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Abstract—This paper' studies the problem of obtaining
panoramic images, i.e., images of wide fields of view. We
start by analyzing previous approaches, in order to understand
the difficulties of this problem. Then we discuss in detail the
work by Carroll et al., entitled “Optimizing content-preserving
projections for wide-angle images” and show results of this
method that prove that it produces good results in a variety of
scenes. We discuss some aspects that were not emphasized in
that work, such as the optimization method used to produce
the final result.

In addition, we propose some important extensions: an inter-
face with some additional features to the one proposed by them;
and Computer Vision methods to detect faces and straight lines
in equirectangular images, which are very important features
for the method.

We also provide a novel study about panoramic videos, i.e.,
videos where each frame is constructed from a wide FOV. We
introduce a mathematical model for this problem, discuss desir-
able temporal coherence properties, formulate equations that
represent these properties, propose an optimization solution for
a particular case and point future directions.

Keywords-Viewing sphere, panoramic images, panoramic
videos.

I. INTRODUCTION

In this section, we motivate the panoramic image problem,
state the necessary terminology and briefly discuss previous
approaches.

A. Motivation

One of the main motivations for the panoramic image
problem is that common cameras capture just a limited field
of view (FOV), usually up to 90 degrees, while our eyes see
a wider FOV with no obvious distortions. The panoramic
images can be used to extrapolate our perception, since they
can capture FOVs beyond the human eye. Also, a panoramic
image allows us to better represent an entire scene, since
there may be important parts in a scene that could not be
seen under a limited FOV.

B. The Viewing Sphere

In this work, any scene observed from a fixed viewpoint at
a given moment will be modeled as the unit sphere centered

IThis is a short version of the Master Thesis of the first author. The
full text and additional material can be found at: http://w3.impa.br/ ~ leo-
ks/msc_thesis.

at the viewpoint (S? = {(z,y, 2) € R3|z? +y? + 22 = 1})
on which each point has an associated color, the color that
is seen when one looks toward this point. We will refer
to it as the viewing sphere. Consider the longitude/latitude
representation of the sphere r:

(cos(A) cos(9),
sin(A) cos(¢), sin(¢))
With this correspondence, we can represent viewing spheres

as images which we call equirectangular images. In figure
1 we show an example of equirectangular image.

Figure 1.

Each point in the image represents a point on the (
Image title: “San Marco Plaza”, by Flickr user Veneboer, taken from [1].

A, ¢) domain.

C. Problem Statement

With the notations of the last section we formulate the
panoramic image problem as that of finding a projection

u: SCS? — R?

A @) = (ur9),0(A 9))

with desirable properties.

There are some known examples of these projections: the
perspective projection has the desirable property of mapping
straight lines in the scene to straight lines in the final
result, but it stretches objects too much when the FOV
increases. Mercator and stereographic projections preserve
objects well, but bend lines. For more details about these
standard projections, we refer the reader to [2], pp. 10-20.



D. Previous Approaches

One of the first works that considered the panoramic
image problem was the one by Zorin et al. [3]. In this work,
the authors formalized perceptual properties that a wide-
angle image should have and showed that two important
properties could not be satisfied simultaneously: the preser-
vation of object shapes and of straight lines. Then they used
an optimization framework to obtain a family of projections
that depend on a parameter A € [0,1]. When A = 0 all the
shapes are preserved, when A = 1 all the straight lines are
mapped to straight lines in the result and intermediate values
represent the tradeoff between the two properties. We show
in figure 2 a result produced with A\ = %

Figure 2. Result produced by the method described in [3]. FOV: 150
degree longitude/150 degree latitude.

In [4] local projections for the objects in the scene are
adopted to correct distortions caused by projections such
as the perspective projection. Therefore, the projection is
obtained based on the scene content.

Other approach that used the scene content to obtain the
final projection was [5]. The authors used local projections
for the objects but also multiple perspective projections for
the background in a way that fits the geometry of the scene.
A result by this method is shown in figure 3.

Figure 3. Result produced by the method described in [5]. FOV:180/90.
Unpleasant orientation discontinuities appear on the ceiling.

II. OPTIMIZING CONTENT-PRESERVING PROJECTIONS
FOR WIDE-ANGLE IMAGES

As we saw in the previous approaches, the main difficulty
in producing panoramic images is to conciliate preservation
of straight lines and object shapes. Other properties such
as smoothness of the projection, dependence on the scene
content and formalization of the distortions also proved to
be important.

