
Eurographics Symposium on Geometry Processing 2013
Yaron Lipman and Richard Hao Zhang
(Guest Editors)

Volume 32 (2013), Number 5

Consistent Volumetric Discretizations
Inside Self-Intersecting Surfaces

Leonardo Sacht1,2 Alec Jacobson1 Daniele Panozzo1 Christian Schüller1 Olga Sorkine-Hornung1

1ETH Zurich, Switzerland 2IMPA, Brazil

Input triangle mesh cMCF flow Intrinsic reverse flow Output tetrahedral mesh matching input

Figure 1: The triangle mesh of the Hand forms a closed surface, but contains nearly 2000 intersecting triangle pairs. Our
method flows the surface according to conformalized mean-curvature flow (cMCF) until all self-intersections are removed.
Then we reverse the flow so that shape intrinsics are restored but self-intersections are avoided. Finally we can tet-mesh inside
this surface and map the mesh so that it matches the original surface. We may then solve PDEs, such as this biharmonic function.

Abstract

Decades of research have culminated in a robust geometry processing pipeline for surfaces. Most steps in this
pipeline, like deformation, smoothing, subdivision and decimation, may create self-intersections. Volumetric pro-
cessing of solid shapes then becomes difficult, because obtaining a correct volumetric discretization is impossible:
existing tet-meshing methods require watertight input. We propose an algorithm that produces a tetrahedral mesh
that overlaps itself consistently with the self-intersections in the input surface. This enables volumetric processing
on self-intersecting models. We leverage conformalized mean-curvature flow, which removes self-intersections,
and define an intrinsically similar reverse flow, which prevents them. We tetrahedralize the resulting surface and
map the mesh inside the original surface. We demonstrate the effectiveness of our method with applications to
automatic skinning weight computation, physically based simulation and geodesic distance computation.

1 Introduction

Recent years have shown leaping advancements in surface-
based shape processing, in particular polygonal mesh pro-
cessing [BKP∗10]. Volumetric shape processing, on the
other hand, lags behind. One significant obstacle is the in-
ability to convert boundary representations of solid shapes

into explicit volumetric representations at any given stage
of the geometry processing pipeline. Robust tools for creat-
ing tetrahedral meshes from watertight input surfaces do ex-
ist, e.g. [Si03]. However, the presence of self-intersections in
the surface mesh invalidates the otherwise clean (closed, ori-
entable) input to volume meshing algorithms. Unfortunately,
most—if not nearly all—steps in the surface-based geome-
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Clean, high-res original Self-intersecting, decimation

Figure 2: Even simple geometric operations like boundary
decimation can introduce self-intersections (red dots).

try processing pipeline (such as decimation, smoothing, sub-
division, remeshing, surface-based deformations) may inval-
idate watertightness by creating self-intersections [HPSZ11]
(see Figure 2). As a consequence, attempts at further volu-
metric processing reveal artifacts resulting from ignoring or
deleting self-intersecting regions (see Figure 10), and there-
fore geometry processing remains limited to the surface.

Volumetric processing has a lot of valuable advantages.
While surface meshes are appropriate representations for
some shapes, such as thin shells (e.g. an automobile fender),
many interesting shapes are solids. For a solid shape, like a
deformable human character, we may sometimes get away
with a surface-only representation thanks to its intrinsic,
though indirect, relationship to the underlying volume and
because we often will only render the surface. However,
many processing tasks perform drastically differently when
treating a solid shape as a surface rather than a volume,
e.g. the bending of scanned clay statuette (see Figure 10
in [BPWG07]), rendering shapes made of translucent mate-
rial, like an amber jewel [LSR∗12], registering two poses of
a dancing human [LBB12], or even simple shape smoothing
(see Figure 3). Notably, volumetric representations facilitate
volume preservation and internal geodesic distance compu-
tation. Ubiquitous techniques like finite element analysis and
solving PDEs typically require an explicit representation of
a shape’s volume: most commonly, a tetrahedral mesh.

We propose a method to construct a tetrahedral mesh
for self-intersecting input. Instead of gluing overlapping re-
gions together, our output volume mesh overlaps itself con-
sistently with the self-intersections in the input surface (see
Figure 1). This enables correct geodesic information neces-
sary for shape-aware volumetric processing at any stage in
the geometry processing pipeline.

