
4

Topology

Consider the birth and death chain η(t) on EN = {0, . . . , N} defined in Chap-
ter ?? associated to the functions H(x) = xα(1 − x)α, α > 1, and Φ(x) = 1,
x ∈ [0, 1]. To define the jump rates of this chain, let πN be the probability
measure given by

πN (k) =
1

ZN

1

HN (k)
,

where HN (k) = H(k/N), 1 ≤ k ≤ N − 1, HN (0) = HN (N) = Nα, and
where ZN is the partition function ZN =

∑

0≤k≤N HN (k)−1. The jump rates
RN (x, y) of η(t) are defined for η(t) to be reversible with respect to πN :

RN (k, k + 1) = 1 , RN (k + 1, k) =
πN (k)

πN (k + 1)
, 0 ≤ k < N ,

R(k, j) = 0 otherwise.
Fix a sequence 1 ≪ ℓN ≪ N and let E

1
N = {0, . . . , ℓN}, E2

N = {N −
ℓN , . . . , N}, EN = E

1
N ∪ E

2
N , ∆N = EN \ EN . Let ΨN : EN → {1, 2, d} be the

order parameter:

ΨN (η) =

2
∑

j=1

j 1{η ∈ E
j
N} + d1{η ∈ ∆N} ,

and let XN (t) = ΨN(η(tNα+1)) be the value of the order parameter at time
t, where time has been speeded-up by Nα+1. We prove in Chapter ?? that on
the time-scale Nα+1, η(t) evolves as a symmetric Markov chain on {1, 2}.

Far from the boundary, in the interval {ǫN, . . . , (1 − ǫ)N}, ǫ > 0, the
dynamics of the birth and death chain η(t) corresponds to the one of a weakly
asymmetric random walk. Hence, in the diffusive time scale N2 in the interval
{ǫN, . . . , (1 − ǫ)N} the birth and death chain η(t) evolves as a Brownian
motion with a drift. In constrast, close to the boundaries the chain has a drift
of order one in the direction of the boundary, which increases as it approaches
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66 4 Topology

the boundary. This drift encloses the process in a microscopic neighborhood
of the boundary, which is only surmounted in a time scale of order Nα+1.

This model presents, therefore, two macroscopic time scales: the diffusive
one, N2, which corresponds to the time needed to reach the boundary from
the bulk, and the longer time scale Nα+1, which is the time needed to escape
from a microscopic neighborhood of a boundary site. The graph of a typical
realization of XN (t) is depicted in Figure ??. As N ↑ ∞, the length of the
excursions to d decreases to vanish in the limit. These evanescent excursions
to d precludes the convergence of the process XN (t) in the Skorohod topology.
We present in this chapter a weaker topology, tailor maded to handle such
cases which are typical in the metastable context.

The chapter is organized as follows. For a metric space M, denote by
D([0, T ],M), T > 0, the space of right-continuous functions x : [0, T ] → M

with left-limits. We introduce in 1.8 a metric d in a subspace of D([0, T ], Sd),
where Sd is the one-point compactification of N. The completion of this sub-
space with respect to the metric d consists of trajectories x : [0, T ] → Sd

which at each point t ∈ (0, T ) may have at most two left-limits and two right-
limits, on in N and the other one equal to d, the point added to N to turn
it into a compact metric space. The space of such trajectories is denoted by
E([0, T ], Sd). We introduce this space in Section 1 below and examine the
propertiesD([0, T ],M)

1 The space E([0, T ], Sd)

d(k, j)
Assume now that the order parameter takes a countable number of values,
S = N = {1, 2, . . .}. Let Sd be the one-point compactification of S: Sd =
S ∪ {d}, d = ∞, where the metric in Sd is given by d(k, j) = |k−1 − j−1|.
Generic elements of the set Sd are denoted by the symbols n, m.

We adopt the following nomenclature. A sequence of real numbers {tj : j ≥
1} is said to the be increasing if tj < tj+1 for all j, with a similar convention
for decreasing sequences. This sequence is said to the be non-decreasing if
tj ≤ tj+1 for all j. We write tj ↑ t to say that the increasing sequence tj
converges to t and tj ↓ t to say that the decreasing sequence tj converges to
t. Similarly, a function f : [a, b] → R is said to be increasing, decreasing if
f(s) < f(t), f(s) > f(t), respectively, for s < t.

Definition 4.1. A measurable function x : [0, T ] → Sd is said to have a soft
left-limit at t ∈ (0, T ] if one of the following two alternatives holds

(a) The trajectory x has a left-limit at t, denoted by x(t−);
(b) The set of cluster points of x(s), s ↑ t, is a pair formed by d and a point

in S, denoted by x(t⊖).

A soft right-limit at t ∈ [0, T ) is defined analogously. In this case, the right-

limit, when it exists, is denoted by x(t+), and the cluster point of the sequence
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1 The space E([0, T ], Sd) 67

x(s), s ↓ t, which belongs to S when the second alternative is in force is denoted

by x(t⊕).
x(t⊕)

x(t⊖)
More concisely, a trajectory x has a soft left-limit at t if and only if there

exists n ∈ S such that for all m ≥ 1, there exists δ > 0 for which x(s) ∈
{n} ∪ Sc

m for all t− δ < s < t.
The second alternative in the previous definition asserts that there exist

n ∈ S and two increasing sequences tj , t′j ↑ t such that limj x(tj) = n,
limj x(t

′
j) = d. Moreover, if x(t′′j ) converges for some sequence t′′j ↑ t,

limj x(t
′′
j ) ∈ {n, d}.

We call x(t⊖) the finite soft left-limit of x at t. Whenever we refer to
x(t−) it means that x has a left-limit at t. Similarly, when we refer to x(t⊖),
it is understood that x has not a left-limit at t, but that the alternative (b)
of the previous definition is in force. An analogous convention is adopted for
x(t+) and x(t⊕).

Remark 4.2. Since Sd is a compact set, to prove that x has a soft right-limit
at t we only have to show uniqueness of limit points in S. In other words, we
have to prove that if tj and t′j are sequences decreasing to t and if x(tj), x(t

′
j)

converge to m ∈ S, n ∈ S, respectively, then m = n.