The work by Carroll et. al ([6]) has all these properties
and produce good results in a variety of scenes and for
arbitrarily wide FOVs. They model undesirable distortions
in panoramic images, formulate energies that measure how
a panoramic image contains these distortions and obtain
the least distorted panoramic image via optimization. This
section is devoted to analyze this approach, presenting
details that were not considered in [6].

We impose a uniform discretization ({\;;, ¢ }i,;) of the
longitude/latitude domain and look for the projection on
these vertices. The final projection is obtained by bilinear
interpolation of the positions {(u(\ij, @), v(Aij, ij)) Vi j-

A. Conformality

We use the geometric concept of conformal mappings to
model preservation of object shapes. This concept is appro-
priate to model this property because conformal mappings
are locally a rotation and/or a scaling.

In the context of panoramic images (mappings u : S —
R?), a projection is conformal if and only if it satisfies the
Cauchy-Riemann equations:

ou 1 Ov d v 1 Ou
dp  cos(¢p) OX a d¢p  cos(¢) ON’
The proof of this fact is in [2], p. 39.

By approximating the partial derivatives by finite differ-
ences we obtain an energy term that measures how much a
discretized projection deviates from conformality:
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Above, w;; are spatially varying weights (section II-D),
ui; = u(Aij, ¢i5) and vi; = v(Aij, Gij).

By defining a vector x with the unknowns w;; and v,
E. can be rewritten as E. = ||Cx||?, where C is a matrix.

B. Straight lines

Instead of making straight all possible lines in the scene
(such as the perspective projection), the method uses the
information provided by the user in the interface (section
III-C) to straighten only the lines specified by her. An output
of the interface is shown in figure 4.



Figure 4. The user specifies lines that she wants to be straight in the final
result. She also can specify orientation of the lines in the final result: red
stands for vertical lines and blue for horizontal ones. Green lines have no
specified orientation.

For horizontal and vertical lines we formulate an energy
(details in [2], pp.44-51) that measures how much the spec-
ified lines deviate from being straight and in the specified
orientation. This energy can be written in the matrix form

By, = ||LOx|?,

where LO is a matrix.
For lines with no specified orientation, we have to alter-
nate between minimizing two different energies:

Ei, = |LOAX|? and Eiy = |LDAx||?,

where LOA and LDA are matrices. The result of mini-
mizing one energy is used to construct the other energy.
This alternation is necessary to avoid nonlinearities inside
the quadratic terms (all the details are in [2], pp.44-51).

C. Smoothness

Minimizing only conformality and straight line energies
may lead to unpleasant artifacts, as shown in figure 5 (left).
These artifacts occur because the projection has to change
too much near the line segments to satisfy the line constrains.

We formulate an energy (the details can be found in
[2], pp-56-58) that measures the variation of the differential

T
north vector h = ( g—g g—; ) along the projection. The

variation of h is given by

9%u 9%u
Mo—(dh b)) [ o ).
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Thus, ideally, we should have the four derivatives above
equal to zero. By discretizing them using finite differences
and multiplying them by the spatially varying weights wj;,
we obtain an energy that has the form E; = ||Sx||?, where
S is a matrix.

The result obtained minimizing this energy together with
the previous ones is shown in figure 5 (right).

Figure 5. Left: Result without the smoothness energy. Right: Result with
the smoothness energy (final result of the method). FOV: 285/180.

D. Spatially-varying weights

For each vertex of the discretization, we define weights
w4 that control the strength of conformality and smoothness
energies in different regions of the projection. A complete
discussion about the influence of these weights is provided in
[2], pp.58-62. They are given by w;; = 2wiLj +2wfj+4w£»+
1, where wZLj has higher values near line endpoints, wfj has
higher values in more salient regions and wf; has higher
values near faces. The most effective weights are the face
weights and we dedicate section III-A to explain the method
we developed to detect faces in equirectangular images.

E. Total energy and minimization

In order to take into account all the energies we just
presented, we formulate energies that are sums of the
previous ones. We alternate between minimizing E; and E,

Ey = w?E. + w’E, + w}? Z Ej, +w} Z Eyq, and

leLy IEL\Ly
E,=wlE. +w!B +w Y Epo+wi Y  Ep,
leLy leL\Ly

where L = {lines marked by the user}, L; = {lines with
fixed orientation}, w., = 0.4, ws = 0.05, w; = 1000. This
alternation is necessary due to the green lines. Usually we
minimize three times each energy to get visual convergence.