We begin with a key observation: For sphere-topology
surfaces, conformalized mean-curvature flow (cMCF) con-
verges to the unit sphere [KSBC12] and removes all inter-
sections. Given an input surface, we follow this flow until all
self-intersections are removed; typically long before reach-
ing the sphere (see Figure 5). Meshing techniques like con-
strained Delaunay tessellation (CDT) should in theory work
on this resulting surface. We could try to mesh its interior
and then try to map this mesh back inside the original sur-
face as an exercise in volumetric parameterization. However,
exponential scaling of the triangles during cMCF introduces
numerical issues for existing CDT software. This large dis-

Overlapping input curve Smoothed curve

Overlapping triangle mesh Smoothed triangle mesh

Figure 3: Geometric operations perform drastically differ-
ently on boundary versus region representations. Compare
the results of Laplacian smoothing for these eyeglasses as a
curve and as a region.

tortion also makes the subsequent volumetric parameteriza-
tion difficult or impossible, even with state-of-the-art meth-
ods [SKPSH13].

We solve this problem in two steps. We first reverse the
flow in an intrinsic way, while maintaining absence of self-
intersections as an invariant. For each step backward in the
flow, we minimize a surface-distortion energy subject to safe
contact constraints. Because cMCF is smooth (even confor-
mal in the limit), this may be interpreted as an intersection-
free, surface simulation regularized by the flow. When we
have returned to time zero, our surface is similar to the orig-
inal input surface intrinsically, but self-intersection free (see
Figure 6). Now, we may safely apply existing CDT methods.
As a final step, we map the surface of this volume to the orig-
inal, self-intersecting input surface and propagate the map
to the interior. We show the success of our method for ap-
plications including solving PDEs, volumetric elastic defor-
mation and simulation, automatic skinning weight definition
and geodesic distance computation.

2 Problem context.

Volumetric discretizations of watertight shapes have greatly
improved in the past years [She12]. State-of-the-art methods
provide guarantees on element quality and have rich feature
sets like the ability to specify spatially-varying density fields
or exactly conforming to a given piecewise-linear surface
mesh [CGAL, Si03, LS07, GR09]. However, they all assume
that the input is a representation (implicit function, triangle
mesh) of a watertight surface1. We bootstrap these meth-
ods in order to discretize volumes of self-intersecting solids,
which of course have self-intersecting surfaces. We heavily

1 Formally, a watertight surface is “a 2-[manifold] embedded in R3

whose underyling space is same [sic] as the boundary of the closure
of a 3-manifold in R3” [DG03].
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employ the CDT and mesh refinement routines of the award-
winning TETGEN software [Si03]. By leveraging locally in-
jective volumetric parameterization, we prevent inverted el-
ements in our output, so we may further post-process our
output by other mesh refinement techniques to achieve gra-
dations or even higher quality [She12].

Some surface repair techniques eliminate self-
intersections, outputting a watertight mesh which may then
be meshed. But these repairs either delete [SOS04, Att10]
or fuse intersecting pieces [JKSH13]. Our method accom-
modates self-intersections without any modification to the
original surface—local or otherwise (see Figure 10).

Naive methods are generally not an option. Having
meshed the entire convex hull, one could segment based
on the winding number (analogous to the “nonzero-rule”
of SVG and OpenGL, [FvDFH90, JKSH13]). This not only
leads to incorrectly deleting or joining entire regions, but
also easily results in non-manifold output. It is also tempt-
ing to consider decomposing the input into intersection-free
pieces, meshing each independently and reconnecting them.
Constructing, let alone combinatorially reconnecting, such
a decomposition is not obvious for complicated or multiple
overlaps. Further, one must ensure discretization coherency
across cuts. Luo et al. [LBRM12] consider planar cuts to
decompose shapes for 3D printing, but even assuming self-
intersection free input they show that managing these re-
quires care. Our method avoids combinatorial decisions.

Instead of decomposing or modifying the input sur-
face, we find a new embedding for it via conformal-
ized mean-curvature flow (cMCF), which removes self-
intersections [KSBC12]. Several common flows converge
to the sphere, e.g. the Willmore flow, volume-preserving
mean-curvature flow, heat diffusion flow, etc. [Wil00]. Un-
like mean-curvature flow, many of these flows are known
to create new self-intersections even in their absence in the
input [MS00, MS03], making them unsuitable for our pur-
poses. We also enjoy the simplicity, performance and robust-
ness of cMCF for triangle mesh discretizations.

