Centroidal Voronoi Tessellations on Meshes

Leonardo K. Sacht & Thiago S. Pereira

Visgraf - IMPA

November 18, 2008
Definition: Given $\Omega \subseteq \mathbb{R}^n$, $\{z_i\}_{i=1}^k \subseteq \Omega$, the Voronoi region of each z_i is defined by

$$\hat{V}_i = \{x \in \Omega : \| x - z_i \| < \| x - z_j \| \text{ for } j = 1, \ldots, k, j \neq i\}.$$
Centroidal Voronoi Tessellations

Centroidal Voronoi Tessellations on Meshes

Definition and Applications

Lloyd’s Algorithm

Normal Clustering

Mixing Both Approaches

Flooding Approach

Future Work

References

A Voronoi Diagram of \([0, 1] \times [0, 1] \subseteq \mathbb{R}^2\)
Definition: Let $V \subseteq \mathbb{R}^n$ and ρ a density function on V. The mass centroid of V is $z^* \in V$ such that

$$\int_V \rho(y) \left\| z^* - y \right\|^2 dy = \inf_{z \in V^*} \int_V \rho(y) \left\| z - y \right\|^2 dy,$$

where V^* is the closure of V.

The minimizer of this functional is

$$z^* = \frac{\int_V y \rho(y) dy}{\int_V \rho(y) dy}.$$
Definition: \(\{ \hat{V}_i \}_{i=1}^n \) is a *Centroidal Voronoi Tessellation* of \(\Omega \subseteq \mathbb{R}^n \) if the generators of \(\hat{V}_i \) are their mass centroids.
A Centroidal Voronoi Tessellation of with $\rho \equiv 1$.
Centroidal Voronoi Tessellations

\[\rho(x, y) = e^{-40x^2 - 40y^2} \]
Applications

- Data Compression in Image Processing;
Applications

- Data Compression in Image Processing;
- Quadrature Rules;

Definition and Applications
- Lloyd’s Algorithm
- Normal Clustering
- Mixing Both Approaches
- Flooding Approach
- Future Work
- References
Applications

- Data Compression in Image Processing;
- Quadrature Rules;
- Optimal Representation, Quantization, and Clustering;
Applications

- Data Compression in Image Processing;
- Quadrature Rules;
- Optimal Representation, Quantization, and Clustering;
- Finite Difference Schemes Having Optimal Truncation Errors;
Applications

- Data Compression in Image Processing;
- Quadrature Rules;
- Optimal Representation, Quantization, and Clustering;
- Finite Difference Schemes Having Optimal Truncation Errors;
- Optimal Placement of Resources;
Applications

- Data Compression in Image Processing;
- Quadrature Rules;
- Optimal Representation, Quantization, and Clustering;
- Finite Difference Schemes Having Optimal Truncation Errors;
- Optimal Placement of Resources;
- Cell Division;
Applications

- Data Compression in Image Processing;
- Quadrature Rules;
- Optimal Representation, Quantization, and Clustering;
- Finite Difference Schemes Having Optimal Truncation Errors;
- Optimal Placement of Resources;
- Cell Division;
- Territorial Behavior of Animals;
Applications

- Data Compression in Image Processing;
- Quadrature Rules;
- Optimal Representation, Quantization, and Clustering;
- Finite Difference Schemes Having Optimal Truncation Errors;
- Optimal Placement of Resources;
- Cell Division;
- Territorial Behavior of Animals;