Using the matrices previously obtained, we can put both
energies in the matrix form E; = [|A4x|]?, E, = || A.x|%.
Thus the problem becomes minimizing an energy of the form
E(x) = ||Ax]||? at each iteration, which leads to finding
the eigenvector of AT A associated to the third smallest
eigenvalue, as shown in [2], pp.63-65. Since this task is
impractical due to the size of the problem (thousands of
variables), we replace E by

E(x) = B(x) +¢lx — y|I* = [|Ax]* + ¢]x - y|?,

where ¢ = 1076 and y is the stereographic projection. As
shown in [2], pp.65-67, the global minimizer of Eisx =
(AT A + I)~1(ey), what leads us to replace an eigenvalue
problem by solving a sparse and symmetric linear system.



F. Results

In this section we show results produced by the method
explained in the last section. We used about 40,000 vertices
to discretize the viewing sphere and the time of computation
was about one minute to produce each example.

The lines were marked in the interface we explain in
section III-C and we used Matlab to solve the linear systems.

Figure 6 shows an example where many lines were
marked (sixty-nine) and cover a good part of the scene.

Figure 6.  Top: Input image and marked lines. Middle: Perspective,
Stereographic and Mercator projections. Bottom: Result produced by the
method and cropped result. FOV: 210/140.

Figure 7 shows that the method produces good results for
very wide FOVs.

Figure 7.
by the method (cropped). FOV: 360/170.

Top: Input Image and marked lines. Bottom: Result produced

Figure 8 shows a result where faces were detected. This
detection is important to control distortions in face regions.

Figure 8. Top: Marked lines and detected faces. Bottom: Result produced
by the method and cropped result. FOV: 150/140.

In figure 9, we show a result to be compared with the one
produced by the method in [5] (see figure 3). We notice that
the unpleasant discontinuities are not present in this result.

Figure 9.
by the method (cropped). FOV: 180/100.

Top: Input image and marked lines. Bottom: Result produced

The results just presented show that the method produce
good results in a variety of situations. In [2], pp.73-96,
more results, details and comparisons with other projections
are provided. We also show that failure cases may happen
sometimes, specially if the user forgets to mark the most
important lines in the scene.



III. EXTENSIONS

Besides carrying out a conclusive analysis of [6], exposing
many details that were not considered in this reference (opti-
mization methods, for instance), we also propose extensions
that are important for the method.

A. Face detection in equirectangular images

The authors of [6] suggested steps to detect faces and
we used their ideas to develop a method to detect faces in
equirectangular images which is independent of the method
to produce panoramic images, but can be integrated to it by
using the face information to determine the weights wf e

The key idea of the method is that faces can be very
distorted in the equirectangular image, especially near the
poles. In this case, a standard method to detect faces
(we used [7]) might not detect them. Since the Mercator
projection is conformal, the faces are well preserved in
a Mercator image. Thus, the method consists of detecting
faces in the Mercator image and mapping them back to the
equirectangular domain (for details, see [2], pp.128-137). A
result of this method is shown in figure 8 (top/right).

B. Line detection in equirectangular images

The interface suggested in [6] asks the user to specify
all the important lines in the scene, by clicking on their
endpoints (figure 4 shows a result of this process). This
task may be sometimes tedious and/or the result may be
imprecise. We developed a method to help the user in this
task. The key idea of our method is that the perspective
projection preserves lines. We project the sphere using six
different perspective projections that cover the entire sphere.
Then the Hough transform is used to detect lines in each
perspective image and the information is mapped back to
the equirectangular image. For details, see [2], pp.137-150.
A result of our method is shown in figure 10.

Figure 10.

161 line segments detected.

C. User Interface

Besides giving the possibility of specifying lines and their
orientations, as in [6], our interface allows the user to specify
what FOV will be projected, number of vertices of the sphere
and number of iterations of the method. In ([8]), one can find
a video of our interface working and in [2], pp. 118-122, one
can find a manual of how to use it. The application itself is
available upon request.