We optimize a surface-based, elastic energy with dynam-
ics to reverse the flow while preventing self-intersections
with safe contact constraints and repulsion forces at the
vertex level. Harmon et al. [HPSZ11] similarly prevent
self-intersections during interactive deformation, speeding
up computation by grouping collision responses. Alterna-
tively, we could employ this method, but grouping runs the
risk of locking early on during the reverse flow. Further,
our simulation conveniently does not require expensive and
complicated gradient computation for the deformation en-
ergy. There is a large amount of literature in physically-
based simulation on robust and efficient handling of col-
lisions [Har10]. Given our intersection-free state we could
treat the original surface as a rest-state and run any off-the-
shelf surface simulation with safe collision handling (e.g.
[BFA02]). However, this quickly results in locking (see Fig-
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Figure 4: Left (with winding numbers indicated): contrary
to [MGR11], this curve is not a “self-crossing loop”. Mid-
dle: This elbow case is also not a self-crossing loop, and so
it is not considered by any existing 2D method. Our method
succeeds by allowing the mapping to not be locally injective
on the boundary (at the yellow dot), visualized in a hypothet-
ical untangled state (right).

ure 7). Our use of the forward flow surfaces at interme-
diary time steps avoids this. Another option would be to
avoid the flow altogether and attempt to untangle the self-
intersections [BWK03]. Tailored to open cloth surfaces, this
heuristic appears to succeed for small overlaps, but purpose-
fully assumes no knowledge of a possible intersection-free
state (e.g. a previous frame in their simulation). It relies in-
stead on heuristic global topological analysis of the input.

A few works have defined similar problems in R2: dis-
cretizing or charting the area inside an overlapping curve
in the plane. Unfortunately their solutions are slow and do
not extend to R3 [SVW89, EM09, MGR11]. It is very dif-
ficult to have a definition of valid input that is not based
on the existence of valid output, or in other words, defin-
ing what valid input is such that validity is easy to verify.
The observations in Section 2.4 of [MGR11] make use of the
winding number, the signed number of times a curve wraps
around a point. Unfortunately, these observations are neces-
sary but not sufficient, since they would accept the infeasi-
ble curve in Figure 4 (left). This curve is not even a valid
“self-crossing loop”, i.e. the boundary curve of a locally-
injectively deformed circular disc [SVW89]. Interestingly,
the existence-of-output definition of self-crossing loops used
in [SVW89] and all following works does not include the el-
bow case (Figure 3b of [SVW89]), which arises frequently
during surface deformations (see Figure 4, right). Our for-
mulation is more general and handles this case by allow-
ing a zero-measure subset of the boundary where the com-
puted map is not locally injective. A similar situation in 3D
is shown in Figure 9.

3 Problem description

Let our input be M, a closed, orientable (d− 1)-manifold
embedded in Rd , with possible self-intersections. From now
on we assume d = 3, but our problem and solution generalize

c© 2013 The Author(s)
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V0 Vt∗

Figure 5: We evolve a self-intersecting surface (intersections are shown in red) with the conformalized Mean Curvature Flow.
After some time t∗ the surface reaches a self-intersection free state. The limit is a conformal mapping to the unit sphere.

for d ≥ 2. Our goal is to chart the volume inside M. That
is, we wish to find a continuous map Ω : D → R3 where D
is an abstract 3-manifold with boundary and our mapping Ω

meets the following requirements:

Ω(∂D) =M, (1)

Ω(D\∂D) is differentiable, (2)

|JΩ(p)|> 0 ∀p ∈ D\∂D, (3)

where |JΩ(p)| is the determinant of the Jacobian matrix of
the map Ω evaluated at point p. The first requirement states
that Ω should map the boundary of D to the input sur-
face M. The second and third requirements ensure local
injectivity on the interior. We do not require local injectiv-
ity on the boundary. This allows isolated “hinge points” on
∂D to appear, necessary for handling elbow cases (see Fig-
ure 4). With the local injectivity requirement on the bound-
ary our definition would be equivalent to “self-crossing
loops” [SVW89]. In practice, these requirements imply that
our output tetrahedral mesh conforms to the input boundary,
has no flipped (negative signed volume) tetrahedra, and has
proper connectivity.

Forward flow. As in [KSBC12], we define the conformal-
ized mean-curvature flow (cMCF) Φt :M→ R3 to be a
smooth family of immersions, each the solution to the partial
differential equation:

∂Φt

∂t
=

√
|g−1

t g0|∆g0 Φt , (4)

where g(·, ·)t is the metric induced by the immersion at time
t, and ∆g0 is the Laplace-Beltrami operator defined with re-
spect to the original metric g0 ofM.