Definition 4.3. A trajectory x : [0, T ] → Sd which has a soft right-limit at t
is said to be soft right-continuous at t if one of the following three alternatives

holds

(a) x(t+) exists and is equal to d;

(b) x(t+) exists, belongs to S, and x(t+) = x(t);
(c) x(t⊕) exists and x(t⊕) = x(t).

A trajectory x : [0, T ] → Sd which is soft right-continuous at every point

t ∈ [0, T ] is said to be soft right-continuous.

A trajectory x is soft right-continuous at t if and only if there exists n ∈ S
such that for all m ≥ 1, there exists δ > 0 for which x(s) ∈ {n} ∪ Sc

m for all
t ≤ s < t+ δ.

Note that if x is soft right-continuous at t and if x(t+) = d, then x(t)
may be different from x(t+). In contrast, if x(t) = d, then x(t+) exists and
x(t+) = d = x(t).

Clearly, if x is soft right-continuous at t, for every m ≥ 1, there exists
ǫ > 0 such that for all t ≤ s < t+ ǫ,

x(s) = x(t) or x(s) ≥ m . (1.1)

Similarly, if x has a soft left-limit at t, there exists n ∈ S with the following
property. For every m ≥ 1, there exists ǫ > 0 such that for all t− ǫ < s < t,

x(s) = n or x(s) ≥ m . (1.2)
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68 4 Topology

Let E([0, T ], Sd) be the space of soft right-continuous trajectories x :
[0, T ] → Sd with soft left-limits. E([0, T ], Sd)

Fix a trajectory x in E([0, T ], Sd) such that x(t) = d for some t ∈ [0, T ].
Since it is soft right-continuous, by Definition 4.3,

x(t+) exists and x(t+) = d. (1.3)
Sm

Let Sm = {1, . . . ,m}, m ≥ 1. For a trajectory x in E([0, T ], Sd), t ∈ [0, T ],
m ≥ 1, let

σx
m(t) := sup{s ≤ t : x(s) ∈ Sm} . (1.4)

If the set {s ≤ t : x(s) ∈ Sm} is empty, we set σx
m(t) = 0, but this convention

does not play any role below and we could have defined σx
m(t) in another way.

When there is no ambiguity and it is clear to which trajectory we refer, we
denote σx

m(t) by σm(t).σm

Fix t ∈ (0, T ] andm ≥ 1. Suppose that σm(t) > 0 and that x(σm(t)) 6∈ Sm,
so that x(s) 6∈ Sm for σm(t) ≤ s ≤ t. By (1.2), there exist n ∈ S and ǫ > 0
such that for each s ∈ (σm(t) − ǫ, σm(t)) either x(s) = n or x(s) > m. By
definition of σm(t) we must have n ∈ Sm. Moreover, x(σm(t)−) = n if x has
a left-limit at σm(t), and x(σm(t)⊖) = n if not.Rm

Let Rmx be the trajectory which records the last site visited in Sm:
(Rmx)(t) = 1 if x(s) 6∈ Sm for 0 ≤ s ≤ t, and

(Rmx)(t) =











x(σm(t)) if x(σm(t)) ∈ Sm,

x(σm(t)−) if x(σm(t)) 6∈ Sm and x(σm(t)−) exists,

x(σm(t)⊖) otherwise,

(1.5)

if there exists 0 ≤ s ≤ t such that x(s) ∈ Sm.
Note that (Rmx)(0) = x(0) if x(0) ∈ Sm and (Rmx)(0) = 1 if x(0) 6∈ Sm.

The convention that (Rmx)(t) = 1 if x(s) 6∈ Sm for 0 ≤ s ≤ t corresponds
to assume that the trajectory x is defined for t < 0 and that x(t) = 1 in this
time interval.

Consider a trajectory x in D([0, T ], Sd), m ≥ 1 and t ∈ (0, T ]. Assume
that x(t) 6∈ Sm and that there exists 0 ≤ s ≤ t such that x(s) ∈ Sm. Since x
is right-continuous, σm(t) > 0 and x(σm(t)) = x(σm(t)+) 6∈ Sm. Hence, since
x has left-limits, under the above conditions,

(Rmx)(t) = x(σm(t)−) . (1.6)

Note that we may have σm(t) = t in this example.

Assertion A Fix a trajectory x in E([0, T ], Sd). For each m ≥ 1, Rmx is a

trajectory in D([0, T ], Sm).

Proof. Fix m ≥ 1. We first prove the right continuity of Rmx. Fix t ∈ [0, T ).
By (1.1), there exists δ > 0 such that for all t ≤ s ≤ t+δ, either x(s) = x(t) or
x(s) > m. Suppose that x(t) belongs to Sm. In this case, (Rmx)(s) = x(t) =
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1 The space E([0, T ], Sd) 69

(Rmx)(t) for t ≤ s < t + δ. On the other hand, if x(t) 6∈ Sm, x(s) 6∈ Sm

for t ≤ s < t + δ so that σm(s) = σm(t) in this interval. Therefore, in view
of (1.5), (Rmx)(s) = (Rmx)(t) for t ≤ s ≤ t + δ. This proves that Rmx is
right-continuous.

We turn to the proof of the existence of a left limit at t ∈ (0, T ]. If x(t−)
exists and belongs to Sm, (Rmx)(s) = x(t−) for all s < t close enough of
t. If x(t−) exists and does not belong to Sm, σm(s) is constant in an open
interval (t−δ, t), which implies that (Rmx)(s) is constant in the same interval.
Finally, suppose that x(t⊖) exists. In view of (1.2), there exists δ > 0 such
that for all t − δ < s < t, either x(s) > m or x(s) = x(t⊖). If x(t⊖) ≤ m,
(Rmx)(s) = x(t⊖) in some interval (t − δ′, t), δ′ > 0. If x(t⊖) > m, then
σm(s) is constant in the interval (t − δ, t), so that Rmx is constant in the
same interval. This concludes the proof of the assertion. ⊓⊔

The next example shows that the trajectories Rmx, m ≥ 1, do not char-
acterize the trajectory x.