Reference: [2].
Applications

- Remeshing;
Applications

Centroidal Voronoi Tessellations on Meshes

Definition and Applications

Lloyd's Algorithm

Normal Clustering

Mixing Both Approaches

Flooding Approach

Future Work

References

- Remeshing;
- Our applications...
Framework of the Problem

Given
- a region $\Omega \subseteq \mathbb{R}^n$,
- a positive integer k,
- a density function ρ, defined on Ω,
Given
- a region $\Omega \subseteq \mathbb{R}^n$,
- a positive integer k,
- a density function ρ, defined on Ω,

find
- k points $z_i \in \Omega$,
- k regions V_i that tessellate Ω,

Framework of the Problem
Framework of the Problem

Given
- a region $\Omega \subseteq \mathbb{R}^n$,
- a positive integer k,
- a density function ρ, defined on Ω,

find
- k points $z_i \in \Omega$,
- k regions V_i that tesselate Ω,

such that *simultaneously* for each i
- V_i is the Voronoi region for z_i,
- z_i is the mass centroid of V_i.
Lloyd in Back to the Future III
Lloyd’s Algorithm

It’s the most standard and intuitive algorithm to compute CVD’s. It’s described by the following steps:

1. Compute randomly k points $z_i \in \Omega$;
Lloyd’s Algorithm

It’s the most standard and intuitive algorithm to compute CVD’s. It’s described by the following steps:

1. Compute randomly k points $z_i \in \Omega$;
2. Compute the Voronoi regions \hat{V}_i determined by the points z_i;
Lloyd’s Algorithm

It’s the most standard and intuitive algorithm to compute CVD’s. It’s described by the following steps:

1. Compute randomly k points $z_i \in \Omega$;
2. Compute the Voronoi regions \hat{V}_i determined by the points z_i;
3. Calculate the centroids z_i^* of \hat{V}_i and set $z_i = z_i^*$;
Lloyd’s Algorithm

It’s the most standard and intuitive algorithm to compute CVD’s. It’s described by the following steps:

1. Compute randomly k points $z_i \in \Omega$;
2. Compute the Voronoi regions \hat{V}_i determined by the points z_i;
3. Calculate the centroids z_i^* of \hat{V}_i and set $z_i = z_i^*$;
4. If some stop criteria is met for this new set of points z_i, stop. Otherwise, return to step 2.
Show Lloyd's Algorithm working with planar examples.
Energy Functional

Proposition: Let \(\{ z_i \}_{i=1}^k \subseteq S \subseteq \mathbb{R}^2 \) and \(\{ V_i \}_{i=1}^k \) a tessellation of \(S \). Define the **energy functional** or the **distortion value** for \(\{(z_i, V_i)\}_{i=1}^k \) by

\[
F(\{(z_i, V_i)\}_{i=1}^k) = \sum_{i=1}^{k} \int_{x \in V_i} \rho(x) \| x - z_i \|^2 \, dx.
\]

A necessary condition for \(F \) to be minimized is that \(\{(z_i, V_i)\}_{i=1}^k \) is a centroidal Voronoi tessellation of \(S \).
And for surfaces?

Centroidal Voronoi Tessellations on Meshes

Definition and Applications

Lloyd's Algorithm

Normal Clustering

Mixing Both Approaches

Flooding Approach

Future Work

References
And for surfaces?

If \(S \subseteq \mathbb{R}^3 \), the euclidian centroid usually does not belong to \(S \).

Definition: Let \(V_i \subseteq S \) be a region of a surface. The **constrained mass centroid** of \(V_i \) on \(S \), \(z_i^c \), is a solution of the following problem:

\[
\min_{z \in S} F_i(z), \quad \text{where} \quad F_i(z) = \int_{V_i} \rho(x) \| x - z_i \|^2 \, dx.
\]
And for surfaces?

In [3], it’s proved that the constrained centroid z_i^c is the projection of z_i^* (the euclidean centroid) onto S along the normal direction at z_i^c.

