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A Martingale Approach to Metastability

We introduce in Definition 5.1 below the notion of scaling limit of a sequence
of metastable Markov chains. To motivate this definition, we examine in the
first section of this chapter the asymptotic behavior of a sequence of birth and
death chains. The statement and the proof of the scaling limit of the birth
and death chain are postponed to Section 5. In Section 2 we introduce the
metastable Markov chains and we sketch in Section 3 and 4 the proof of the
scaling limit of these chains.

1 A Birth and Death Chain

We examine in this section the asymptotic behavior of a sequence of birth and
death chains which is reversible with respect to a Gibbs measure associated
to a logarithmic energy. This sentence will be clarified as we introduce the
stationary measure of the chain in (1.4). A

The energy. Fix a < b in R and consider a nonnegative, continuously dif-
ferentiable function H : [a, b] → R+. Assume that H vanishes only at a finite
number of points denoted by a1 < a2 < · · · < am, m ≥ 2:

H(x) = 0 if and only if x ∈ A := {a1, . . . , am} .

We do not exclude the possibility that H vanishes at the boundary points a,
b. δ0

αi

wi

Fix δ > 0 such that ai+1 − ai > 4δ for 1 ≤ i < m. Assume that there exist
αi > 1, and 0 < δ0 < δ such that

H(x) = |x− ai|
αi for |x− ai| ≤ 2δ0 , 1 ≤ i ≤ m. (1.1)

By the continuity of H , there exists δ1 > 0 such that

H(x) > δ1 for x 6∈

m⋃

i=1

(ai − δ0, ai + δ0) . (1.2)
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92 5 A Martingale Approach to Metastability

In particular, for any increasing sequence JN such that 1 ≪ JN ≪ N ,

wi := lim
N→∞

1

Nαi

JN∑

k=1

1

H(ai + k/N)
= lim

N→∞

1

Nαi

JN∑

k=1

1

H(ai − k/N)
< ∞ .

(1.3)
Of course, if ai is one of the boundary points, we only assume the existence of
the limit which makes sense. Here and below for two positive, non-decreasing
sequences JN , MN , JN ≪ MN means that

lim
N→∞

JN
MN

= 0 .

≪
α
bi

The configuration space. Let α = max{αi : 1 ≤ i ≤ m}, and assume that
there are at least two exponents αi equal to α:

L :=
∣∣{i : αi = α}

∣∣ ≥ 2 ,

where |A| indicates the cardinality of a finite set A. Denote by b1 < b2 < · · · <
bL the elements of {a1, . . . , am} whose associated exponents are α.EN

ζNi
HN

Let EN = {k/N : [aN ] ≤ k ≤ [bN ]} be the configuration space, let
ζNi be the approximation of the critical point ai, ζ

N
i = [aiN ]/N , and let

HN : EN → R+ be the approximation of the function H , defined by

HN (ζNi ) = N−αi , HN (ζNi ± k/N) = H(ai ± k/N) , 1 ≤ k ≤ [2δ0N ] ,

and HN (η) = H(η) otherwise.

ZN

The stationary state. Define a probability measure πN on EN by

πN (η) =
1

ZN

1

HN (η)
, η ∈ EN , (1.4)

where ZN is the normalizing constant. The measure πN corresponds to the
Gibbs measure associated to the energy logHN at temperature 1.

By assumption (1.1) and by definition (1.3),

lim
N→∞

ZN

Nα
=

L∑

i=1

{
1 + σiwi

}
, (1.5)

where σi = 1 if bi ∈ {a, b} and σi = 2 otherwise.σi

ξNi
ℓN

E
i
N

Let {ℓN : N ≥ 1} be an increasing sequence of positive integers such that
1 ≪ ℓN ≪ N . For each 1 ≤ i ≤ L, let ξNi = [biN ]/N and define the subsets
E
i
N of the configuration space EN by

E
i
N :=

{
ξNi −

ℓN
N

, . . . , ξNi +
ℓN
N

}
.
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1 A Birth and Death Chain 93

Here again, if b1 = a, E1
N is the set {ξN1 , . . . , ξN1 + ℓN/N}, with an analogous

convention if bL = b. Since N−1ℓN → 0, for N large enough, Ei
N ∩ E

j
N = ∅

for all i 6= j. Let

EN =

L⋃

i=1

E
i
N , ∆N := EN \ EN .

Since ℓN → ∞, by (1.3) and (1.5), for all 1 ≤ i ≤ L,

lim
N→∞

πN (∆N ) = 0 and lim
N→∞

πN (Ei
N ) =

m(bi)∑L
j=1 m(bj)

, (1.6)

where m(bi) = 1+σi wi. The stationary measure πN is therefore concentrated
on the sets E i

N . EN

∆N

m(bi)

The dynamics. Fix a positive function Φ : [a, b] → R+ bounded above and
below by a strictly positive constant:

0 < δ2 ≤ Φ(η) ≤ δ−1
2 .

This assumption is not necessary but we do not seek optimal conditions.
Consider a birth and death chain {ηN(t) : t ≥ 0} on EN with jump rates
given by

RN (η, η +N−1) = Φ(η) ,

RN (η +N−1, η) =
πN (η)Φ(η)

πN (η +N−1)

for [aN ]/N ≤ η < ([bN ]− 1)/N , and RN (η, ξ) = 0 if |ξ − η| 6= 1/N . Clearly,
ηN (t) is Markov chain, reversible with respect to the probability measure πN .
It is called a birth and death chain because it evolves on Z and it may jump
only to the nearest neighbors. It follows from the assumptions (1.1), (1.2) that
the jump rates RN (η, ξ) to nearest neighbors sites are bounded below by a
positive constant and bounded above by a finite constant. Φ

RNAsymptotic dynamics. Define the subsets FN (ζNi ), 1 ≤ i ≤ m, of the
configuration space by

FN (ζNi ) :=
{
ζNi −

ℓN
N

, . . . , ζNi +
ℓN
N

}
,

with the same convention as the one adopted for the sets E
i
N if one of the

configurations ζNi is an endpoint of the set EN . Let

FN =

m⋃

i=1

FN(ζNi ) , ∆2
N := EN \ FN .