Example 4.4. Fix 0 < s < t < T and a sequence {tj : j ≥ 1} such that t1 < T ,
tj ↓ t. Consider the trajectories x, y ∈ E(([0, T ], Sd) given by

x = 1{[0, s)} + d1{[s, t]} +
∑

j≥2

j 1{[tj, tj−1)} + 1{(t1, T ]} ,

y = 1{[0, t]} +
∑

j≥2

j 1{[tj, tj−1)} + 1{(t1, T ]} .

It is clear that Rmx = Rmy for all m ≥ 1.
σ∞

For a trajectory x ∈ E([0, T ], Sd), let σ
x
∞(t) be the time of the last visit to

S:
σx
∞(t) := sup{s ≤ t : x(s) ∈ S} ,

with the convention that σx
∞(t) = 0 if x(s) = d for 0 ≤ s ≤ t. As before, when

there is no ambiguity and it is clear to which trajectory we refer, we denote
σx
∞(t) by σ∞(t). R∞

Let R∞x be the trajectory which records the last site visited in S:
(R∞x)(t) = 1 if x(s) = d for all 0 ≤ s ≤ t, and

(R∞x)(t) =











x(σ∞(t)) if x(σ∞(t)) ∈ S,

x(σ∞(t)−) if x(σ∞(t)) 6∈ S and if x(σ∞(t)−) exists,

x(σ∞(t)⊖) otherwise,

if there exists 0 ≤ s ≤ t such that x(s) ∈ S. As for the operator Rm, the
convention that (R∞x)(0) = 1 if x(0) = d corresponds in assuming that
the trajectory is defined for t < 0 and that x(t) = 1 for t < 0. Note that
(R∞x)(0) ∈ S and that (R∞x)(0) = x(0) if and only if x(0) ∈ S.
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70 4 Topology

Consider a trajectory x in D([0, T ], Sd) and t ∈ (0, T ]. Assume that x(t) 6∈
S and that there exists 0 ≤ s ≤ t such that x(s) ∈ S. Since x is right-
continuous, σ∞(t) > 0 and x(σ∞(t)) = x(σ∞(t)+) 6∈ S. Hence, since x has
left-limits, under the above conditions,

(R∞x)(t) = x(σ∞(t)−) . (1.7)

E([0, T ], Sd)
Denote by E([0, T ], Sd) the set of trajectories in E([0, T ], Sd) such that

x(0) ∈ S and which fulfill the following condition. If x(t) = d for some t ∈
(0, T ], then σ(t) > 0 and x(σ∞(t)) = x(σ∞(t)−) = d.

Lemma 4.5. The trajectory R∞x belongs to E([0, T ], Sd).

Proof. Fix a trajectory x in E([0, T ], Sd). By definition (R∞x)(0) ∈ S. We
first show that R∞x belongs to E([0, T ], Sd).

We claim that R∞x has a left-limit at t ∈ (0, T ] if x has one. Suppose first
that x(t−) = d. If there exists δ > 0 such that x(s) = d for s ∈ (t− δ, t), then
σ∞ is constant in this interval. By definition, R∞x is constant in the same
interval and has therefore a left-limit at t. On the other hand, if there exists a
sequence tj ↑ t such that x(tj) ∈ S, σ∞(s) ≥ t1 for t1 ≤ s < t. As x(t−) = d,
for every m ≥ 1, there exists δ > 0 such that x(s) ≥ m for t − δ ≤ s < t.
Therefore (R∞x)(s) ≥ m for t∗δ ≤ s < t, where t∗δ is the smallest element of
the sequence tj which is greater than t−δ. This proves that (R∞x)(t−) exists
and is equal to d. Suppose now that x(t−) ∈ S. In this case x(s) = x(t−) ∈ S
for s in some interval (t− δ, t). In particular, (R∞x)(s) = x(s) = x(t−) in the
same interval, which proves the claim. The trajectory x of Example 4.4 shows
that the left-limits of x and R∞x at some point t may be different.

Suppose now that x(t⊖) exists and is equal to n ∈ S. By definition there
exists a sequence tj ↑ t such that x(tj) → n, which means that x(tj) = n for
j sufficiently large. By definition, (R∞x)(tj) = n for the same indices. Fix
m > n. By (1.2), there exists δ > 0 such that x(s) = n or x(s) ≥ m for all
t − δ < s < t. Hence, if we denote again by t∗δ the smallest element of the
sequence tj which is greater than t − δ, for t∗δ < s < t, (R∞x)(s) = n or
(R∞x)(s) ≥ m. This proves that R∞x has a soft left-limit at t.

The trajectory R∞x is soft right-continuous. Fix t ∈ [0, T ) and assume
that x(t) = d. If x(s) = d in some interval (t, t+ ǫ), σ∞ and R∞x are constant
on the interval [t, t + ǫ); while if there exists a sequence tj ↓ t such that
x(tj) ∈ S for all j, (R∞x)(t+) = d. In both cases,R∞x is soft right-continuous
at t.

Suppose now that x(t) belongs to S so that (R∞x)(t) = x(t) ∈ S. By
soft right-continuity of x at t, for a fixed m ≥ 1, there exists δ > 0 such that
x(s) ∈ {x(t)} ∪ Sc

m for all t ≤ s < t + δ. By definition of R∞x the same
property holds for R∞x, which proves its soft right-continuity.

We conclude the proof of the lemma showing that R∞x belongs to
E([0, T ], Sd). Fix t ∈ (0, T ] such that (R∞x)(t) = d. Denote by σ∞(t), σ̂∞(t)
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1 The space E([0, T ], Sd) 71

the time of the last visit to S before time t of the trajectory x, R∞x, respec-
tively. Clearly x(t) = d, otherwise (R∞x)(t) = x(t) ∈ S. We also have that
σ(t) > 0 because if σ(t) = 0, (R∞x)(t) would belong to S: (R∞x)(t) = 1 by
definition if x(s) = d for 0 ≤ s ≤ t, and (R∞x)(t) = x(0) ∈ S if x(s) = d

for 0 < s ≤ t. It follows from the definition of R∞x and from the identity
(R∞x)(t) = d that x(σ∞(t)) = x(σ∞(t)−) = d.