Kazhdan et. al prove that “if cMCF converges, than [sic]
it converges to a map on the sphere if and only if the limit
map is conformal”. This is of special importance to us be-
cause the mapping to the sphere will have removed all self-
intersections. They observed this convergence in all their
tests with sphere-topology examples, and we confirm this
empirically, too. In general, self-intersections disappear long
before reaching the sphere. Let t∗ and Φt∗ be the time at
which this occurs and the corresponding immersion, respec-
tively (see Figure 5).

Reverse flow. In the discrete setting, the exponential scal-
ing in Φt introduces numerical issues that prevent us from
directly mapping the volumetric closure of Φt∗(M) back to
M. We alleviate this by finding an intrinsic reverse flow. Let
Ψt :M→ R3 be a family of immersions defined as the op-
timum of the nonlinear, constrained optimization problem:

argmin
Ψt

Esurf(gt , g̃t), (5)

subject to: Ψt is injective (6)

where g̃(·, ·)t is the metric induced by Ψt and Esurf(gt , g̃t)
measures the similarity of the metrics gt and g̃t . In this way,
our optimization finds a non-self-intersecting immersion Ψt
which is as close as possible to Φt (see Figure 6). Since Ψt is
defined w.r.t. discontinuous constraints, we cannot write that
it is a smooth family of immersions w.r.t. t, but this is not an
issue for us as we are only concerned with the quality of Ψ0.

We can immediately notice that if cMCF converges, the
feasible set of solutions is non-empty: the sphere and thus
also Ψt∗ are intersection-free. In the ideal world, Esurf would
measure the similarity of the volumes within Φt and Ψt , but
of course without the unknown discretization of the volume
within Φt this is elusive in practice. Hence, we choose Esurf
to be a cumulative measure of local surface rigidity, namely
the surface-based elastic energy discussed in [CPSS10].

For our purposes, we are only concerned with the final
reversed flow Ψ0, but in practice we compute Ψt at the same
samples in time as Φt . These intermediary solutions will be
essential as feasible, initial guesses to the subsequent steps
back in time (t−δ) until reaching time 0.

Volumetric parameterization. Now we no longer need
to treat D as an abstract domain: let D be the closure of
Ψ0(M). The problem of finding a suitable volumetric map-
ping Ω reduces to a volumetric parameterization problem
with a fixed boundary. We can write this volumetric param-
eterization Ω as the optimum of:

argmin
Ω

Evol(Ω), (7)

subject to: |JΩ(p)|> 0 ∀p ∈ D\∂D, (8)

Ω(∂D) =M, (9)

c© 2013 The Author(s)
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Ut∗ U0

Figure 6: We evolve the intersection-free surface obtained
with cMCF to a one that is similar to the input surface in-
trinsically, but without self-intersections.

where Evol is an arbitrary non-negative energy. In fact, since
we only care about the map Ω insofar as we care about the
constraints (8-9), it is helpful conceptually to consider sim-
ply Evol(Ω) = 0. This is in contrast to the typical, varia-
tional parameterization or deformation problems, where en-
ergies are carefully crafted to minimize distortion or satisfy
problem-specific needs.

4 Discretization

We have described our solution in the continuous case, and
now we must discretize it in order to mesh self-intersecting
input surfaces. Let us restrict our input shape in R3 to be
a closed, orientable, triangle mesh described by a list of n
vertices V = {v1,v2, . . . ,vn} , vi ∈ R3 and a list of m tri-
angle facets F = { f1, f2, . . . , fm} where fi ∈ {1,2, . . . ,n}3.
Our goal is then to find a set of tetrahedral elements E ⊂
{1, . . . ,k}4 defined over a set of vertices VE ⊇V which rep-
resent the overlapping volume of (V,F). In general, k > n
since we may add Steiner points.

The discrete analogs to the requirements (1-3) are:

1. all triangles in F appear as faces of boundary tets in E,
2. the signed volume of each tet in E is positive, and
3. E forms a combinatorial 3-manifold with boundary.

