large areas

Outline

- Tile arbitrarily large areas
- Establish properties of the symbol

Outline

- Tile arbitrarily large areas
- Establish properties of the symbol
- Allow further analysis of the tilings

Understanding tilings: many symmetries

Understanding tilings: translation symmetries

Understanding tilings: fundamental domain

Regular systems of points
Hilbert \& Cohn-Vossen (1952)

Regular systems of points

$$
\left.\begin{array}{lll}
\bullet & \bullet
\end{array}\right)
$$

Reconstruct tiling from vertices

$$
\begin{aligned}
& \text { - } \\
& \text { er }
\end{aligned}
$$

Reconstruct tiling from vertices: edges

Reconstruct tiling from vertices: translation grid

Reconstruct tiling from vertices: fundamental domain

Reconstruct tiling from vertices: patch

Reconstruct tiling from vertices: full tiling

Edges aligned to a few basic directions

roots of unity

$$
\omega^{12}=1, \quad \omega=e^{\frac{2 \pi i}{12}}
$$

$$
\omega^{n}=e^{\frac{2 \pi i}{12} n}, \quad n \in\{0,1, \ldots, 11\}
$$

Edges aligned to a few basic directions

roots of unity

$$
\omega^{12}=1, \quad \omega=e^{\frac{2 \pi i}{12}}
$$

$$
\omega^{n}=e^{\frac{2 \pi i}{12} n}, \quad n \in\{0,1, \ldots, 11\}
$$

- ω^{0}

Edges aligned to a few basic directions

roots of unity

$$
\omega^{12}=1, \quad \omega=e^{\frac{2 \pi i}{12}}
$$

$$
\omega^{n}=e^{\frac{2 \pi i}{12} n}, \quad n \in\{0,1, \ldots, 11\}
$$

ω^{0}
ω^{2}

Edges aligned to a few basic directions

roots of unity

$$
\omega^{12}=1, \quad \omega=e^{\frac{2 \pi i}{12}}
$$

$$
\omega^{n}=e^{\frac{2 \pi i}{12} n}, \quad n \in\{0,1, \ldots, 11\}
$$

ω^{0}
ω^{2}
ω^{5}

Edges aligned to a few basic directions

roots of unity

$$
\omega^{12}=1, \quad \omega=e^{\frac{2 \pi i}{12}}
$$

$$
\omega^{n}=e^{\frac{2 \pi i}{12} n}, \quad n \in\{0,1, \ldots, 11\}
$$

- ω^{0}
-

ω^{2}
-
ω^{5}
ω^{7}

Edges aligned to a few basic directions

roots of unity

$$
\omega^{12}=1, \quad \omega=e^{\frac{2 \pi i}{12}}
$$

$$
\omega^{n}=e^{\frac{2 \pi i}{12} n}, \quad n \in\{0,1, \ldots, 11\}
$$

-

ω^{0}
ω^{2}
ω^{5}
ω^{7}
-
ω^{11}

Edges aligned to a few basic directions

roots of unity

$$
\omega^{12}=1, \quad \omega=e^{\frac{2 \pi i}{12}}
$$

$$
\omega^{n}=e^{\frac{2 \pi i}{12} n}, \quad n \in\{0,1, \ldots, 11\}
$$

ω^{0}
ω^{2}
ω^{5}
ω^{7}
ω^{11}
ω^{2}

Edges aligned to a few basic directions

roots of unity

$$
\omega^{12}=1, \quad \omega=e^{\frac{2 \pi i}{12}}
$$

$$
\omega^{n}=e^{\frac{2 \pi i}{12} n}, \quad n \in\{0,1, \ldots, 11\}
$$

ω^{0}
ω^{2}

ω^{5}

ω^{7}

- $\begin{aligned} & \omega^{11} \\ & \\ & \omega^{2} \\ & \\ & \omega^{4}\end{aligned}$