In view of the definition of the jump rates RN (η, ξ), inside the sets FN (ζNi )
the chain has a drift towards the configuration ζNi which increases as the chain
approaches the configuration ζNi . FN (ζNi )

α(ai)
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94 5 A Martingale Approach to Metastability

Let FN (ζNi ) be the interval { ζNi −[δ0N ]/N , . . . , ζNi +[δ0N ]/N}, FN (ζNi ) ⊂
FN (ζNi ), and denote by α(ai) the exponent associated to ai by (1.1). Hence,
H(x) = |x − ai|

α(ai) in a small neighborhood of ai, 1 ≤ i ≤ m. Inside the set
FN (ζNi ) the chain has a drift towards the point ζNi . For this reason we call
the set FN (ζNi ) a well or a trap. We show in (6.2) below that it takes a time of
order Nα(ai)+1 for the chain to reach the boundary of the set FN (ζNi ) when
it starts from a configuration in FN (ζNi ). This property allows us to call the
exponent α(ai) the depth of the well FN (ζNi ). The configuration ζNi is called
the bottom or the center of the well.Aj

N

AN

θj

Let θ1 < θ2 < · · · < θκ be the possible depths of the traps FN (ζNi ), i.e., the
values of the exponents αi introduced in (1.1): {θ1, . . . , θκ} = {α1, . . . , αm}.
In particular, θκ = α. Let Aj = {aj1, . . . , a

j
mj

}, 1 ≤ j ≤ κ, be the set of points
in A whose exponents are equal to θj ,

Aj = {aj1, . . . , a
j
mj

} = {a ∈ A : α(a) = θj} .

Note that mκ = L and that m1 + · · · + mκ = m. Let Aj
N be the discrete

approximation of the set Aj ,

Aj
N = {[aj1N ]/N, . . . , [ajmj

N ]/N} ,

and let AN = A1
N ∪ · · · ∪ Aκ

N .
The previous considerations suggest that the chain ηN (t) has a scaling

limit in each time scale N2 ≪ Nθ1+1 ≪ · · · ≪ Nθκ+1. On the smallest one,
N2, outside of the sets FN (ζNi ), the chain behaves as a diffusion with a drift
pointing towards the set AN . The drift increases as the diffusion gets closer to
the set AN . When the diffusion reaches one of the traps FN (ζNi ) it is absorbed
there since it takes the chain a time of order at least Nθ1+1 to exit any well.
This informal description depicts the scaling limit of the chain in the diffusive
time scale. A more profound analysis would show the convergence of the chain
to a diffusion on the interval [a, b] which is absorbed at A and is reflected at
the boundary if the endpoint of the interval does not belong to A.

We turn to the scaling limit of the chain in the next time scale, Nθ1+1.
If the chain starts from a configuration which does not belong to any of the
wells FN (ζNi ), in view of the conclusions of the previous paragraph, in the
time scale Nθ1+1 the chain immediately reaches one of the wells. We have
therefore to analyze the scaling limit when the chain starts from one of these
wells.

We show in (??) that if the chain starts from a configuration ζ inside a
well FN (ζNi ), with a probability asymptotically close to 1, it visits the bottom
of the well FN (ζNi ) before it reaches any other well. We may therefore assume
that the initial state belongs to AN .

By (6.2), if the chain starts from a configuration ζ in AN \A1
N , it remains

in the well FN (ζ) for ever in the time scale Nθ1+1. The configurations in the
set AN \ A1

N act therefore as absorbing points for the asymptotic dynamics
in the time scale Nθ1+1.
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1 A Birth and Death Chain 95

Assume that the chain starts from a configuration ζNk ∈ A1
N . We have seen

that in this case the process hits the boundary of the set FN (ζNk ) after a time
of order Nθ1+1. When the chain reaches this boundary, it starts evolving as
a diffusion which is trapped after a time of order N2, much smaller than the
time Nθ1+1, either in the same well FN (ζNk ) or in a neighboring well FN (ζNk−1),

FN (ζNk+1). For the purpose of this analysis we denote these neighbor-hing wells
by F

′.
If the chain is trapped in the the original well FN (ζNk ), it waits there a new

time of order Nθ1+1 until it hits again the boundary of the set FN (ζNk ). On
the other hand, if it enters a neighbor well F′, deeper than the well FN (ζNk ),
in the time scale Nθ1+1 the chain is trapped in this well. If the well F′ is as
deep as FN (ζNk ), the same analysis carried out for the well FN(ζNk ) applies to
this new trap.

These considerations show that on the time scale Nθ1+1 the chain visits
the wells whose centers are in A1

N and it is trapped in the deeper wells whose
centers are in AN \A1

N . πk
N

Consider the chain reflected in the set FN (ζNk ). This means that forbid
jumps from FN (ζNk ) to its complement FN (ζNk )c and jumps from FN (ζNk )c to
FN (ζNk ), obtaining a birth and death chain on FN (ζNk ). By (??), the stationary
measure of this chain, denoted by πk

N , is the stationary measure of the original
chain conditioned to the set FN (ζNk ):

πk
N (ξ) =

πN (ξ)

πN (FN (ζNk ))
, ξ ∈ FN (ζNk ) . (1.7)

By (??) the process is reversible with respect to this measure.
It is shown in Lemma 5.6 below that the relaxation time of the reflected

chain is of order N2. Therefore, in view of (??), in a time of order N2 the
state of the reflected chain is very close to the stationary state πk

N . As in (??),
we refer to this proximity saying that the chain equilibrated or thermalized in
FN (ζNk ). Since this time is much smaller than the time needed to reach the
boundary of the set FN (ζNk ), before the chain exits the well it has reached a
state very close to the stationary state, and for every purpouse we may assume
that it has started from the stationary state.

With respect to the stationary state πk
N , the set of boundary points of the

well has a measure which vanishes as N ↑ ∞. For this reason we may call this
set a rare event. It has been established that in the realm of Markov chains
the hitting time of rare events have asymptotically exponential distributions.
Thus, the chain reaches the boundary of a well at an exponential time of order
Nθ1+1. Starting from the boundary of a well, the amount of time it takes for
the chain to be absorbed by a new well is of order N2, a negligible amount
compared to the time Nθ1+1 needed to reach the boundary. We expect, there-
fore, that on the time scale Nθ1+1 the process visits the wells in A1

N at a
succession of exponential times, i.e., that the chain converges to an A-valued
Markov chain, whose points in A \A1 are absorbing.
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96 5 A Martingale Approach to Metastability

A similar analysis at the longer time scale Nθ2+1 leads to the conclusion
that the chain should converge to an (A \ A1)-valued chain, whose points
in A \ [A1 ∪ A2] are absorbing. In this time scale Nθ2+1, the shallow traps
FN (ζNk ), ζNk ∈ A1

N , are not seen since the time spent on these wells are of the
order Nθ1+1.

This investigation can be pursued in each time scale Nθj+1 with similar
conclusions. For each j, on the time scale Nθj+1 the chain converges to an
[Aj ∪ · · · ∪Aκ]-valued chain, whose points in [Aj+1 ∪ · · · ∪Aκ] are absorbing.
In the last time scale, Nα+1, only the deepest traps are seen and the chain
converges to an Aκ-valued chain.