Figure: Projection onto a surface
Definition: \(\{ V_i \}_{i=1}^k \) is a **Constrained Centroidal Voronoi Tessellation** of \(S \) if \(\{ V_i \}_{i=1}^k \) are Voronoi regions on \(S \) defined by their constrained mass centroids.
Proposition: Let \(\{ z_i \}_{i=1}^k \subseteq S \subseteq \mathbb{R}^3 \) and \(\{ V_i \}_{i=1}^k \) a tesselation of \(S \). Define the energy functional or the distortion value for \(\{(z_i, V_i)\}_{i=1}^k \) by

\[
\mathcal{F}(\{(z_i, V_i)\}_{i=1}^k) = \sum_{i=1}^k \int_{x \in V_i} \rho(x) \| x - z_i \|^2 \, dx.
\]

A necessary condition for \(\mathcal{F} \) to be minimized is that \(\{(z_i, V_i)\}_{i=1}^k \) is a constrained centroidal Voronoi tesselation of \(S \).
Centroidal Voronoi Tessellations on Meshes

Lloyd’s Algorithm (again)

1. Compute randomly k points $z_i \in \Omega$;
Lloyd’s Algorithm (again)

- (1) Compute randomly k points $z_i \in \Omega$;
- (2) Compute the Voronoi regions \hat{V}_i determined by the points z_i;
Lloyd’s Algorithm (again)

1. Compute randomly k points $z_i \in \Omega$;
2. Compute the Voronoi regions \hat{V}_i determined by the points z_i;
3. Calculate the constrained centroids z_i^* of \hat{V}_i and set $z_i = z_i^*$;
Lloyd’s Algorithm (again)

(1) Compute randomly k points $z_i \in \Omega$;
(2) Compute the Voronoi regions \hat{V}_i determined by the points z_i;
(3) Calculate the constrained centroids z_i^* of \hat{V}_i and set $z_i = z_i^*$;
(4) If some stop criteria is met for this new set of points z_i, stop. Otherwise, return to step 2.
The surfaces will be discretized by half-edge meshes.
To get a good first approximation for the centroids, we have to pick them according to the density function ρ:

1. Get randomly a face f, calculate its center f_c and a random number f_r;
Step 1 - Initializing Centroids

To get a good first approximation for the centroids, we have to pick them according to the density function ρ:

- (1) Get randomly a face f, calculate its center f_c and a random number f_r;
- (2) If $\rho(f_c) \times \text{area}(f) \leq f_r$ then reject f_c. Otherwise, set f_c to be a centroid for the first iteration (the comparison is made after a normalization of the density);
Step 1 - Initializing Centroids

To get a good first approximation for the centroids, we have to pick them according to the density function ρ:

1. Get randomly a face f, calculate its center f_c and a random number f_r;
2. If $\rho(f_c) \times \text{area}(f) \leq f_r$ then reject f_c. Otherwise, set f_c to be a centroid for the first iteration (the comparison is made after a normalization of the density);

Time: Random variable.
Step 1 - Initializing Centroids

Initialization of the centroids on a paraboloid, with $\rho \equiv 1$
Step 1 - Initializing Centroids
Step 2 - Computing Voronoi Regions

(1) For each face f, calculate the distance of its center to all the z_i’s. Put f on the patch of the z_i with minimum distance;
Step 2 - Computing Voronoi Regions

- (1) For each face f, calculate the distance of its center to all the z_i's. Put f on the *patch* of the z_i with minimum distance;

- This step will tessellate the set of faces in *k* regions corresponding to the *k* centroids;
Step 2 - Computing Voronoi Regions

- (1) For each face \(f \), calculate the distance of its center to all the \(z_i \)'s. Put \(f \) on the *patch* of the \(z_i \) with minimum distance;

- This step will tessellate the set of faces in \(k \) regions corresponding to the \(k \) centroids;

- **Time:** \(O(kn) \).
Now, for all patches V_i (set of faces) we wish to calculate their centroids:

1. For each face $f \in V_i$ calculate

$$f_c \times \text{area}(f) \times \rho(f) \approx \int_f y \rho(y) dy;$$
Step 3 - Calculating Centroids

Now, for all patches V_i (set of faces) we wish to calculate their centroids:

- (1) For each face $f \in V_i$ calculate

 $$f_c \ast \text{area}(f) \ast \rho(f) \approx \int_f y \rho(y) dy;$$

- (2) Sum over all faces:

 $$\sum_{f \in V_i} f_c \ast \text{area}(f) \ast \rho(f) \approx \int_{V_i} y \rho(y) dy;$$
Step 3 - Calculating Centroids

Now, for all patches V_i (set of faces) we wish to calculate their centroids:

1. For each face $f \in V_i$ calculate
 \[f_c \ast \text{area}(f) \ast \rho(f) \approx \int_f y \rho(y) \, dy; \]

2. Sum over all faces:
 \[\sum_{f \in V_i} f_c \ast \text{area}(f) \ast \rho(f) \approx \int_{V_i} y \rho(y) \, dy; \]

3. Do the same to calculate
 \[\sum_{f \in V_i} \text{area}(f) \ast \rho(f) \approx \int_{V_i} \rho(y) \, dy; \]
(4) Compute
\[
\frac{\sum_{f \in V_i} f_c \times \text{area}(f) \times \rho(f)}{\sum_{f \in V_i} \text{area}(f) \times \rho(f_c)}
\]
(approximate centroid of \(V_i\)).
Step 3 - Calculating Centroids

- (4) Compute

\[
\left(\frac{\sum_{f \in V_i} f_c \cdot \text{area}(f) \cdot \rho(f)}{\sum_{f \in V_i} \text{area}(f) \cdot \rho(f_c)} \right)
\]

(approximate centroid of \(V_i \)).

- **Cost:** \(O(n) \).
Step 3 - Calculating Centroids

Update of the centroids
Step 3.5 - Projecting Centroids

(1) For each centroid calculated on step 3, look for the face that is closest to it and set its center to be the projected centroid.
Step 3.5 - Projecting Centroids

- (1) For each centroid calculated on step 3, look for the face that is closest to it and set its center to be the projected centroid.

- **Cost:** $O(n)$.
Final result, with $\rho(x, y, z) = e^{-40x}$
Final result, with $\rho(x, y, z) = e^{-40x}$ (other side).
\[\rho(x) = \text{discrete mean curvature} \ [1] \]
$\rho(x) = \text{discrete mean curvature}$ [1]
Centroidal Voronoi Tessellations on Meshes

Definition and Applications
Lloyd's Algorithm
Normal Clustering
Mixing Both Approaches
Flooding Approach
Future Work
References

Results

Thiago’s Mesh with $\rho \equiv 1$
Results

Leo’s Mesh with $\rho \equiv 1$
In [1], the authors proposed a way to generalize the concept of centroid, taking into account the normals of the surface at the points. They created the *proxies*:

- Given a partition $R = \{ R_i \}_{i=1}^n$ of a triangulated surface S, the *proxy* of each region is a pair $P_i = (X_i, N_i)$, where $X_i \in R_i$ and N_i is a normal vector that *best* represents the normals on the region.
In [1], the authors proposed a way to generalize the concept of centroid, taking into account the normals of the surface at the points. They created the *proxies*:

- Given a partition \(R = \{ R_i \}_{i=1}^{n} \) of a triangulated surface \(S \), the *proxy* of each region is a pair \(P_i = (X_i, N_i) \), where \(X_i \in R_i \) and \(N_i \) is a normal vector that *best* represents the normals on the region.

- Given a face \(f \), we represent it by its center \((f_c) \) and the normal \((f_N) \) of the piecewise linear surface on \(f \).
Given a region $V_i \subseteq S$ and its corresponding proxy P_i, the $L^{2,1}$ energy functional of (V_i, P_i) is defined by

$$L^{2,1}(V_i, P_i) = \int_{x \in V_i} \rho(x) \| n(x) - n_i \|^2 \, dx,$$
VSA Energy

- Given a region $V_i \subseteq S$ and its corresponding proxy P_i, the $\mathcal{L}^{2,1}$ energy functional of (V_i, P_i) is defined by

$$\mathcal{L}^{2,1}(V_i, P_i) = \int_{x \in V_i} \rho(x) \| n(x) - n_i \|^2 \, dx,$$