Edges aligned to a few basic directions

roots of unity

$$
\omega^{12}=1, \quad \omega=e^{\frac{2 \pi i}{12}}
$$

$$
\omega^{n}=e^{\frac{2 \pi i}{12} n}, \quad n \in\{0,1, \ldots, 11\}
$$

$\quad \omega^{0}$
-
ω^{2}
-
ω^{5}

ω^{7}

- ω^{11}
ω^{2}
- ω_{7}

Edges aligned to a few basic directions

roots of unity

$$
\omega^{12}=1, \quad \omega=e^{\frac{2 \pi i}{12}}
$$

$$
\omega^{n}=e^{\frac{2 \pi i}{12} n}, \quad n \in\{0,1, \ldots, 11\}
$$

ω^{0}
ω^{2}
ω^{5}
ω^{7}

- ω^{11}
ω^{2}

Vertices as integer linear combinations of basic directions

Vertices as integer linear combinations of basic directions

Vertices as integer linear combinations of basic directions

Vertices as integer linear combinations of basic directions

$\omega+\omega^{10}$

Vertices as integer linear combinations of basic directions

$\omega+\omega^{10}+\omega^{11}$

Vertices as integer linear combinations of basic directions

$$
\omega+\omega^{10}+\omega^{11}+\omega^{0}
$$

Vertices as integer linear combinations of basic directions

$$
\omega+\omega^{10}+\omega^{11}+\omega^{0}+\omega
$$

Vertices as integer linear combinations of basic directions

$\omega+\omega^{10}+\omega^{11}+\omega^{0}+\omega+\omega^{2}$

Vertices as integer linear combinations of basic directions

$\omega+\omega^{10}+\omega^{11}+\omega^{0}+\omega+\omega^{2}+\omega^{3}$

Vertices as integer linear combinations of basic directions

$\omega+\omega^{10}+\omega^{11}+\omega^{0}+\omega+\omega^{2}+\omega^{3}=\omega^{11}+\omega^{10}+\omega^{3}+\omega^{2}+2 \omega+1$

Vertices as integer linear combinations of basic directions

$\omega+\omega^{10}+\omega^{11}+\omega^{0}+\omega+\omega^{2}+\omega^{3}=\omega^{11}+\omega^{10}+\omega^{3}+\omega^{2}+2 \omega+1=V-O$

Translations as integer linear combinations of basic directions

Translations as integer linear combinations of basic directions

Translations as integer linear combinations of basic directions

$\omega+\omega^{3}$

Translations as integer linear combinations of basic directions

$$
\omega+\omega^{3}+\omega^{2}
$$

Translations as integer linear combinations of basic directions

$$
\omega+\omega^{3}+\omega^{2}+\omega^{3}
$$

Translations as integer linear combinations of basic directions

$$
\omega+\omega^{3}+\omega^{2}+\omega^{3}+\omega^{2}
$$

Translations as integer linear combinations of basic directions

$$
\omega+\omega^{3}+\omega^{2}+\omega^{3}+\omega^{2}+\omega
$$

Translations as integer linear combinations of basic directions

$\omega+\omega^{3}+\omega^{2}+\omega^{3}+\omega^{2}+\omega+\omega^{11}$

Translations as integer linear combinations of basic directions

$$
\omega+\omega^{3}+\omega^{2}+\omega^{3}+\omega^{2}+\omega+\omega^{11}=\omega^{11}+2 \omega^{3}+2 \omega^{2}+2 \omega
$$

Translations as integer linear combinations of basic directions

$\omega+\omega^{3}+\omega^{2}+\omega^{3}+\omega^{2}+\omega+\omega^{11}=\omega^{11}+2 \omega^{3}+2 \omega^{2}+2 \omega=T-O$

Tiling symbols

Vertices and translation vectors are expressed in $\mathbb{Z}[\omega]=$ polynomials in ω

Tiling symbols

Vertices and translation vectors are expressed in $\mathbb{Z}[\omega]=$ polynomials in ω

Polynomials in ω reduced $\bmod \omega^{4}-\omega^{2}+1$, the minimal polynomial of ω :

$$
\mathbb{Z}[\omega]=\mathbb{Z} 1+\mathbb{Z} \omega+\mathbb{Z} \omega^{2}+\mathbb{Z} \omega^{3}
$$

Tiling symbols

Vertices and translation vectors are expressed in $\mathbb{Z}[\omega]=$ polynomials in ω

Polynomials in ω reduced $\bmod \omega^{4}-\omega^{2}+1$, the minimal polynomial of ω :

$$
\mathbb{Z}[\omega]=\mathbb{Z} 1+\mathbb{Z} \omega+\mathbb{Z} \omega^{2}+\mathbb{Z} \omega^{3}
$$

give a unique representation!