2 Metastable Markov Chains

We introduce in this section the concept of scaling limit of metastable Markov
chains. The example of the previous section will help to understand the notion
of metastable Markov chain.

Let EN be a sequence of countable sets and consider a sequence {ηN (t) :
t ≥ 0} of EN -valued continuous-time, irreducible, positive-recurrent Markov
chains. Denote by πN the unique stationary probability measure of the chain
ηN (t).Pη

Eη
Let Pη = PN

η , η ∈ EN , be the probability measure on D(R+, EN ) induced

by the Markov chain {ηN(t) : t ≥ 0} starting from η. Expectation with respect
to Pη is denoted by Eη.SL

Consider a finite number of disjoint subsets E
1
N , . . . ,EL

N , L ≥ 2, of EN :
E
x
N ∩ E

y
N = ∅, x 6= y. The sets E

x
N have to be interpreted as the wells of

the Markov chains ηN (t). Let SL = {1, . . . , L}, let EN = ∪x∈SL
E
x
N and let

∆N = EN \ EN so that

EN = E
1
N ∪ · · · ∪ E

L
N ∪ ∆N . (2.1)

The set ∆N is introduced to separate the wells Ex
N . It is negligible in the sense

that the amount of time the process ηN (t) spends in DeltaN is much smaller
than the time needed to observe a jump from one well to another.EN

Denote by ηE(t) the trace of the process ηN (t) on the set EN , and by
(REη

N )(t) the process which records the last site visited by ηN (t) in the set
EN , as defined in (1.5).

Denote by Ψ = ΨN : EN 7→ SL ∪ {N}, the projection given by

Ψ(η) =

L∑

x=1

x1{η ∈ E
x
N} + N1{η ∈ ∆N} .

Let {XN(t) : t ≥ 0} (resp. {XL
N(t) : t ≥ 0}, {X̂N (t) : t ≥ 0}) be the

stochastic process on SL∪{N} (resp. SL) defined by XN (t) = Ψ(ηN (t)) (resp.
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3 The Martingale Approach 97

XL
N (t) = Ψ(ηE(t)), X̂N (t) = Ψ((REη

N )(t))). Besides trivial cases, XN (t) is
not Markovian.

Note that XL
N (t) is the trace of XN (t) on the set SL and that X̂N (t) is

the process which records the last site in SL visited by XN (t).

Definition 5.1. Let νN be a sequence of probability measures on EN such that

νN ◦Ψ−1 converges to a probability measure ν on SL. The sequence of Markov

chains {ηN(t) : t ≥ 0} is said to have a scaling limit starting from the initial

state νN if there exist

(a) An increasing sequence θN , θN ≫ 1,
(b) A partition (2.1) of the configuration space EN , and

(c) A SL-valued Markov chain X(t) whose distribution we denote by Px, x ∈
SL,

such that the measure PνN ◦X−1
N , XN (t) = XN (tθN ) = Ψ(ηN (tθN )), converges

in the soft topology to Pν =
∑

x∈SL
ν(x)Px.

Note that the probability measure νN is defined on EN and not on EN .
The sequence θN is called the time scale, the sets E

x
N the metastable sets

and the Markov chain X(t) the asymptotic dynamics of the scaling limit. An
example of measure νN which will appear in the next chapters is the Dirac
measure concentrated on a configuration which belongs to the same well for
all N : νN = δηN , ηN ∈ E

x
N for all N ≥ 1.

3 The Martingale Approach

The proof of the scaling limit of a sequence of chains is based on the martingale
characterization of Markov chains and is divided in four steps.

Step 1: We prove the convergence in the Skorohod topology of the trace of
XN (t) on SL to a Markov chain X(t).

Step 2: We show that the time spent by the chain ηN (t) on the set ∆N in the
time scale θN is negligible.

Step 3: Let (RLXN )(t) be the process which records the last site visited by
XN (t) in the set {1, . . . , L}, as defined in (1.5). By Theorem 5.3 and by the
results proved in Step 1 and 2, the process (RLXN )(t) also converges in the
Skorohod topology to X(t).

Step 4: We show that the assumptions of Proposition 4.12 are fulfilled. The
convergence in the soft topology of XN (t) to X(t) follows then from Step 3
and from the assertion of Proposition 4.12.

XL
N (t)

ηE(t)
We conclude this section with a sketch of the proof of Step 1. Fix a sequence

of probability measures νN on EN . Denote by XL
N (t) the trace of the process

XN (t) on the set SL. Clearly,

XL
N (t) = Ψ(ηE(tθN )) . (3.1)
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98 5 A Martingale Approach to Metastability

As usual, the proof of the convergence of XL
N (t) is divided in two steps.

We first show that the sequence of measures PνN ◦ (XL
N )−1 is a tight sequence

in D(R+, SL). Actually, in all examples of this book, the arguments used to
prove tightness of the sequence XL

N (t) are identical to the ones needed to
characterize the limit points of the sequence XL

N (t).
Once tightness has been established, it remains to prove the uniqueness

of the limit points. This part of the proof requires the sequence of chains to
fulfill two conditions: the chains need to be locally ergodic and the averaged
jump rates of the trace process ηE need to converge.

Averaged jump rates. Denote by REN the jump rates of the trace process ηE(t).
The averaged jump rates rN (x, y), x, y ∈ SL, of η

E(t) are defined by

rN (x, y) =
1

πN (Ex
N )

∑

η∈Ex
N

πN (η)REN (η,Ey
N ) , (3.2)

where REN (η,Ey
N ) =

∑
ξ∈E

y

N
REN (η, ξ). We will assume that the sequences of

averaged jump rates multiplied by θN converge:

lim
N→∞

θN rN (x, y) = r(x, y) for all x, y ∈ SL . (3.3)

REN

Local ergodicity. Consider a sequence of functions G = GN : EN → R, the
functions Gy(η) = REN (η,Ey

N ), for example. We have seen in the previous
section that the birth and death chain equilibrates in each well Ex

N before
reaching another well Ez

N . Hence, by the ergodic theorem, we expect the time
average of G(ηE(s)) in the portion of time where the chain visits the well
E
x
N to be very close to the corresponding time average of the mean value,

with respect to the stationary measure πN , of the function G(η) in the set
E
x
N . This is one of the fundamental ideas of the approach presented in this

book to derive the scaling limit of metastable Markov chains. This idea has
some similitudes with the “one and two blocks” estimates of the theory of
scaling limit of interacting particles systems which permits to replace a local
function by a function of the empirical measure using the local ergodicity of
the dynamics. We refer to Kipnis and Landim [1999] for an exposition of this
theory and of the one and two blocks estimates.