Forward flow. Discretizing the cMCF Φt follows exactly
as described in [KSBC12]. We compute the cotangent Lapla-
cian of the original mesh (V,F) and then for each discrete
step δ forward in time we update the mass matrix accord-
ing to vertex positions Vt of the current immersion Φt . In
addition to updating the flow, at each time step we detect if
any self-intersections remain. We do this by computing all
triangle-triangle intersections using the exact predicates (but
inexact construction) kernel in [CGAL]. We, of course, stop
early as soon as an intersection is found (see Figure 5). To
efficiently compute the intersections we use the box inter-
section implementation provided by [CGAL] that exploits
spatial hierarchies.

Reverse flow. We follow forward in time by discrete steps
δ (∼ 10−4) until no self-intersections remain, resulting in
Vt∗ (see Figure 5). Then, we flow in reverse. Starting with
t = t∗ and initializing Ut∗ ← Vt∗ , we minimize the surface-
based elastic energy, which treats Vt−δ as the rest-state, us-

ing Ut as the initial guess of the unknown positions Ut−δ

(see Figure 6).

We implement this in a fashion similar to the dynamics
method of [CPSS10] with three notable differences. Instead
of a volumetric energy we use a surface-based as-rigid-as-
possible (ARAP) energy, in particular the “spokes-and-rims”
energy described in their Section 4.2. Instead of the New-
ton solver proposed by Chao et al., we use a “local-global”
solver as described by [SA07]. This is simpler to imple-
ment and avoids expensive Hessian computations. Finally,
we need absolutely safe collision detection and response. To
handle this we detect all intersecting triangles for each time
step in the simulation, again using [CGAL]. All vertices of
each offending triangle are fixed to their previous positions,
and the solution for that time step is resolved recursively un-
til no intersections remain. For all vertices of each intersect-
ing pair of triangles we also accumulate repulsion forces to
be used for the next time step. These force vectors are the
difference between the barycenters of the triangles times a
scalar weighting term (for all results in this paper we have
defined this weight as 1000, but good results are obtained for
the range [1,1000]). The accumulated forces for each vertex
are defined as the external forces only for the next time step.

We opt for dynamics, rather than worry about fixing
enough vertices in Ut to remove the translational and rota-
tional degrees of freedom in the under-constrained ARAP
energy. Adding dynamics to an ARAP energy optimization
is simple. Suppose our unknown positions at simulation time
i are Ui

t , then we begin with Netwon’s second law:

fext + fint =Mai (10)

fext +∇EARAP(U
i
t) =Mai (11)

where fext ∈ Rn×3 and fint ∈ Rn×3 are the external and in-
ternal forces respectively, M∈R3 is the (diagonalized) mass
matrix, and the unknown accelerations are discretized with
finite differences in simulation time ai = (Ui

t − 2Ui−1
t +

Ui−2
t )/ε

2, where ε is the simulation time step (not to be con-
fused with the flow time step δ). We immediately treat the
gradient of our ARAP energy EARAP as an internal force.

The anti-derivative of Equation (11) w.r.t. Ui
t
T

results in a
time dependent energy:

Edyn(U
i
t ,U

i−1
t ,Ui−2

t ) =
ε

2
aiTMai−Ui

t
T

fext +EARAP(U
i
t).

Notice that in terms of the implementation of a local-global
solver, the addition of dynamics only affects the global Pois-
son solve, and only the right-hand side changes as simulation
time i advances. Thus a Cholesky decomposition may still
be prefactored. The local step (SVDs for best-fit rotations)
is not affected. More details may be found in [JBK∗12]. In-
tuitively, the dynamic simulation corresponds to introducing
an energy term at each iteration that gently pulls the current
guess toward the previous guess. This creates drag, but also
regularizes the Poisson solve at the “global” step and enables

c© 2013 The Author(s)
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area = 1e-28
Vt∗Input Ut∗ → U0 Ut∗ → · · · → U0

Figure 7: cMCF removes intersections on the Dog producing Vt∗ , but also introduces enormous scaling: flowed tail shown in
nested insets. Attempting to optimize directly back to the original metric (Ut∗ → U0) finds a self-intersection free immersion,
but with heavy distortion. Our reverse flow using intermediary steps (Ut∗ → ·· ·→U0) instead finds a self-intersection free and
low distortion solution. Purple histogram overlays show the distribution of triangle areas.

the aforementioned repulsion forces. Finally, after each sim-
ulation is completed, we register Ut to Vt with a globally
optimal rigid transformation [Sor09].