Tiling symbols

Vertices and translation vectors are expressed in $\mathbb{Z}[\omega]=$ polynomials in ω

Polynomials in ω reduced $\bmod \omega^{4}-\omega^{2}+1$, the minimal polynomial of ω :

$$
\mathbb{Z}[\omega]=\mathbb{Z} 1+\mathbb{Z} \omega+\mathbb{Z} \omega^{2}+\mathbb{Z} \omega^{3}
$$

give a unique representation!

$$
\begin{array}{rll}
\omega^{4} & =-1+\omega^{2} & =[-1,0,1,0] \\
\omega^{5} & =-\omega+\omega^{3} & =[0,-1,0,1] \\
\omega^{6} & =-1 & =[-1,0,0,0] \\
\omega^{7} & =-\omega & =[0,-1,0,0] \\
\omega^{8} & =-\omega^{2} & =[0,0,-1,0] \\
\omega^{9} & =-\omega^{3} & =[0,0,0,-1] \\
\omega^{10} & =1-\omega^{2} & =[1,0,-1,0] \\
\omega^{11} & =\omega-\omega^{3} & =[0,1,0,-1]
\end{array}
$$

Tiling symbols

Each tiling is represented by:

- two translation vectors
define the fundamental region
- set of seeds
vertices inside fundamental region
- translation vectors and seeds expressed as integer linear combinations of basic directions

Tiling symbols

translation
vectors

seeds

$$
\begin{aligned}
S_{1} & =[0,0,0,0] \\
S_{2} & =[0,2,1,0] \\
S_{3} & =[0,3,1,0] \\
S_{4} & =[1,1,0,0] \\
& \vdots \\
S_{25} & =[2,1,1,3]
\end{aligned}
$$

Book \& catalogue: 200+ Arquimedean tilings

"Sobre malhas arquimedianas", Ricardo Sá e Asla Medeiros e Sá, 2017

$\Leftrightarrow \ggg \gg$

\# $A_{\{H, L, M, N, Q, T, U\}}$

\#A\{H,L,M,N, Q,T,U\}

\#D $\{\mathrm{H}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{Q}, \mathrm{T}, \mathrm{U}\}$

Web catalogue: 1248 tilings

SVG samples in Wikipedia for $n \leq 5$

Numbers of Tilings

		m-Archimedean															
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	> 14	Total
	1	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11
	2	0	20	0	0	0	0	0	0	0	0	0	0	0	0	0	20
	3	0	22	39	0	0	0	0	0	0	0	0	0	0	0	0	61
	4	0	33	85	33	0	0	0	0	0	0	0	0	0	0	0	151
\square	5	0	74	149	94	15	0	0	0	0	0	0	0	0	0	0	332
-	6	0	100	284	187	92	10	0	0	0	0	0	0	0	0	0	673
U	7	0	?	?	?	?	?	7	0	0	0	0	0	0	0	0	?
n	8	0	?	?	?	?	?	20	0	0	0	0	0	0	0	0	?
f	9	0	?	?	?	?	?	?	8	0	0	0	0	0	0	0	?
0	10	0	?	?	?	?	?	?	27	0	0	0	0	0	0	0	?
r	11	0	?	?	?	?	?	?	?	1	0	0	0	0	0	0	?
n	12	0	?	?	?	?	?	?	?	?	0	0	0	0	0	0	?
	13	0	?	?	?	?	?	?	?	?	?	?	?	0	0	0	?
	14	0	?	?	?	?	?	?	?	?	?	?	?	?	0	0	?
	>14	0	?	?	?	?	?	?	?	?	?	?	?	?	?	0	?
	Total	11	∞	0	∞												

THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES ${ }^{\text {® }}$
founded in 1964 by N. J. A. Sloane