Since x(s) = d for σ∞(t) < s ≤ t, and since x(σ∞(t)) = x(σ∞(t)−) = d, we
have that (R∞x)(s) = d, σ∞(t) ≤ s ≤ t, σ̂∞(t) = σ∞(t), (R∞x)(σ∞(t)−) =
d. ⊓⊔

Assertion B Let x be a trajectory in E([0, T ], Sd). Then, R∞x = x.

The proof of this assertion is elementary. It follows from this claim and
from Lemma 4.5 that R∞ : E([0, T ], Sd) → E([0, T ], Sd) is a projection. The
next assertion shows that Rmx converges pointwisely to x if x belongs to
E([0, T ], Sd).

Assertion C Fix a trajectory x in E([0, T ], Sd). Then, Rmx converges point-

wisely and limmRmx = R∞x.

Proof. It is clear from the definition of Rmx that Rmx ≤ Rm+1x. In partic-
ular, the pointwise limit always exists. Fix 0 ≤ t ≤ T and suppose initially
that x(t) ∈ S. In this case, for m > x(t), (Rmx)(t) = (R∞x)(t).

Suppose from now on that x(t) = d. If x(s) = d for 0 ≤ s ≤ t, (Rmx)(t) =
1 = (R∞x)(t) for all m ≥ 1, while if x(0) ∈ S and x(s) = d for 0 < s ≤ t,
(Rmx)(t) = x(0) = (R∞x)(t) for all m ≥ x(0). We may therefore assume that
there exists 0 < s < t such that x(s) ∈ S so that σ∞(t) = σx

∞(t) > 0.
If x(σ∞(t)) ∈ S, for m > x(σ∞(t)) we have that (Rmx)(t) = (R∞x)(t),

while if x(σ∞(t)) = d and if x(σ∞(t)−) exists, (R∞x)(t) = x(σ∞(t)−) =
limm(Rmx)(t). Finally, suppose that x(σ∞(t)) = d and that x(σ∞(t)−) does
not exist. Then, by definition, (R∞x)(t) = x(σ∞(t)⊖) and form > x(σ∞(t)⊖)
(Rmx)(t) = x(σ∞(t)⊖). This proves the assertion. ⊓⊔

The next statement follows from Assertions B and C.

Assertion D Fix two trajectories x, y in E([0, T ], Sd). If Rmx = Rmy for

all m large enough, then x = y.
d(x, y)

dm(x, y)For two trajectories x, y ∈ E([0, T ], Sd), let

d(x, y) =
∑

m≥1

1

2m
dm(x, y) , where dm(x, y) = dS(Rmx,Rmy) . (1.8)

Example 4.4 shows that d is not a metric in E([0, T ], Sd), but the next
assertion states that it is a metric in E([0, T ], Sd).

Assertion E The map d is a metric in E([0, T ], Sd).
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Proof. It is clear that d is finite, non-negative and symmetric, and that d

satisfies the triangular inequality. Suppose that d(x, y) = 0. Then, Rmx =
Rmy for all m ≥ 1. Hence, by Assertion D, x = y. ⊓⊔

Example 4.6. Fix t0 < T and let xn ∈ D([0, T ], Sd) be the sequence given by

xn = 1{[0, t0)} + n1{[t0, t0 + n−1)} + 1{[t0 + n−1, T ]} .

While this sequence does not converges in the Skorohod topology, it converges
to the constant trajectory equal to 1 in the metric d. This sequence is a
caricature of a typical trajectory of the processes examined in this book. In a
certain time scale these processes spend a shorter and shorter amount of time
on a set which has a vanishing asymptotic probability, but which has to be
crossed when moving from one metastable set to another. The unique reason
to introduce the metric d is to define a topology in which such a sequence
converges.

In constrast, and as we want, for ℓ ∈ N, ℓ 6= 1, the sequence

yn = 1{[0, t0)} + ℓ 1{[t0, t0 + n−1)} + 1{[t0 + n−1, T ]}

does not converge. This is needed because the points in S represent the
metastable sets and we require in the definition of metastability the con-
vergence in the Skorohod topology of the trace of the process on finite subsets
of S.

The undesirable aspect of the metric d is that the sequence

zn = 1{[0, t0)} + n1{[t0, T ]}

also converges to the constant trajectory equal to 1. To exclude such cases,
we shall introduce in the next section a subset of trajectories in E([0, T ], Sd)
which spend only a negligible amount of time in d and we shall introduce
compactness conditions which ensure that the limit points of a sequence of
trajectories belongs to this set. These compactness conditions will exclude
sequences as zn which spend a non-negligible amount of time in a set Sc

m for
some m.

Λ
We conclude this section proving in Proposition 4.8 below that the space

E([0, T ], Sd) endowed with the metric d is complete and separable. Denote by
Λ the set of increasing and continuous functions λ : [0, T ] → [0, T ] such that
λ(0) = 0, λ(T ) = T . For λ ∈ Λ, let

‖λ‖o = sup
0≤s<t≤T

∣

∣

∣
log

λ(t) − λ(s)

t− s

∣

∣

∣
.

‖λ‖o

Assertion F Let x be a trajectory in D([0, T ], Sm+1) and fix λ ∈ Λ. Then,
Rm(x ◦ λ) = (Rmx) ◦ λ. The same identity holds for a trajectory x in

D([0, T ], Sd).
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Proof. Since x ∈ D([0, T ], Sm+1), there exist k ≥ 1, 0 = t0 < t1 < · · · < tk =
T , and ℓ0, . . . , ℓk ∈ Sm+1 such that ℓi 6= ℓi+1, 0 ≤ i ≤ k − 2, and

x(t) =
k−1
∑

i=0

ℓi 1{[ti, ti+1)}(t) + ℓk1{t = tk} . (1.9)

Note that ℓk−1 may be equal to ℓk in which case x is left continuous at T . It
is easy to obtain from this formula explicit expressions for Rm(x ◦ λ) and for
(Rmx) ◦ λ and to check that they are equal.