IV. PANORAMIC VIDEOS

In this section, we consider the problem of obtain-
ing panoramic videos, i.e., videos where each frame is a
panoramic image. This problem has additional motivations
to the image problem, such as movie industry and sport
broadcasting applications. As far as we know, this problem
has not been considered yet in the literature.

We start by separating the problem in three cases, in
order to make it easier to solve each case. Then we state
desirable properties that a panoramic video should have and
mathematically model the problem. We finish by presenting
a solution for case 1.

A. The three cases

Our separation is based on the position from where the
scene is being filmed (Viewpoint-VP), the FOV that is being
projected and the objects in the scene. The three cases are:

o Case I: Stationary VP, stationary FOV, moving objects;
o Case 2: Stationary VP, moving FOV, stationary objects;
o Case 3: Moving VP.

B. Desirable properties

In analogy to the image problem, we formulate perceptual
properties that are desirable in panoramic videos. The first
two we call per frame requirements and the last two we call
temporal requirements:

1) Each frame must be a good panoramic image;

2) Moving objects must be well preserved;

3) Temporal coherence for the scene should be observed.
For example, in case 1, the background should not be
projected to different positions along time, since the
VP and the FOV are stationary;

4) Temporal coherence for the moving objects should
also be observed. For example, in case 1, objects
should not change size and orientation if these prop-
erties do not change in the viewing sphere.

C. The temporal viewing sphere and problem statement

We model the viewing information of a scene through
time in the following way: let [0, ] be a time interval and

R: [_Waﬂ—] X [_%7 %} X [OvtO] — R?

A @) = (r(X9).1)

where r was defined in section I-B. The image of R we
call the temporal viewing sphere. This set, denoted by TS?,
is represented by the equirectangular video. An example of
equirectangular video is shown in figure 11.

We now state the panoramic video as that of finding a
projection

U: SCTS? — R3
Ao, t) = (U 9,1), V(N ¢,1),t)

with desirable properties.



Figure 11.
section. Right: Last frame.

Left: First frame of the equirectangular video we use in this

D. Solution for case 1

In this section we propose a solution for case 1: we show
equations that model the temporal requirements and the
discretization of them lead to energies that, when minimized
among the image energies, lead to the final results. All the
details can be found in [2], pp. 104-114, and the resulting
videos are in [8].

A simple solution that satisfies desirable properties 1 and
2 would be generating a video where each frame is an
optimizing image generated by the method we studied in
section II. A result for this solution is shown in figure 12.

Figure 12. Left: Intermediate frame. Right: Last frame. The man becomes
curved in the final frame due to the line constrains near him. Since he is not
curved in the input temporal viewing sphere, this behavior shows temporal
incoherence for this object. FOV: 180/120.

In [2], we present the following PDEs to model temporal
coherence of the moving objects:

8 O (N, 11), 050 (N, 6, 11),t2) — 22 (N, ¢,11) =0
t17t2( ¢7t1) ¢t1,t2( 7¢a tl)atQ) - %(A7¢7 tl) =0

Above (X°, . ¢¢%, ) is a transition function that corre-
sponds pomts of the objects between times ¢; and to.
Discretizing them and imposing them from one frame (time)
to the next corrects the orientation problem seen in figure
12, but now all the scene starts to shake to satisfy the object
constrains (see [8]). To correct this problem, we formulate
equations that model the temporal coherence of the scene
for this case:

( , 9, t2) — ( o, t) = 0
( ¢at2)_ ( ¢7t1) = 0

Using these equations to obtain an energy FEg. and min-
imizing it with the object energy E,, (obtained from the
object equations) and image energies lead to the final result
in figure 13.

In [2], pp.115-116, we also present a preliminary solution
for case 2. The final results are also in [8].

Figure 13. Left: Intermediate frame. Right: Last frame. Observe that the
man is less curved and the scene is well preserved.

V. CONCLUSION AND FUTURE WORK

In this paper, we studied the panoramic image problem
and proposed extensions related to it. The most important
of them was the novel study about panoramic videos, which
we intend to continue in the next years.

The next step in this study is to propose other solutions
for cases 1 and 2 and compare them to the ones presented
in this paper. Joining these two cases lead to solving the
general case for stationary VP. Then we intend to move on
to case 3, which seems more challenging.

Finally, we intend to apply all these ideas to real appli-
cations, such as cinema and sport broadcasting.
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