1. Find approximate coordinates for the vertices

2. Correct the vertices: basic directions + unit length $\rightarrow \mathbb{Z}[\omega]$

3. Find the edges: stars

4. Find the translations: transitive equivalence + score

5. Find the seeds

6. Minimize translation vectors

Match equivalent tilings

Equivalent representations

- many choices for translation vectors given a translation grid

Equivalent representations

- many choices for translation vectors given a translation grid
- any seed can be the origin

Equivalent representations

- many choices for translation vectors given a translation grid
- any seed can be the origin
- the choice of the horizontal edge is arbitrary

Equivalent representations

- many choices for translation vectors given a translation grid
- any seed can be the origin
- the choice of the horizontal edge is arbitrary

We need to design an equivalence test between tilings

Equivalent representations

- many choices for translation vectors given a translation grid
- any seed can be the origin
- the choice of the horizontal edge is arbitrary

We need to design an equivalence test between tilings

Equivalent representations

Translation vectors can be written as $T=A W$:

$$
\binom{t_{1}}{t_{2}}=\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24}
\end{array}\right)\left(\begin{array}{c}
1 \\
\omega \\
\omega^{2} \\
\omega^{3}
\end{array}\right)
$$

Equivalent representations

Translation vectors can be written as $T=A W$:

$$
\binom{t_{1}}{t_{2}}=\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24}
\end{array}\right)\left(\begin{array}{c}
1 \\
\omega \\
\omega^{2} \\
\omega^{3}
\end{array}\right)
$$

Given a 2×4 integer matrix A, there is an invertible 2×2 integer matrix U such that $H=U A$, where H is the Hermite normal form of A

Equivalent representations

Translation vectors can be written as $T=A W$:

$$
\binom{t_{1}}{t_{2}}=\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24}
\end{array}\right)\left(\begin{array}{c}
1 \\
\omega \\
\omega^{2} \\
\omega^{3}
\end{array}\right)
$$

Given a 2×4 integer matrix A, there is an invertible 2×2 integer matrix U such that $H=U A$, where H is the Hermite normal form of A

Two pairs of translation vectors $T=A W$ and $T^{\prime}=A^{\prime} W$ determine the same translation grid iff the Hermite normal forms of A and A^{\prime} coincide

Equivalent representations

Translation vectors can be written as $T=A W$:

$$
\binom{t_{1}}{t_{2}}=\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24}
\end{array}\right)\left(\begin{array}{c}
1 \\
\omega \\
\omega^{2} \\
\omega^{3}
\end{array}\right)
$$

Given a 2×4 integer matrix A, there is an invertible 2×2 integer matrix U such that $H=U A$, where H is the Hermite normal form of A

Two pairs of translation vectors $T=A W$ and $T^{\prime}=A^{\prime} W$ determine the same translation grid iff the Hermite normal forms of A and A^{\prime} coincide

All rotations and origin choices are tested

Web interface to catalogue

Results and future work

- State-of-the-art collections of tilings acquired and represented (1300+ tilings)

Results and future work

- State-of-the-art collections of tilings acquired and represented (1300+ tilings)
- Identified all coincidences between the collections (148)

Results and future work

- State-of-the-art collections of tilings acquired and represented (1300+ tilings)
- Identified all coincidences between the collections (148)
- Analysis of the symbols: numerics and combinatorics

Results and future work

- State-of-the-art collections of tilings acquired and represented (1300+ tilings)
- Identified all coincidences between the collections (148)
- Analysis of the symbols: numerics and combinatorics
- Test of hypotheses and new methods

Results and future work

- State-of-the-art collections of tilings acquired and represented (1300+ tilings)
- Identified all coincidences between the collections (148)
- Analysis of the symbols: numerics and combinatorics
- Test of hypotheses and new methods
- Nice image synthesis applications

Web interface to catalogue

www.impa.br/~cheque/tiling/

Acquiring Periodic Tilings of Regular Polygons from Images

José Ezequiel Soto Sánchez • IMPA
Asla Medeiros e Sá • FGV
Luiz Henrique de Figueiredo • IMPA

Visgraf vision and
impa

Instituto de Matemática
Pura e Aplicada