We repeat this simulation for each discrete flow time t,
resulting in a sequence of self-intersection free immersions
{Ut∗ , . . .Ut , . . . ,U0} (see Figure 6). Most importantly, U0 is
intrinsically similar to our original mesh geometry V0, but
free of self-intersections. We mesh the interior of (U0,F)
using TETGEN [Si03], setting parameters to achieve slightly
graded elements, but with sufficient circumradius-to-edge
ratio (∼ 2). This produces a tet-mesh with elements E and
vertex positions UE ⊇ U0.

Though only auxillary, the intermediary steps Ut are es-
sential as initial guesses for each step backward in the flow.
Immediately optimizing for U0 treating Vt∗ as an initial
guess results in many collisions early on, locking the surface
in an unsatisfactory shape (see Figure 7).

Volumetric parameterization. The ill-posed energy op-
timization in Equation (7) could be discretized into a
piecewise-linear mapping Ω : (UE,E) → R3 in a variety
of ways. We examine two choices. First we could consider
treating the local injectivity constraint in Equation (8) as
a weak constraint, translating it into an energy term which
punishes flipped elements. One available energy is the elas-
tic energy for tetrahedral meshes described in [CPSS10].
We can minimize this energy (subject to the boundary con-
straints implied by Equation (9)) with the same local-global
solver used earlier, only now the energy is volumetric, de-
fined with (UE,E) as the rest state.

This discretized energy punishes flipped elements, but
only with finite energy2. For most applications, flipped ele-
ments are undesired, leading to inaccuracies. For some appli-
cations like physically based simulation or mesh refinement,
flipped elements are a deal-breaker. While mesh untangling

2 In terms of the derivation in [CPSS10], this can be chalked up to
discretization error as the continuous energy should be infinite.

methods such as [FP00,Knu01] could be employed, they are
slow and ignore our extra information of a self-intersection
free state (UE,E). Therefore, we consider another option:
treating the constraints Equation (8) as hard constraints.

We employ a solver for exactly this problem: finding lo-
cally injective maps [SKPSH13]. Rather than use an arbi-
trary constant energy for Evol, we notice that, while we do
not care about the distortion of the mapping (we can al-
ways refine as a post process), choosing an energy that pun-
ishes tetrahedra with degenerating unsigned volumes assists
[SKPSH13] in finding a locally injective map. To this end,
we employ Green’s strain energy (refer to [SKPSH13] for
the definition).

Additionally, since we do not care about the distortion
of the internal mapping, we may further assist [SKPSH13]
by refining our tet mesh during optimization. For the vol-
ume parameterization and deformation problems considered
by [SKPSH13], this is in general not possible or desired. In
our case, we notice that this greatly improves the chances of
finding a feasible solution. We refine every 100 iterations us-
ing TETGEN’s coarsen-then-refine option. This first removes
existing internal Steiner points and then adds new points, en-
suring the same quality as discussed earlier and avoiding an
explosion in the mesh size. Refining the current solution to
a new mesh (U′E,E

′) effectively redefines the domain of our
mapping, Ω : (U′E,E

′)→ R3, but by abuse of notation we
are still finding a solution to our original problem.

The problem in R2 is far more studied, and many op-
tions for locally injective mappings exist. While the method
of [SKPSH13] outperforms other methods such as [Lip12],
[XCGL11] present an even faster solution, guaranteed to
detect feasibility. Unfortunately, while extending the imple-
mentation of [XCGL11] to R3 is straightforward, there is
no proof (yet) that the guarantees extend as well. In our
experiments, we found that for simple examples extending
[XCGL11] to R3 succeeds, but for more complicated inputs
numerical issues arose before convergence could be reached
or infeasibility could be determined.

c© 2013 The Author(s)
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Input model Computation time Output

Name |F| #s.i. Φt∗ Ψ0 Ω |E|

Decimated 500 7 0.1 1 0.8 694
Leg 13230 239 0.4 125 30 23968
Cheese 15944 368 0.4 340 1 24447
Male 30788 1133 0.9 200 223 78647
Hand 44000 1924 1.6 435 1922 86000
Dog 50576 1042 2.2 523 - -
Polygirl 65800 679 0.6 140 1642 122118

Table 1: Statistics for the various examples. |F| is the num-
ber of facets in the input 3D surface and #s.i. the number of
intersecting pairs of facets. We report timings for each stage
of our algorithm in seconds: (Φt∗ ) computing the cMCF flow
until self-intersections are removed, (Ψ0) computing reverse
flow preventing self-intersections, (Ω) computing volumetric
map. The number of elements in the output tet mesh is |E|.