To formulate a rigorous version of the ideas presented in the previous
paragraph, for a function G : EN → R, let Ĝ : EN → R be the averaged
function given by

Ĝ(η) :=
1

πN (Ex
N )

∑

ξ∈Ex
N

πN (ξ)G(ξ) for η ∈ E
x
N .

If we denote by P the sigma-algebra of subsets of EN generated by the par-
tition {Ex

N : 1 ≤ x ≤ L}, the function Ĝ corresponds to the conditional
expectation of G given P :
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3 The Martingale Approach 99

Ĝ = EπN
[G | P ] .

The function Ĝ is constant on each well Ex
N . It can therefore be expressed as

a function of the projection Ψ , Ĝ(η) = g(Ψ(η)) for some function g : SL → R.
The sequence θN introduced in Definition 5.1 represents the time scale

in which the chain jumps among the wells. The assumption that the trace
process ηE(t) mixes on each well Ex

N before reaching another well signifies
therefore that the trace process ηE(t) mixes locally on each well Ex

N in the
time scale θN . If this occurs, we expect that for every sequence of uniformly
bounded function GN : EN → R and every t > 0,

lim
N→∞

EνN

[ ∣∣∣
∫ t

0

{
GN (ηE(sθN ))− ĜN (ηE(sθN ))

}
ds

∣∣∣
]

= 0 . (3.4)

In the characterization of the limit points of the sequence XL
N the full

strength of condition (3.4) is not needed. It is enough that (3.4) holds for the
jump rates of the trace process. By the definition (3.2) of the averaged jumps
rates rN (x, y),

R̂EN (η,Ey
N ) = rN (Ψ(η), y) .

The proof of the uniqueness of limits of the sequence XL
N requires that for

each t > 0

lim
N→∞

EνN

[ ∣∣∣
∫ t

0

θN

{
REN (ηE(sθN ),Ey

N )− rN (XL
N (sθN ), y)

}
ds

∣∣∣
]

= 0 .

(3.5)

Theorem 5.2. Let EN be a sequence of countable spaces and let {ηN(t) :
t ≥ 0} be a sequence of EN -valued, irreducible and positive-recurrent Markov

chains. Consider the partition (2.1) of the state spaces EN and let ηE(t) be

trace of ηN (t) on EN . Define the projection XL
N (t) by (3.1). Assume that

conditions (3.5) and (3.3) are in force. Then, the sequence of processes XL
N

has at most one limit point which is a SL-valued Markov chain with jump

rates given by the right hand side of (3.3).

Proof. Let νLN = νN ◦ Ψ−1 be the projection of the measure νN on SL.
Assume that the process XL

N (t) starting from νLN converges in the Skoro-
hod topology to a process X(t). In view of Theorem 2.2, to characterize the
distribution of X(t) as the distribution of the SL-valued Markov chain whose
jump rates r(x, y) are given by the right hand side of (3.3), it is enough to
show that X(t) solves the martingale problem associated to the generator L
whose jump rates are r(x, y): For every function F : SL → R,

MF (t) = F (X(t)) − F (X(0)) −

∫ t

0

(LF )(X(s)) ds

is a martingale. We may write this martingale as
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100 5 A Martingale Approach to Metastability

F (X(t)) − F (X(0)) −

∫ t

0

L∑

y=1

r(X(s), y) [F (y) − F (X(s))] ds . (3.6)

Denote by LE the generator of the trace process ηE(t). By (7.2), for every
bounded function G : EN → R,

MG
N (t) = G(ηE(tθN )) − G(ηE(0)) −

∫ t

0

θN (LEG)(ηE (sθN )) ds

is a martingale. In particular, taking G = F ◦ Ψ for a function F : SL → R,
we have that

MN(t) = F (XL
N (t)) − F (XL

N (0)) −

∫ t

0

θN [LE(F ◦ Ψ)](ηE(sθN )) ds (3.7)

is a martingale.
Recall that we denote by REN the jump rates of the trace process ηE(t).

With this notation, we have that

[LE(F ◦ Ψ)](η) =
∑

ξ∈EN

REN (η, ξ) {(F ◦ Ψ)(ξ) − (F ◦ Ψ)(η)} .

We may write this sum as

L∑

y=1

[F (y)− F (Ψ(η))]
∑

ξ∈E
y

N

REN (η, ξ) =

L∑

y=1

[F (y)− F (Ψ(η))]REN (η,Ey
N ) ,

and the integral part of the martingale MN(t) becomes

θN

∫ t

0

L∑

y=1

[F (y)− F (XL
N (s))]REN (ηE (sθN ),Ey

N ) ds . (3.8)

If we compare this expression with the integral part of the martingale MF (t)
appearing in (3.6), we see that to complete the argument we need to replace

θN REN (ηE(sθN ),Ey
N ) by r(Ψ(ηE (sθN )),Ey

N ) .

The first step in the proof of this replacement consists in closing the equa-
tion in terms of the process XL

N (t) using the local ergodicity. While the first
two terms of the martingale MN(t) introduced in (3.7) are expressed in terms
of the projection XL

N (t), the integral part is a function of the trace process
ηE(t) and not of its projection XL

N (t).
By assumption (3.5),

MN(t) = F (XL
N (t)) − F (XL

N (0))

−

∫ t

0

L∑

y=1

[F (y)− F (XL
N (s))] θN rN (XL

N (s), y) ds + RN ,
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4 The Last Visit Approximates the Trace 101

where RN is a remainder which vanishes in L1(PνN ), limN EνN [ |RN | ] = 0,
and whose value may change from line to line. By assumption (3.3), we may
replace θN rN (XL

N (s), y) in the previous formula by r(XL
N (s), y) and obtain

that

MN(t) = F (XL
N (t)) − F (XL

N (0))

−

∫ t

0

L∑

y=1

[F (y)− F (XL
N (s))] r(XL

N (s), y) ds + RN .
(3.9)

We have now all the elements to show that MF (t) given by (3.6) is a
martingale. To prove this claim we need to show that for every s < t and
every bounded function H : D(R+, SL) → R, continuous with respect to the
Skorohod topology and measurable with respect to the σ-algebra spanned by
{X(r) : 0 ≤ r ≤ s},

Eν

[
{MF (t)−MF (s)}H

]
= 0 . (3.10)

Since MN (t) is martingale,

EνN

[
{MN(t)−MN (s)}H

]
= 0 .

Therefore, by (3.9),

lim
N→∞

EνN

[{
F (XL

N (t)) − F (XL
N (s))

−

∫ t

s

L∑

y=1

[F (y)− F (XL
N (v))] r(XL

N (v), y) dv
}
H

]
= 0 .