Consider now a trajectory x in D([0, T ], Sd). Fix λ ∈ Λ and m ∈ S. Recall
that we denote by σy

m(t) the last visit to Sm before time t for the trajectory y.
It is easy to verify that σxλ

m (t) = λ−1(σx
m(λ t)), where xλ = x ◦ λ, λ t = λ(t).

Fix t ∈ [0, T ] and suppose that x(s) 6∈ Sm for 0 ≤ s ≤ λ(t). In this case,
xλ(s) 6∈ Sm for 0 ≤ s ≤ t and (Rm(xλ))(t) = 1 = (Rmx)(λt).

If x(λ(t)) ∈ Sm, (Rm(xλ))(t) = (xλ)(t) = (Rmx)(λt). It remains to con-
sider the case in which x(s) ∈ Sm for some 0 ≤ s ≤ λ(t) and x(λ(t)) 6∈ Sm.
By (1.6),

(Rm(xλ))(t) = (xλ)(σxλ
m (t)−) = (xλ)(λ−1(σx

m(λt))−)

= x(σx
m(λt)−) = (Rmx)(λ(t)) ,

which proves the claim. ⊓⊔

Assertion G The map Rm : D([0, T ], Sm+1) → D([0, T ], Sm) is continuous.

Proof. Let xn be a sequence of trajectories in D([0, T ], Sm+1) which converges
in the Skorohod topology to x. We will prove that the sequence of trajectories
Rmxn in D([0, T ], Sm) converges in the Skorohod topology to Rmx.

Fix ǫ < [m(m + 1)]−1. Since xn converges to x, there exists n0 such that
for all n ≥ n0

max
{

‖xn − xλ‖∞ , ‖λ‖o
}

< ǫ ,

for some λ ∈ Λ, where ‖xn−xλ‖∞ = sup0≤t≤T d
(

xn(t), xλ(t)
)

. Since we chose
ǫ < [m(m+1)]−1, we must have that xn = xλ so that Rmxn = Rm(xλ). Since
by Assertion F, Rm(xλ) = (Rmx) ◦ λ, we conclude that

dS(Rmx,Rmxn) ≤ max
{

‖(Rmxn)(t) − (Rmx)(λt)‖∞ , ‖λ‖o
}

< ǫ ,

which proves the assertion. ⊓⊔

Assertion H Let y be a trajectory in D([0, T ], Sm), m ≥ 2, and let x =
Rm−1y. Suppose that x is discontinuous at t ∈ (0, T ]. Then, y(t) = x(t) and

y is discontinuous at t.

Proof. We first show that y(t) = x(t) if x is discontinuous at t ∈ (0, T ]. We
proceed by contradiction. Fix t ∈ (0, T ] and suppose that y(t) 6= x(t), so that
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y(t) = m. We want to show that x is continuous at t. Since y belongs to
D([0, T ], Sm), y can be represented as in (1.9). By definition of Rm−1, the
only points where x can be discontinuous are the points ti, 1 ≤ i ≤ k. If t = ti
and x(ti) 6= y(ti), then y(ti) = m, y(ti−1) ∈ Sm−1 (because y(ti−1) ∈ Sm and
y(ti−1) 6= y(ti) = m) so that x(ti) = y(ti−1) = x(ti−1) = x(ti−) and x is
left-continuous at ti.

We now prove the second claim of the assertion. Fix t ∈ (0, T ] and suppose
that x is discontinuous at t. By the first part of the claim, y(t) = x(t) ∈ Sm−1.
By definition of Rm−1, y(t−) = x(t−) or y(t−) = m. In the first case y is
discontinuous at t because so is x. In the second case y is also discontinuous
at t because y(t) ∈ Sm−1. ⊓⊔

Lemma 4.7. Let ym ∈ D([0, T ], Sm) a sequence of trajectories such that

Rmym+1 = ym for all m ≥ 1. Then, there exists a trajectory y in E([0, T ], Sd)
such that Rmy = ym for all m ≥ 1.

Proof. Since Rmx ≤ x, the sequence ym is increasing and has therefore a
pointwise limit, denoted by y.

Suppose that y(t) = n ∈ S for some t ∈ [0, T ]. In this case ym(t) = n
for all m ≥ n. Indeed, if ym0

(t) 6= n for some m0 > n, then for all m ≥ m0,
either ym(t) = ym0

(t) or ym(t) = m > n, which contradicts the fact that
limm ym(t) = y(t) = n.

There exists 1 ≤ m0 ≤ ∞ such that ym(0) = 1 for m < m0 and ym(0) =
m0 for m ≥ m0. For any trajectory x, by our convention in the definition of
Rm,

(Rmx)(0) =

{

x(0) if x(0) ≤ m,

1 if x(0) > m.

Therefore ym(0) = (Rmym+1)(0) satisfies the relation

ym(0) =

{

ym+1(0) if ym+1(0) ≤ m,

1 if ym+1(0) = m+ 1.
(1.10)

Let m0 = min{j ≥ 1 : yj(0) 6= 1}. Assume that m0 < ∞, otherwise there
is nothing to be proven. By (1.10) for m = m0 − 1, ym0

(0) = m0, and by
definition of m0, yk(0) = 1 for k < m0. By (1.10) for m = m0, ym0+1(0) =
ym0

(0) = m0. Repeating this argument, we conclude that yk(0) = m0 for all
k ≥ m0, as claimed.

The trajectory y has a soft left-limit at each point t ∈ (0, T ]. Fix t ∈ (0, T ]
and suppose that there exists an increasing sequence tj converging to t and
such that y(tj) → n ∈ S. For j large enough y(tj) = n. We assume, without
loss of generality, that this holds for all j: y(tj) = n for all j ≥ 1. By the
penultimate paragraph, ym(tj) = n for all m ≥ n and j ≥ 1. This proves that
ym(t−) = n for all m ≥ n. In particular, by Remark 4.2, y has a soft left-limit
at t.
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It is not difficult to construct an example of a sequence ym for which y
has a soft left-limit at t ∈ (0, T ], but not a left-limit, i.e., a sequence ym for
which there exist increasing sequences tj , t

′
j converging to t and such that

y(tj) → n ∈ S, y(t′j) → d.
The trajectory y is soft right-continuous. Fix t ∈ [0, T ) and suppose that

there exists a decreasing sequence tj converging to t and such that y(tj) →
n ∈ S. The argument presented above shows that ym(t) = n for all m ≥ n,
which proves, in view of Remark 4.2, that y has a soft right-limit at t equal
to n. Since ym(t) = n for all m ≥ n, y(t) = n, which proves that y is soft
right-continuous at t.