- **Definition:** Given a number k of proxies and an input surface S, we call **optimal shape proxies** a set P of proxies P_i associated to regions V_i of a partition R of S that minimizes the total distortion:

$$E(R, P) = \sum_{i=1}^{k} \mathcal{L}^{2,1}(V_i, P_i)$$
"Lloyd’s" Algorithm for Normal Clustering

(1) Compute randomly k faces $f_i \in S$ and set their centers and their normals to be the proxies $P_i = (X_i, N_i)$;
"Lloyd’s” Algorithm for Normal Clustering

1. Compute randomly k faces $f_i \in S$ and set their centers and their normals to be the proxies $P_i = (X_i, N_i)$;
2. Compute the "Voronoi regions" V_i determined by the proxies P_i in the following way: get the normal of each face f and set f to be in the region determined by the proxy that has the closest normal.
“Lloyd’s” Algorithm for Normal Clustering

(3) For each new V_i, set the constrained centroid of V_i to be X_i and the average normal

$$
N_i = \frac{\sum_{f \in V_i} \rho(f) \cdot f_N \cdot \text{area}(f)}{\sum_{f \in V_i} \rho(f) \cdot \text{area}(f)} \approx \frac{\int_{V_i} \rho(x) n(x) dx}{\int_{V_i} \rho(x) dx}.
$$

Note: This new proxies minimize, for each V_i, the $\mathcal{L}^{2,1}(V_i, P_i)$ energy ([1]).
Centroidal Voronoi Tessellations on Meshes

"Lloyd’s" Algorithm for Normal Clustering

1. For each new V_i, set the constrained centroid of V_i to be X_i and the average normal

$$N_i = \frac{\sum_{f \in V_i} \rho(f) \cdot f_N \cdot \text{area}(f)}{\sum_{f \in V_i} \rho(f) \cdot \text{area}(f)} \approx \frac{\int_{V_i} \rho(x)n(x)dx}{\int_{V_i} \rho(x)dx}.$$

Note: This new proxies minimize, for each V_i, the $L^{2,1}(V_i, P_i)$ energy ([1]).

2. If some stop criteria is met for this new set of points z_i, stop. Otherwise, return to step 2.

Definition and Applications
Lloyd's Algorithm
Normal Clustering
Mixing Both Approaches
Flooding Approach
Future Work
References
Normal clustering with $\rho \equiv 1$
Mixing both approaches

We propose a new energy functional that takes into account both informations of positions and normals given by the proxies.

\[E(\{(P_i, V_i)\}_{i=1}^k) = \sum_{i=1}^k \alpha \mathcal{F}(\{X_i, V_i\}) + (1 - \alpha) \mathcal{L}^{2,1}(V_i, P_i) = \]

\[\sum_{i=1}^k \alpha \int_{x \in V_i} \rho(x) \| x - z_i \|^2 \, dx + (1 - \alpha) \int_{x \in V_i} \rho(x) \| n(x) - n_i \|^2 \, dx. \]

- Here we have to normalize the first energy to have the same magnitude of the second.
We propose a new energy functional that takes into account both informations of positions and normals given by the proxies.

\[\mathcal{E}(\{(P_i, V_i)\}_{i=1}^k) = \sum_{i=1}^{k} \alpha \mathcal{F}(X_i, V_i) + (1 - \alpha) \mathcal{L}^{2,1}(V_i, P_i) = \]

\[\sum_{i=1}^{k} \alpha \int_{x \in V_i} \rho(x) \| x - z_i \|^2 \, dx + (1 - \alpha) \int_{x \in V_i} \rho(x) \| n(x) - n_i \|^2 \, dx. \]

- Here we have to normalize the first energy to have the same magnitude of the second.
- The updating of the regions and the proxies is done in the same way already described.
Mixed Approach with $\alpha = 0$ and $\rho \equiv 1$
Results