Claim (3.10) follows from this fact and from the convergence of XL
N to X in

the Skorohod topology. ⊓⊔

4 The Last Visit Approximates the Trace

Consider the set-up introduced in Section 2. Let νN be a sequence of probabil-
ity measures on EN . The main result of this section asserts that the last visit
process X̂N (t) is close in the Skorohod topology to the trace process XN (t) if
for all t > 0,

lim
N→∞

EνN

[ ∫ t

0

1{ηN(s) ∈ ∆N} ds
]

= 0 . (4.1)

For a trajectory x ∈ D(R+, SL), denote by {Tn(x) : n ≥ 0}, {Sn(x) :
n ≥ 0} the sequence of holding times and the sequence of jump times of x,
respectively. Set S0(x) = 0 and, for n ≥ 1, we define Sn(x) as

Sn(x) := inf{t > Sn−1(x) : x(t) 6= x(Sn−1(x))} , (4.2)
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102 5 A Martingale Approach to Metastability

with the convention that Sn(x) = ∞ if Sn−1(x) = ∞ and, as usual, inf ∅ =
+∞. Let

Tn(x) = Sn(x) − Sn−1(x)

if Sn−1(x) < ∞, and Tn(x) = 0 if Sn−1(x) = ∞.

Theorem 5.3. Let {ηN (t) : t ≥ 0}, N ≥ 1, be a sequence of Markov chains

fulfilling the conditions of Section 2. Fix T > 0 and denote by QN the prob-

ability measure on D([0, T ], SL) induced by the trace process XL
N(t) starting

from νN ◦ Ψ−1, QN = PνN ◦ (XL
N )−1. Assume that the sequence of measures

QN converges in the Skorohod topology to a probability measure Q, and that Q

is the measure induced by a SL-valued Markov chain. Assume, furthermore,

that condition (4.1) is in force. Then,

lim
N→∞

EνN

[
dT (X

L
N , X̂N )

]
= 0 .

In particular, the measure Q̂N = PνN ◦ X̂−1
N on the space D([0, T ], SL) con-

verges in the Skorohod topology to Q.

Proof. Fix ǫ > 0 and T > 0. Denote by NT the number of jumps in the time
interval [0, T ] of a trajectory x ∈ D([0, T ], SL).

Claim A. There exists K = K(ǫ, T ) ≥ 1 such that

lim sup
N→∞

QN [NT ≥ K] ≤ ǫ . (4.3)

By assumption, the sequence QN converges to Q. Since the set {NT ≥ K}
is closed for the Skorohod topology,

lim sup
N→∞

QN [NT ≥ K] ≤ Q[NT ≥ K] .

The measure Q corresponds to a Markov chain with jump rates r(x, y). Under
the measure Q, conditionally on the jump chain {Yn : n ≥ 0}, {Tj : j ≥ 0} is
a sequence of independent times of rates λ(Yj). Let λ = maxx∈SL

λ(x) and let

{T̃j : j ≥ 0} be an i.i.d. sequence of exponential random times of parameter
λ. We have that

Q[NT ≥ K] = Q[T1 + · · ·+ TK ≤ T ] ≤ Q[T̃1 + · · ·+ T̃K ≤ T ] .

The last expression vanishes as K ↑ ∞. This proves (4.3).

Claim B. There exists δ > 0 such that

lim sup
N→∞

QN

[ ⋃

j≥1

{
Sj ∈ [T − δ, T ]

}]
≤ ǫ . (4.4)

By (4.3), it is enough to show that
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4 The Last Visit Approximates the Trace 103

lim sup
N→∞

QN

[ ⋃

j≥1

{
Sj ∈ [T − δ, T ]

}
, {NT ≤ K}

]
≤ ǫ

for all K ≥ 1. Fix K ≥ 1. On the set {NT ≤ K} we may restrict the union to
indices j ≤ K. To prove (4.4), it is therefore enough to show that

lim sup
N→∞

K∑

j=1

QN

[
Sj ∈ [T − δ, T ]

]
≤ ǫ .

For each j ≥ 0, the set {x ∈ D([0, T ], SL) : T − δ ≤ Sj ≤ T } is closed for the
Skorohod topology. Therefore,

lim sup
N→∞

K∑

j=1

QN

[
Sj ∈ [T − δ, T ]

]
≤

K∑

j=1

Q

[
Sj ∈ [T − δ, T ]

]
.

Since the measure Q corresponds to the distribution of a Markov chain, for

each j ≥ 1, Q
[
Sj ∈ [T − δ, T ]

]
vanishes as δ ↓ 0. This proves (4.4).

Denote by Sn, Ŝn, n ≥ 0, the sequence of jump times of the processes XL
N ,

X̂N , respectively, as defined in (4.2). Define the random variable

n := sup{j ≥ 0 : Ŝj < T } .

Suppose that Sn+1 < T . In this case,

T − Sn+1 ≤

∫ T

0

1{ηN (s) ∈ ∆N} ds . (4.5)

Indeed, since,

Ŝn − Sn =

∫ Ŝn

0

1{ηN(s) ∈ ∆N} ds , (4.6)

decomposing the integral appearing on the right hand side of (4.5), we see
that (4.5) holds if and only if

(T − Ŝn) −

∫ T

Ŝn

1{ηN(s) ∈ ∆N} ds ≤ Sn+1 − Sn .

The left hand side of this inequality is equal to

∫ T

Ŝn

1{ηN (s) ∈ EN} ds ≤

∫ Ŝn+1

Ŝn

1{ηN(s) ∈ EN} ds = Sn+1 − Sn .

This proves (4.5).

Claim C.
lim sup
N→∞

PνN

[
Sn+1 ≤ T

]
= 0 . (4.7)

Page: 103 job: book macro: svmono.cls date/time:25-Sep-2013/18:43



104 5 A Martingale Approach to Metastability

Denote by Ωδ the event ∪j≥1{Sj ∈ [T − δ, T ]}. Fix ǫ > 0 and choose δ > 0
for which (4.4) holds. On the event Ωc

δ , {Sn+1 ≤ T } ⊂ {Sn+1 ≤ T − δ} =
{T − Sn+1 ≥ δ}. Hence, by (4.4), (4.5), and assumption (4.1), the left hand
side of (4.7) is bounded above by

ǫ + lim sup
N→∞

PνN

[
T − Sn+1 ≥ δ

]

≤ ǫ + lim sup
N→∞

1

δ
EνN

[ ∫ T

0

1{ηN(s) ∈ ∆N} ds
]

≤ ǫ .

This proves (4.7).

Claim D. Let NT (X
L
N ) be the number of jumps of the process XL

N in the
time interval [0, T ]. For every ǫ > 0, there exists δ > 0 such that

lim sup
N→∞

PνN

[NT (XL
N )⋃

j=1

|Sj − Sj−1| ≤ δ
]

≤ ǫ .