Fix t ∈ (0, T ] and assume that there exists m for which ym is discontin-
uous at t. By Assertion H, ym+1(t) = ym(t) and ym+1 is discontinuous at t.
Repeating this argument, we conclude that yn(t) = ym(t) for all n ≥ m so
that y(t) = ym(t) ∈ S.

The trajectory y belongs to E([0, T ], Sd). We proved above that y(0) ∈ S.
Assume that y(t) = d for some t ∈ (0, T ]. By the previous paragraph, t is a
continuity point of ym for every m. Denote by [ℓm, rm) the largest interval
which contains t and in which ym is constant. ℓm is a non-decreasing sequence
bounded above by t. Denote by ℓ its limit. It is clear that ℓ = σy

∞(t), that
y(ℓ) = d and that y(ℓ−) = d, which proves that y belongs to E([0, T ], Sd).

It remains to show that Rmy = ym for all m ≥ 1. Fix m ≥ 1 and t ∈ [0, T ].
If t is a point of discontinuity of ym, by Assertion H, yn(t) = ym(t) for all
n ≥ m so that y(t) = ym(t) ∈ Sm and (Rmy)(t) = ym(t). If t is a continuity
point of ym, as above, let [ℓm, rm) the largest constancy interval of ym which
contains t. If ℓm > 0, ℓm is a discontinuity point of ym so that y(ℓm) =
ym(ℓm) ∈ Sm. By definition of the sequence yk, for k > m and ℓm ≤ s ≤ t,
yk(s) = ym(s) = ym(ℓm) or yk(s) > m. Hence, for ℓm ≤ s ≤ t, y(s) = ym(ℓm)
or y(s) > m, so that (Rmy)(t) = ym(ℓm) = ym(t). If ℓm = 0 and ym(0) 6= 1,
the same argument holds since the sequence yk(0), k ≥ m, is constant by
the assertion above (1.10). If ℓm = 0 and ym(0) = 1, the argument can be
adapted even if the sequence yk(0) may not be constant. By the assertion
above (1.10), for k > m and 0 ≤ s ≤ t, yk(s) = ym(s) = 1 or yk(s) > m.
Hence, for 0 ≤ s ≤ t, y(s) = 1 or y(s) > m. If y(s) > m for all 0 ≤ s ≤ t, by
our convention in the definition of Rm, (Rmy)(t) = 1 = ym(t). If there exists
0 ≤ s ≤ t such that y(s) = 1 we also have that (Rmy)(t) = 1 = ym(t). This
concludes the proof of the lemma. ⊓⊔

Proposition 4.8. The space E([0, T ], Sd) endowed with the metric d(x, y) is
complete and separable.

Proof. Consider a Cauchy sequence {xn : n ≥ 1} in E([0, T ], Sd) for the
metric d. By definition of d, for each m ≥ 1, Rmxn is a Cauchy sequence
in D([0, T ], Sm) for the metric dS . Since this space is complete, there exists
ym ∈ D([0, T ], Sm) such that Rmxn → ym. By Assertion G, Rmym+1 = ym.
Hence, by Lemma 4.7, there exists y ∈ E([0, T ], Sd) such that Rmy = ym for
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all m ≥ 1. Therefore, Rmxn → ym = Rmy, which implies that xn converges
to y in E([0, T ], Sd). This proves the completeness.

The separability of E([0, T ], Sd) follows from the separability of each set
D([0, T ], Sm). For each m ≥ 1, there exists a sequence of trajectories xm,n,
n ≥ 1, which is dense in D([0, T ], Sm) for the metric dS . We claim that the
countable set of trajectories xm,n, n ≥ 1, m ≥ 1 is dense.

Fix a trajectory x in E([0, T ], Sd) and ǫ > 0. Takem ≥ 1 such that 2−m < ǫ
and xm,n in D([0, T ], Sm) such that dS(xm,n,Rmx) < min{ǫ, [m(m− 1)]−1}.
There exists λ in Λ such that

max{‖xm,n − (Rmx) ◦ λ‖∞ , ‖λ‖o} < min{ǫ, [m(m− 1)]−1} .

Since ‖xm,n − (Rmx) ◦ λ‖∞ < [m(m − 1)]−1, xm,n = (Rmx) ◦ λ. Hence, by
Assertion F, for ℓ ≤ m, Rℓxm,n = Rℓ[(Rmx) ◦ λ] = (Rℓx) ◦ λ. In particular,

dS(Rℓxm,n,Rℓx) ≤ ‖λ‖o < ǫ .

Putting together the previous estimates, as dS(x, y) ≤ 1 for any pair of tra-
jectories in D([0, T ], Sℓ), we obtain that

∑

ℓ≥1

1

2ℓ
dS(Rℓxm,n,Rℓx) ≤

m
∑

ℓ=1

1

2ℓ
dS(Rℓxm,n,Rℓx) + ǫ ≤ 2ǫ .

This concludes the proof of the proposition. ⊓⊔

2 The space D∗([0, T ], Sd)
D∗([0, T ], Sd)

Denote by D∗([0, T ], Sd) the subset of all trajectories in D([0, T ], Sd) which
spend no time at d and which are continuous at time T :

D∗([0, T ], Sd) =
{

x ∈ D([0, T ], Sd) : ΛT (x) = 0 , x(T−) = x(T )
}

,

where

ΛT (x) =

∫ T

0

1{x(s) = d} ds .

ΛT (x)
Since a trajectory x in D∗([0, T ], Sd) spends no time at d, σx(t) = t for all

t ∈ [0, T ]. In particular, by definition of the map R∞, for x in D∗([0, T ], Sd)

(R∞x)(t) =

{

x(t) if x(t) ∈ S,

x(t−) if x(t) = d.
(2.1)

Therefore, (R∞x)(t) 6= x(t) only if x(t) = d 6= x(t−) and (R∞x)(T ) = x(T ).