5 Experiments and results

We report statistics in Table 1. Timings were obtained on
an iMac Intel Core i7 3.4GHz computer with 16GB mem-
ory. We implement our method primarily as a serial program
in MATLAB. Self-intersections are determined using the
CGAL C++ library, and meshing is performed with TET-
GEN. Neither are a bottle-neck. The locally injective map-
ping method of [SKPSH13] is also implemented as a serial
subroutine written in C++.

See the attached zipped folder containing input, interme-
diary, and output meshes of all results in the paper. Also,
see the attached video showing forward (cMCF) and re-
verse flows for each model. cMCF successful removes all
self-intersections in the sphere-topology example we tested,
typically after 10-20 iterations. We use [SKPSH13] for all
of our examples, except the Dog in Figure 7 for which it
does not find a solution. Finding locally injective mappings
is a difficult and unsolved problem, but as new methods ap-
pear in these areas, our approach will immediate see benefits.
Switching to ARAP for this example is a possibility though
doing so produces 654 flipped tetrahedra out of 147588. We
also tried ARAP on other examples where [SKPSH13] suc-
ceeds: for the Hand in Figure 1, ARAP flips 325 out of
86000. Both the Dog and the Hand highlight the intrinsic
quality of our final reverse flow surface.

The Dog model in Figure 7 contains multiple self-
overlapping parts, all resolved by cMCF. However, flowing
with cMCF comes at a cost: the entire tail has shrunk around
a small point on the Dog’s behind. The smallest triangle area
is far too small for TETGEN to deal with. Instead, our reverse
flow restores the intrinsic shape of the dog. This surface, and
a tet-mesh generated in it, is ready to use for physically based
simulation applications.

Input Surface [JKS13] volume Our volume

Geodesic distance

Figure 8: Polygirl’s hands intersect her waist (left).
Geodesic distance to a point on her back computed on the
surface correctly separates the hands, but measures around
the waist instead of through it. The positive winding num-
ber mesh of [JKSH13] has the opposite situation. Using our
output volume mesh, both are correct.

Input Volume weights, deformationU0

Figure 9: Our method enables automatic skinning weight
computation with [JBPS11].

In Figure 1, the Hand is also restored well by our reverse
flow. As desired, when mapped to match the input surface,
the generated tetrahedral mesh has overlapping tetrahedra on
the fingers: this is made obvious when solving the bihar-
monic equation with alternating Dirichlet boundary condi-
tions on the finger tips.

Geodesic distance computation is a cornerstone of ge-
ometry processing. In Figure 8, we compare surface
geodesic distances computed on a self-intersecting input
with volumetric geodesic distances computed on our con-
sistently overlapping output tet mesh and the fused mesh of
[JKSH13]. Our mesh reveals the semantically distant waist
and hands, without compromising the volumetric distance
through the body.

The Leg in Figure 9 overlaps itself non-trivially in a 3D
analog to the elbow case in Figure 4. Our method resolves
this and volumetric skinning weights for a manually defined
skeleton are generated using Bounded Biharmonic Weights
(BBW) [JBPS11]. Each weight function correctly controls
the corresponding portion of the Leg, despite the spacial
overlap. Deforming the mesh with linear blend skinning re-
veals this as the Leg extends without artifacts.

Mesh repairing algorithms can be used to resolve inter-
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Input mesh [Att10] Our BBW [JKS13] BBWU0Vt∗

Figure 10: Left to right: the limbs of the Male intersect each other and the body (front and sideview). MESHFIX of [Att10]
successfully removes these intersections, but local modifications are too aggressive. The cMCF flow removes intersections,
resulting in Vt∗ , and our reverse flow restores the original shape intrinsics U0. We use [SKPSH13] to map this to the interior
of the input surface and compute BBW weights for point handles at each extremity (left foot visualized). Meshing according to
positive winding number [JKSH13] glues the limbs together, producing unsatisfactory weights.

sections from a surface mesh, such that it can be subse-
quently tetrahedralized. We show in Figure 10 the water-
tight output of MESHFIX [Att10]. Although a tet-mesh could
be generated, much of the surface of the Male has been
deleted or altered (see inside red rectangles). Instead, our
method resolves self-intersection without modifying the in-
put’s connectivity. The result of our reverse flow is meshed
and the mesh is mapped back to the original surface, where
BBWs may be computed for each extremity. An alternative,
is to consider the interior as defined by the positive winding
number [JKSH13]. This glues semantically distant regions
together resulting in poor BBWs. Reduced elastic simula-
tions [JBK∗12] are computed for these two tet-mesh and
BBW results and compared in Figure 11. Notably the limbs
in our mesh separate freely, while those of [JKSH13] are
awkwardly stuck together.