By (4.3), it is enough to prove this claim with the additional constraint that
NT (X

L
N ) ≤ K for someK = K(ǫ, T ) large enough. Since the set {|Sj−Sj−1| ≤

δ}∩{Sj ≤ T } is closed for the Skorohod topology, and since QN converges to
Q,

lim sup
N→∞

QN

[
{|Sj − Sj−1| ≤ δ} ∩ {Sj ≤ T }

]

≤ Q

[
{|Sj − Sj−1| ≤ δ} ∩ {Sj ≤ T }

]
.

Since Q is the probability measure induced by a SL-valued Markov chain, with
bounded holding rates, the right hand side vanishes as δ ↓ 0. This concludes
the proof of Claim D.

Claim E. For every δ > 0,

lim sup
N→∞

PνN

[
|Sn − Ŝn| ≥ δ

]
= 0 .

This assertion follows from (4.6), the bound Ŝn ≤ T and assumption (4.1).
We are now in a position to prove the theorem. In view of Claims C, D

and E, we may restrict our analysis to the set

Ω = {Sn + δ < T < Sn+1} ∩ {|Sn − Ŝn| ≤ δ/2} ∩

NT (XL
N )⋂

j=1

{|Sj − Sj−1| ≥ δ}

for some δ > 0. On the set Ω, define the function λ ∈ ΛT by λ(Ŝj) = Sj ,
0 ≤ j ≤ n, λ(T ) = T , and complete λ on [0, T ] by linear interpolation.

Since XL
N (s) = X̂N (t) for s ∈ [Sj , Sj+1), t ∈ [Ŝj , Ŝj+1), X

L
N (t) = X̂N (λ(t))

for all 0 ≤ t ≤ T . Therefore, by definition of the distance dT ,
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5 Scaling Limit of Birth and Death Chains 105

dT (X
L
N , X̂N ) = ‖λ‖o .

By definition of λ, for 0 ≤ s < t ≤ T ,

min
0≤j<n

S′
j+1 − S′

j

Ŝ′
j+1 − Ŝ′

j

≤
λ(t)− λ(s)

t− s
≤ max

0≤j<n

S′
j+1 − S′

j

Ŝ′
j+1 − Ŝ′

j

,

where S′
j = Sj ∧ T , Ŝ′

j = Ŝj ∧ T , 0 ≤ j ≤ n+ 1. For 0 ≤ j < n− 1,

Ŝj+1 − Ŝj

Sj+1 − Sj
= 1 +

1

Sj+1 − Sj

∫ Ŝj+1

Ŝj

1{ηN (s) ∈ ∆N} ds ,

while by (4.6),

T − Sn

T − Ŝn

= 1 +
Ŝn − Sn

T − Ŝn

= 1 +
1

T − Ŝn

∫ Ŝn

0

1{ηN (s) ∈ ∆N} ds .

Therefore, since log(1 + x) ≤ x, and since on the set Ω, |Sj+1 − Sj| ≥ δ,

T − Ŝn ≥ (T − Sn)− (Ŝn − Sn) ≥ δ/2,

‖λ‖o ≤
2

δ

∫ T

0

1{ηN(s) ∈ ∆N} ds .

Hence, on the set Ω,

dT (X
L
N , X̂N ) ≤

2

δ

∫ T

0

1{ηN (s) ∈ ∆N} ds ,

which concludes the proof of the theorem in view of assumption (4.1). ⊓⊔

5 Scaling Limit of Birth and Death Chains

In this section we present a rigorous formulation of the phenomena described
in the previous section. A complete investigation of the asymptotic behavior
of the chain requires an analysis of the convergence of the chain in the dif-
fusive scaling to a diffusion with absorption points. We skip this analysis to
concentrate on the behavior in the longer time scales.

We analyze the behavior of the chain in the time scales Nθ1+1 and Nα+1,
starting with the first. As explained in the previous section, the chain spends
a negligible amount of time outside the union of the wells and it equilibrates
inside each well before leaving the well. It is therefore natural to examine the
asymptotic behavior of XN (t) = ΨN (ηN (t)) instead of the one of ηN (t), where
Ψ = ΨN : EN → {0, 1, . . . ,m} is the function defined by

Ψ(η) =

m∑

k=1

x1{η ∈ E
k
N} .
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106 5 A Martingale Approach to Metastability

Note that Ψ(η) = 0 if η belongs to ∆N = EN \ EN , and that XN (t) is not a
Markov chain.

A typical trajectory of the rescaled process XN (t) = XN (tNθ1+1) is pre-
sented in Figure ??. The intervals of time [Sj, Tj ] correspond to the transitions
from one well to the other, when the chain traverses the set ∆N . The length
of these intervals are of order N1−θ1 and vanishes in the limit as N ↑ ∞.

Such trajectories do not converge in the Skorohod topology. Therefore, to
prove the convergence of the process XN(t) to a finite state Markov chain, it
is necessary to introduce a topology weaker than the Skorohod one. This is
the content of Chapter xxx, where we define the soft topology.

Let X(t) be the Markov chain on {1, . . . ,m} characterized by the rates

r(i, i + 1) =
1

m(bi)

1
∫ bi+1

bi
{H(u)/Φ(u)} du

,

r(i + 1, i) =
1

m(bi+1)

1
∫ bi+1

bi
{H(u)/Φ(u)} du

, 1 ≤ i < L .

Proposition 5.4. for each 1 ≤ i ≤ m,

(M1) For any sequence ηN ∈ E
i
N , N ≥ 1, the law of the stochastic process

{X(t) : t ≥ 0} under PxN
converges to Pi as N ↑ ∞;

(M2) For every T > 0,

lim
N→∞

sup
x∈Ei

N

Ex

[ ∫ T

0

1
{
XN(sNα+1) ∈ ∆N

}
ds

]
= 0 .

Moreover,

lim
N→∞

inf
x,y∈Ei

N

Px

[
Hy < H

Ĕi
N

]
= 1 , (5.1)

where

Ĕ
i
N :=

⋃

j 6=i

E
j
N .

Proof. a
We show that the hypotheses of Theorem ?? are in force. Let ξiN = bi for

1 ≤ i ≤ L. The asymptotic dynamics has no absorbing point and condition
(H2) of [?, Theorem 2.7] follows from (1.6).