Assertion I The map R∞ : D∗([0, T ], Sd) → E([0, T ], Sd) is one-to-one.
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Proof. Fix two trajectories x, y ∈ D∗([0, T ], Sd) and suppose that R∞x =
R∞y. Let A = {t ∈ [0, T ] : x(t) = d or y(t) = d}. By (2.1), x(t) = y(t) for
t 6∈ A. Hence, since the set A has measure zero and since x and y are right
continuous, x(t) = y(t) for t ∈ [0, T ). On the other hand, as we have seen just
below (2.1), x(T ) = (R∞x)(T ) = (R∞y)(T ) = y(T ). ⊓⊔

E∗([0, T ], Sd)
We denote by E∗([0, T ], Sd) the range of the map R∞ : D∗([0, T ], Sd) →

E([0, T ], Sd).

Assertion J A trajectory y in E([0, T ], Sd) belongs to E∗([0, T ], Sd) if and

only if

(a) y has left and right-limits at every point;

(b) If y(t+) = d for some t ∈ [0, T ), then y(t) = y(t−);
(c) y is continuous at T ;
(d)ΛT (y) = 0.

Proof. Fix a trajectory y in E∗([0, T ], Sd). Let x ∈ D∗([0, T ], Sd) such that
y = R∞x. It follows from (2.1) that y(t+) = x(t+), y(t−) = x(t−), which
proves (a). Assume that y(t+) = d for some t ∈ [0, T ). As we just have seen,
x(t+) = d. Since x is right continuous, x(t) = d. Thus, by (2.1), y(t) = x(t−).
By the first part of the proof, x(t−) = y(t−), so that y(t) = y(t−), which
proves (b). To verify (c), recall from (2.1) that y(T ) = x(T ) and from the first
part of the proof that y(T−) = x(T−). Since x belongs to D∗([0, T ], Sd),
x(T ) = x(T−) so that y(T ) = y(T−). Finally, since y(t) ∈ S whenever
x(t) ∈ S, x(t) = d if y(t) = d, and ΛT (y) ≤ ΛT (x) = 0.

Conversely, let y be a trajectory in E([0, T ], Sd) which fulfills conditions
(a)–(d). Let x be the trajectory defined by x(t) = y(t+), 0 ≤ t < T ,
x(T ) = y(T ). We claim that x ∈ D∗([0, T ], Sd). By definition, x is right
continuous and has left limits, and x(t+) = y(t+), x(t−) = y(t−). Therefore,
x ∈ D([0, T ], Sd), and, by assumption (c), x(T ) = x(T−).

By definition of x,

ΛT (x) =

∫ T

0

1{y(s+) = d} ds .

Fix t ∈ [0, T ) such that y(t+) = d. Then, either y(t) = d or, by assumption
(b), y(t−) = y(t) ∈ S. The first set of points has Lebesgue measure zero
because ΛT (y) = 0 by assumption (d). The second set is at most countable
because y is constant on an interval [t− ǫ, t] if y(t−) = y(t) ∈ S. This proves
that ΛT (x) = 0.

It remains to show thatR∞x = y. Suppose that x(t) ∈ S. By the definition
(2.1) of R∞, (R∞x)(t) = x(t) = y(t+). Since y is soft right-continuous and
since y has a right-limit which belongs to S, y(t+) = y(t), so that (R∞x)(t) =
y(t). Suppose now that x(t) = d, so that y(t+) = d. By definition (2.1) of R∞,
(R∞x)(t) = x(t−) = y(t−). Since y(t+) = d, by assumption (b), y(t−) = y(t)
so that (R∞x)(t) = y(t). ⊓⊔
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The set E∗([0, T ], Sd) is clearly not closed, but Lemma 4.9 below pro-
vides sufficient conditions for the limit x of a converging sequence xn in
E∗([0, T ], Sd) to belong to E∗([0, T ], Sd).Dc([0, T ], Sm)

Denote byDc([0, T ], Sm), m ≥ 1, the subset of trajectories in D([0, T ], Sm)
which are continuous at T . Note that Dc([0, T ], Sm) is a closed subset of
D([0, T ], Sm) and that the trajectory Rmx belongs to Dc([0, T ], Sm) if x ∈
E∗([0, T ], Sd).

For a trajectory x ∈ Dc([0, T ], Sm) and 1 ≤ j ≤ m, denote by Nj =
Nj(x) the number of visits to j in the time interval [0, T ], and denote by
Tj,1, . . . , Tj,Nj

the holding times at j. Hence, if the trajectory x is given by

x(t) =

k−1
∑

i=0

ℓi 1{[ti, ti+1)}(t) + ℓk1{[tk, T ]} ,

where 0 = t0 < t1 < · · · < tk < T , and ℓi 6= ℓi+1, 0 ≤ i ≤ k − 1, and if
we denote by Ij the set {i ∈ {0, . . . , k} : ℓi = j

}

, we have that Nj(x) = |Ij |.
Moreover, if Nj ≥ 1 and if Ij = {i1, . . . , iNj

}, where ia < ia+1 for 1 ≤ a < Nj ,

Tj,1 = t(i1 + 1)− t(i1) , . . . , Tj,Nj
= t(iNj

+ 1)− t(iNj
) . (2.2)

In this formula, to avoid small indices we represented tia by t(ia). By conven-
tion, Tj,ℓ = 0 for ℓ > Nj .Nk

Assertion K The functionals Nk, 1 ≤ k ≤ m, are continuous with respect

to the Skorohod topology in Dc([0, T ], Sm), and the sets {x : Tj,ℓ ≥ a}, a > 0,
are closed.

Proof. Fix 1 ≤ k ≤ m, and let {xn : n ≥ 1} be a sequence in Dc([0, T ], Sm)
which converges to a trajectory x in the Skorohod topology. Fix ǫ < [m(m−
1)]−1. Since xn converges to x, there exists n sufficiently large and λ ∈ Λ such
that

‖xn − xλ‖∞ < ǫ .