Mixed Approach with $\alpha = 1$ and $\rho \equiv 1$
Results

Mixed Approach with $\alpha = 0.5$ and $\rho \equiv 1$
Results

Centroidal Voronoi Tessellations on Meshes

Definition and Applications
Lloyd's Algorithm
Normal Clustering
Mixing Both Approaches
Flooding Approach
Future Work
References

Centroidal Voronoi Tessellations on Meshes
Due to the problems observed in the last examples, we desire a method that keep the Voronoi regions connected and takes into account the geodesic distance.
Flooding Approach

- Due to the problems observed in the last examples, we desire a method that keep the Voronoi regions connected and takes into account the geodesic distance.

- Given the faces that discretize the surface, we’ll work with the *dual graph*, i.e., the graph with nodes being the center of the faces and edges describing the neighborhood of each face.
For each centroid, grow a flooding regions with Dijkstra’s Algorithm. All faces will be associated to the closest centroid, respecting the ”discretized surface metric”. We’ll call the set of faces associated to a centroid a *patch*.
For each centroid, grow a flooding regions with Dijkstra’s Algorithm. All faces will be associated to the closest centroid, respecting the "discretized surface metric". We’ll call the set of faces associated to a centroid a *patch*.

Cost: $O(V \log V) = O(n \log n)$.
Calculating regions with geodesic metric, $\rho \equiv 1$.
Flooding - Update Patch Centroids

For each face f in patch P, calculate

$$r(f) = \max_{\tilde{f} \in P} d(f, \tilde{f})$$

Cost: $O(n^2 \log n)$.
Flooding - Update Patch Centroids

For each face f in patch P, calculate

$$r(f) = \max_{\tilde{f} \in P} d(f, \tilde{f}).$$

Set the center c of the patch P to be

$$c = \arg \left(\min_{f \in P} r(f) \right).$$
Flooding - Update Patch Centroids

- For each face f in patch P, calculate
 \[r(f) = \max_{\tilde{f} \in P} d(f, \tilde{f}). \]

- Set the center c of the patch P to be
 \[c = \arg \left(\min_{f \in P} r(f) \right). \]

- **Cost:** $O(n^2 \log n)$.
Centroidal Voronoi Tessellations on Meshes

Definition and Applications

Lloyd's Algorithm

Normal Clustering

Mixing Both Approaches

Flooding Approach

Future Work

References

Results

Final result with geodesic metric, $\rho \equiv 1$.
Use better methods to calculate geodesics (Fast Marching, [2]).
Use better methods to calculate geodesics (Fast Marching, [2]).

Use a Gradient Descent approach to perform geodesic calculations ([2]).
Future Work

- Use better methods to calculate geodesics (Fast Marching, [2]).
- Use a Gradient Descent approach to perform geodesic calculations ([2]).
- Explore more the geodesic approach, including densities.
Future Work

Alternatives to discretization:
1) continuous centroids;
2) continuous regions.
Future Work

- Alternatives to discretization:
 1) continuous centroids;
 2) continuous regions.
- Post process the results to avoid zig zag border.
Future Work

- Alternatives to discretization:
 1) continuous centroids;
 2) continuous regions.
- Post process the results to avoid zig zag border.
- Use the results of this work to current research projects (texture atlas construction and segmentation of the viewing sphere to work with panoramas). The flexibility of metrics and densities will be useful.
Future Work

- Refine region borders, simplify interiors.
Future Work

- Refine region borders, simplify interiors.
- Avoid reprocessing converged regions.
References

Thanks a lot!

Home page: http://www.impa.br/leo-ks/comp_geometry

- **Centroidal Voronoi Tessellations on Meshes**
- **Definition and Applications**
- **Lloyd's Algorithm**
- **Normal Clustering**
- **Mixing Both Approaches**
- **Flooding Approach**
- **Future Work**
- **References**