To check conditions (H0), (H1)we take advantage from the one-dimensional
setting to get explicit expressions for capacities. For two disjoint subsets
A, B of EN , denote by capN (A,B) the capacity between A and B. When
A = {a} we represent capN (A,B) by capN (a,B) with the same convention
for B. Let x < y be points in EN . Recall that capN (x, y) = DN (fx,y) where
fx,y : EN 7→ R solves the equation LNfx,y(z) = 0 for z 6∈ {x, y} with bound-
ary conditions fx,y(x) = 1 and fx,y(y) = 0. An elementary computation gives
that f(z) = 1 for z ≤ x, f(z) = 0 for z ≥ y and
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5 Scaling Limit of Birth and Death Chains 107

f(z + 1/N)− f(z) =

{
πN (z)RN (z, z + 1/N)

}−1

∑y−1/N
z=x

{
πN (z)RN (z, z + 1/N)

}−1

for z ∈ EN ∩ [x, y). Hence,

capN (x, y) =
1

∑y−1/N
z=x

{
πN (z)RN (z, z + 1/N)

}−1 . (5.2)

In last two formulae, there is a slight abuse of notation since EN is not the
set {z/N : z ∈ Z ∩ [aN, bN ]}, but the meaning is clear. In particular, if
{xN : N ≥ 1}, {yN : N ≥ 1} are two sequences in EN such that xN → a′ and
yN → b′ for some a ≤ a′ < b′ ≤ b, by (5.2),

lim
N→∞

N1+αcapN (xN , yN ) =
1

∑L
i=1 m(bi)

{ ∫ b′

a′

{H(u)/Φ(u)} du
}−1

> 0 .

(5.3)
Denote by rN (Ei

N ,Ej
N ) the average jump rate from E

i
N to E

j
N of the trace

of the process ZN
t on EN = ∪1≤m≤LE

m
N , defined by (??) in a general context.

Clearly, rN (Ei
N ,Ej

N ) = 0 for |i − j| > 1. Fix an arbitrary 1 ≤ i < L and let

G1 = ∪j≤iE
j
N , and G2 = ∪j>iE

j
N so that

πN (Ei
N ) rN (Ei

N ,Ei+1
N ) = πN (bi +

ℓN
N

)RE

N (bi +
ℓN
N

, bi+1 −
ℓN
N

)

= πN (G1) rN (G1, G2) ,

where RE

N (x, y), x 6= y ∈ EN , represents the jumps rates of the trace of ZN
t

on EN . Therefore, by (??),

rN (Ei
N ,Ei+1

N ) =
πN (G1) rN (G1, G2)

πN (Ei
N )

=
capN (G1, G2)

πN (Ei
N )

=
capN (bi + ℓN/N, bi+1 − ℓN/N)

πN (Ei
N )

·

Analogously, we obtain that

rN (Ei
N ,Ei−1

N ) =
capN (bi − ℓN/N, bi−1 + ℓN/N)

πN (Ei
N )

for any 1 < i ≤ L. Therefore, by (5.3) and (1.6),

lim
N→∞

N1+α rN (Ei
N ,Ei+1

N ) =
1

m(bi)

{ ∫ bi+1

bi

{H(u)/Φ(u)} du
}−1

and

lim
N→∞

N1+α rN (Ei
N ,Ei−1

N ) =
1

m(bi+1)

{ ∫ bi+1

bi

{H(u)/Φ(u)} du
}−1
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108 5 A Martingale Approach to Metastability

for any 1 ≤ i < L, which concludes the proof of assumption (H0).
The same arguments show that

lim
N→∞

N1+α capN (Ei
N , Ĕi

N )

=
1∑

1≤i≤L m(bi)

{ 1
∫ bi+1

bi
{H(u)/Φ(u)} du

+
1

∫ bi
bi−1

{H(u)/Φ(u)} du

}
,

(5.4)

provided bi 6= a, b, with similar identities if bi = a or if bi = b.
It remains to check condition (H1). For any 1 ≤ i ≤ L and N large

enough, H(x) = |x − bi|
α for all x ∈ E

i
N . In consequence, by (1.5) and 5.2,

there exists a positive constant C0, independent of N , such that

capN (x, bi) ≥
C0

ℓα+1
N

,

for any 1 ≤ i ≤ L and x ∈ E
i
N . Therefore, since ℓN ≪ N , by (5.4),

lim
N→∞

sup
x∈Ei

N

capN (Ei
N , Ĕi

N )

capN (x, bi)
= 0

for all 1 ≤ i ≤ L, which concludes the proof of the proposition. ⊓⊔

6 Ergodic Properties of the Birth and Death Chain

We present in this section some ergodic properties of the birth and death
chain introduced in Section 1. We start with an estimation of the hitting time
of the boundary of a well. Fix 1 ≤ i ≤ m and recall that we represent the
interval { ζNi − [δ0N ]/N , . . . , ζNi + [δ0N ]/N} by FN (ζNi ). Let

m(ai) = 1 + 2
∑

k≥1

1

kαi
,

Ii− =

∫ ai

ai−δ0

H(x)

Φ(x)
dx , Ii+ =

∫ ai+δ0

ai

H(x)

Φ(x)
dx . (6.1)

We assume in the statement below that ai is a point in the interior of
the interval [a, b]. The same arguments apply to the case in which ai is an
endpoint of the interval [a, b] and provide a formula for the expectation of the
hitting time of the same order as the one below.

Lemma 5.5. Assume that ai is a point in the interior of the interval [a, b],
a < ai < b. Denote by HN the hitting time of FN (ζNi )c, and let ηN be a

sequence of configurations such that limN |ηN − ai| = 0. Then,

lim
N→∞

1

Nαi+1
EηN

[HN ] = m(ai)
Ii− × Ii+
Ii− + Ii+

· (6.2)
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6 Ergodic Properties of the Birth and Death Chain 109

η−i

η+i Proof. Let
F (ζ) = Eζ [HN ] , ζ ∈ EN ,

and let η−i , η+i , be the outer boundary of the set FN (ζNi ),

η−i = ζNi − ([δ0N ] + 1)/N , η+i = ζNi + ([δ0N ] + 1)/N

so that F (η−i ) = F (η+i ) = 0. Let ǫ = ǫN = (1/N),

R(η) = RN (η, η + ǫ) , Q(η) = RN (η, η − ǫ) .