To perform complex volumetric physical simulations, it is
common to first decimate surface meshes to a very coarse
level and then tetrahedralize their interior. We show in Fig-
ure 12 that decimation can introduce self-intersections and
that our method is able to define a tet-mesh for the interior
of the decimated surface.

5.1 Limitations and future work

We would like to improve the computational performance
of our reverse flow dynamics in future work, perhaps by
employing a subspace reduction method such as [JBK∗12],
though the incorporation of safe contact response is not ob-
vious.

cMCF and other flows such as Willmore, do not, in gen-
eral, converge to self-intersection free surfaces. Thus we
have no guarantee that our method will work for high-genus
shapes. However, we found that self-intersections are often

Elastic simulation with our tet mesh

Elastic simulation with tet mesh of [JKS13]

Figure 11: Our output tetmesh is consistent with the self-
intersections of the original shape. This allows limbs to move
freely during elastic simulation of the Male (top). Mesh-
ing according to positive winding number glues semantically
distant regions together [JKSH13], causing the legs to stick
together and the arms to stick to the belly and head (bottom).

removed by cMCF early on, even for high genus shapes
(see Figure 13). This is in contrast to the conformal Will-
more flow [CPS13]. Our experiments show that this method
removes all intersections at a much later state (see Fig-
ure 14). Using [CPS13] as the forward flow in our pipeline
would make it difficult for the reverse flow to restore the
shape. Although it seems that this new flow works better for
high-genus surfaces, there is no guarantee of convergence
to a self-intersection free shape. Investigating other flows or
modifications of existing flows for removing and preventing
self-intersections is an interesting direction for future work.

Although we use the state-of-the-art locally-injective
mapping method of [SKPSH13], the optimization may
sometimes get stuck, unable to satisfy the boundary con-
ditions. Their method treats local injectivity as hard con-
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Original
Mesh

Decimated
Mesh

Volumetric
PDE shown

on the surface

Figure 12: A dense mesh is decimated, and the result
presents self-intersections. Our method successfully defines
a tet-mesh for its interior, on which we can solve the bi-
harmonic PDE.

Input

Vt∗

U0 Volumetric PDE

Figure 13: We observe that for some cases—such as this
thick slice of Cheese—self-intersections are also removed
from high genus shapes before cMCF converges.

straints using a barrier method, but the positional constraints
on the boundary are only enforced with quadratic penalty
terms. We do not report the result for the Dog model since
[SKPSH13] was not able to satisfy all the soft constraints.

In some cases the reverse flow does not succeed in restor-
ing the original shape. In Figure 15 we show an example
where the bristles inside a torus need more space to restore
their original geometry and get locked by the torus. His-
tograms of triangle areas (bottom) show that the geometry
of the result of the reverse flow is not similar to the input
shape.

Finally, even some sphere-topology shapes will not work
with our method. Shapes implying regions of negative wind-
ing number (see Figure 16) are ill posed as they do not define
a clear “interior.” Our method can reject these immediately,
but it remains to prove the sufficient conditions for invalid
input to our problem.

6 Conclusion

Our discretized formulation proves to be a powerful tool for
consistently meshing, previously unmeshable models. Our
reverse flow takes maximal advantage of the cMCF, which

Figure 14: Conformalized mean curvature flow (top) re-
moves self-intersections much earlier than conformal Will-
more flow (bottom).

U 0V 0 V t∗

Figure 15: The input surface V0 is taken to a self-
intersection-free state Vt∗ , but the reverse flow cannot re-
store the original shape due to the lock caused by the ex-
ternal torus on the bristles. Histograms below each surface
show the triangle area distribution and confirm that the re-
sult of the reverse flow was not able to restore the original
areas.

is computed anyway to remove self-intersections. This com-
plements modern tet-meshing software and state-of-the-art
bijective parameterization, forming a useful tool to assist
in a variety of geometry processing tasks. We hope that by
providing a method to recover volumetric discretizations for
self-intersecting surfaces of solid shapes we will encourage
volumetric processing at every applicable stage in the geom-
etry processing pipeline.
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