By the detailed balance condition, π(η)R(η) = π(η + ǫ)Q(η + ǫ). ǫ

R(η)

Q(η)

Define B as the ratio

B :=

η+

i
−ǫ∑

η=η−

i
+ǫ

π[η−i + ǫ, η]

R(η)π(η)

/ η+

i
−ǫ∑

η=η−

i

1

R(η)π(η)
,

where π[η−i + ǫ, η] = π{η−i + ǫ, . . . , η}. We claim that

F (η−i + ǫ)− F (η−i ) =
B

R(η−i )π(η−i )
· (6.3)

π[η−i + ǫ, η]
To derive (6.3), apply the strong Markov property to obtain that

R(η) {F (η + ǫ)− F (η)} = −1 + Q(η) {F (η)− F (η − ǫ)}

for η−i < η < η+i . Iterating this relation we get that

F (η + ǫ)− F (η) =
Q(η) · · ·Q(η−i + ǫ)

R(η) · · ·R(η−i + ǫ)

{
F (η−i + ǫ)− F (η−i )

}

−
{ 1

R(η)
+

Q(η)

R(η)R(η − ǫ)
+ · · · +

Q(η) · · ·Q(η−i + 2ǫ)

R(η) · · ·R(η−i + ǫ)

}

for η−i < η < η+i . This equation and the reversibility relation π(η)R(η) =
π(η + ǫ)Q(η + ǫ) yields that

F (η+ǫ)−F (η) = −
π[η−i + ǫ, η]

R(η)π(η)
+

R(η−i )π(η
−
i )

R(η)π(η)

{
F (η−i +ǫ)−F (η−i )

}
(6.4)

for η−i < η < η+i . Since

0 =

η+

i −ǫ∑

η=η−

i

{F (η + ǫ)− F (η)} ,

(6.3) follows from (6.4).
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As F (η−i ) = 0, we obtain from (6.4) and from the explicit formula (6.3)
for the difference F (η−i + ǫ)− F (η−i ) that

F (η) = B

η−ǫ∑

ξ=η−

i

1

R(ξ)π(ξ)
−

η−ǫ∑

η=η−

i
+ǫ

π[η−i + ǫ, ξ]

R(ξ)π(ξ)

for η−i < η < η+i .
Fix a sequence of configurations ηN satisfying the assumption of the

lemma. Let AN =
∑

η−

i
≤ξ≤η+

i
−ǫ[R(ξ)π(ξ)]−1. By the explicit formula for B,

and some simple algebra, we may rewrite AN F (η) as

η+

i
−ǫ∑

ξ=η

π[η−i + ǫ, ξ]

R(ξ)π(ξ)

η−ǫ∑

ξ=η−

i

1

R(ξ)π(ξ)
−

η∑

ξ=η−

i
+ǫ

π[η−i + ǫ, ξ]

R(ξ)π(ξ)

η+

i
−ǫ∑

ξ=η

1

R(ξ)π(ξ)
·

Denote the first term of this difference with η = ηN by A1,1
N × A1,2

N and the

second one by A2,1
N ×A2,2

N . By definition of π and R,

lim
N→∞

AN

NZN
= Ii− + Ii+ , lim

N→∞

A1,2
N

NZN
= Ii− , lim

N→∞

A2,2
N

NZN
= Ii+ ,

where Ii± has been introduced in (6.1). On the other hand, the main contri-
bution of π[η−i + ǫ, ξ] occurs for ξ ≥ ζNi −MN/N , where 1 ≪ MN ≪ N . It
follows from this observation that

lim
N→∞

A1,1
N

Nαi+1
= m(ai) I

i
+ , lim

N→∞

A2,1
N

Nαi+1
= 0 ,

which concludes the proof of the lemma. ⊓⊔

We conclude this section with an estimation of the spectral gap of the
birth and death chain reflected on a well. Fix 1 ≤ i ≤ m and denote by ξN (t)
the chain reflected at F (ζNi ) and assume that ai is an interior point of the
interval [a, b]. As in the previous lemma, the arguments presented below can
be adapted to the case in which ai is an endpoint of the interval and provide
a similar bound for the spectral gap.

Recall from (1.7) that we denoted by πi the stationary measure of the
reflected chain at F (ζNi ) and that πi is the measure π conditioned to set
F (ζNi ). Recall also that the spectral gap of the reflected chain, denoted by
giN , is given by

giN = inf
f

〈(−Lif), f〉πi

〈f, f〉πi

,

where the infimum is carried over all functions f : F (ζNi ) → R which have
mean zero with respect to πi, and where Li represents the generator of the
reflected process.
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Lemma 5.6. There exist constants 0 < c0 < C0 < ∞, independent of N ,

such that
c0
N2

≤ giN ≤
C0

N2
·

Proof. We start with the proof of the upper bound for the spectral gap. Con-
sider the function g : F (ζNi ) → R such that

g(η) =





−1 for η−i < η ≤ η−i + δ0/3,

0 for |η − ζNi | ≤ δ0/3,

1 for η+i − δ0/3 ≤ η < η+i ,

g is linear in the remaining two intervals. Let f be the mean-zero function
defined by f(η) = g(η)− Eπi [g]. It is not difficult to check that

Eπi [g2] ≥
c0

Nαi−1
,

∣∣Eπi [g]
∣∣ ≤

C0

Nαi−1
,

and that

〈(−Lif), f〉πi =
1

2

η+

i
−2ǫ∑

η=η−

i
+ǫ

πi(η)R(η){f(η + ǫ)− f(η)}2 ≤
1

N2

C0

Nαi−1

for some constants 0 < c0 < C0 < ∞ independent of N and whose value may
change from line to line. This proves that giN ≤ C0N

−2.
The proof of the lower bound for the spectral gap is simple. Denote by

Varπi [f ] the variance of a function f with respect to the stationary measure
πi. We need to show that there exists a finite constant C0 such that for all
functions f : F (ζNi ) → R

Varπi [f ] ≤ C0 N
2 〈(−Lif), f〉πi . (6.5)

By Schwarz inequality,

Varπi [f ] ≤

η+

i
−ǫ∑

η=η−

i
+ǫ

πi(η){f(η)− f(ζNi )}2

≤ N

η+

i
−ǫ∑

η=η−

i
+ǫ

πi(η)
∑

ξ∈γ(ζN
i
,η)

{f(ξ + ǫ)− f(ξ)}2 ,

where γ(ζNi , η) represents a path from ζNi , to η, i.e., a sequence of nearest-
neighbor configurations from ζNi to η. We estimate the piece of the sum corre-
sponding to the configurations η ≥ ζNi . In this case, γ(ζNi , η) = {ζNi , . . . , η−ǫ}.
Interchanging the order of summation, the previous sum in the range ζNi ≤
η ≤ η+i − ǫ becomes
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N

η+

i
−2ǫ∑

ξ=ζN
i

{f(ξ + ǫ)− f(ξ)}2 πi{ξ + ǫ, . . . , η+i − ǫ} .

Since R(ξ) is bounded below by a strictly positive constant, and since

1

πi(ξ)
πi{ξ + ǫ, . . . , η+i − ǫ} ≤ C0 N (ξ − ζNi ) ≤ C0 N ,

the previous expression is bounded above by

C0N
2

η+

i
−2ǫ∑

ξ=ζN
i

πi(ξ)R(ξ) {f(ξ + ǫ)− f(ξ)}2 ≤ 2C0 N
2〈(−Lif), f〉πi ,

which concludes the proof of (6.5) and the one of the lemma. ⊓⊔
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