Since ǫ < [m(m − 1)]−1 we have that xn = xλ so that Nk(xλ) = Nk(xn).
Since Nk(xλ) = Nk(x), we conclude that the sequence Nk(xn) is eventually
constant and converges to Nk(x).

To prove that the sets {x : Tj,ℓ ≥ a} are closed, fix 1 ≤ j ≤ m, ℓ ≥ 1,
a > 0, and consider a sequence xn converging in the Skorohod topology to
some trajectory x. Suppose that Tj,ℓ(xn) ≥ a for all n ≥ 1 and fix 0 < ǫ <
[m(m−1)]−1. There exists λn ∈ Λ such that ‖xn−xλn‖∞ < ǫ, ‖λn‖

o < ǫ for all
n large enough. As in the first part of the proof, we deduce from this estimate
that xn = xλn so that Nj(xn) = Nj(xλn) = Nj(x) and Tj,ℓ(xn) = Tj,ℓ(xλn)
for n large enough. Since Tj,ℓ(xn) ≥ a, ℓ ≤ Nj(xn) = Nj(x). Denote by
[s, t) the time interval of the ℓ-th visit to j for the trajectory x, so that
Tj,ℓ(xλn) = λ−1

n (t)−λ−1
n (s). Since Tj,ℓ(xn) = Tj,ℓ(xλn) and since Tj,ℓ(xn) ≥ a,

λ−1
n (t)− λ−1

n (s) ≥ a. However, as ‖λn‖
o < ǫ, e−ǫ(t− s) ≤ λ−1

n (t) − λ−1
n (s) ≤

eǫ(t − s). Therefore, Tj,ℓ(x) = t − s ≥ e−ǫ[λ−1
n (t) − λ−1

n (s)] ≥ e−ǫa, which
proves the assertion. ⊓⊔
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Note that in the next lemma all conditions are formulated in terms of the
trajectories Rℓxn.

Lemma 4.9. Let {xn : n ≥ 1} be a sequence in E∗([0, T ], Sd) which converges

to x ∈ E([0, T ], Sd) in the metric d. Assume that

(a)

lim
m→∞

sup
ℓ≥1

sup
n≥1

∫ T

0

1{Rℓxn(s) ≥ m} ds = 0 ;

(b)For each m ≥ 1, there exists km ∈ N such that Nm(Rℓxn) ≤ km for all

ℓ ≥ m and n ≥ 1;
(c) For each m ≥ 1, there exists ǫm > 0 such that Tm,k(Rℓxn) ≥ ǫm for all

1 ≤ k ≤ Nm(Rℓxn), ℓ ≥ m and n ≥ 1;
(d)For all ℓ ≥ 1, n ≥ 1, Rℓxn is continuous at T .

Then, x belongs to E∗([0, T ], Sd).

Proof. We need to prove that the trajectory x fulfills conditions (a)–(d) of
Assertion J. We first claim that ΛT (x) = 0. Fix ǫ > 0. By assumption (a),
there exists m ≥ 1 such that

∫ T

0

1{(Rℓxn)(s) ≥ m} ds ≤ ǫ

for all n ≥ 1, ℓ ≥ 1. Fix ℓ ≥ m. The sequence Rℓxn converges almost ev-
erywhere to Rℓx because it converges in the Skorohod topology. Hence, by
Fatou’s lemma,

∫ T

0

1{(Rℓx)(s) ≥ m} ds ≤ lim inf
n→∞

∫ T

0

1{(Rℓxn)(s) ≥ m} ds ≤ ǫ .

Since Rℓx converges pointwisely to x, by the dominated convergence theorem,

∫ T

0

1{x(s) ≥ m} ds ≤ ǫ ,

so that ΛT (x) ≤ ǫ.
We now show that x has left and right limits and that condition (b) of

Assertion J is in force. Since x belongs to E([0, T ], Sd) to prove the first claim
it is enough to exclude the possibility that x has a finite soft limit at some
point t ∈ [0, T ]. Fix m ≥ 1. By assumptions (b) and (c) of this lemma, there
exist km ≥ 1 and ǫm > 0 such that Nm(Rℓxn) ≤ km and Tm,k(Rℓxn) ≥ ǫm for
all 1 ≤ k ≤ Nm(Rℓxn), ℓ ≥ m, n ≥ 1. Since Rℓxn converges in the Skorohod
topology to Rℓx, by Assertion K, Nm(Rℓx) ≤ km and Tm,k(Rℓx) ≥ ǫm for all
1 ≤ k ≤ Nm(Rℓx), ℓ ≥ m. As the sequence Nm(Rℓx) increases with ℓ, it is
constant for ℓ large enough. Denote by [sℓ1, t

ℓ
1), . . . , [s

ℓ
N , tℓN ) the N = Nm(Rℓx)

time-intervals in which Rℓx visits m. Since Tm,k(Rℓx) ≥ ǫm for all k, tℓi ≥
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sℓi + ǫm. By Assertion H, sℓ+1
i = sℓi , 1 ≤ i ≤ N , and tℓ+1

i ≤ tℓi . Since Rℓx
converges pointwisely to R∞x = x, the set {s ∈ [0, T ] : x(s) = m} is the
union of N disjoint intervals of lenght greater or equal to ǫm, which are closed
at the left boundary and open or closed at the right boundary. In particular,
m can not be the finite soft limit of x at some point t ∈ [0, T ]. Since this holds
for every m, x does not have a left or a right finite soft limit at some time
t ∈ [0, T ]. This proves condition (a) of Assertion J.

We turn to condition (b) of Assertion J. Suppose that x(t+) = d for some
t ∈ [0, T ). If x(t) = d, since x ∈ E([0, T ], Sd) and ΛT (x) = 0, σ∞(t) = t and,
by definition of the set E([0, T ], Sd), x(t−) = x(t). If x(t) = m ∈ S, since
x(t+) = d, t is the right endpoint of an interval [si, ti] obtained as the limit of
the intervals [sℓi , t

ℓ
i) introduced in the previous paragraph. Since the interval

is not degenerate, x(t−) = m = x(t), which proves condition (b) of Assertion
J.

We finally prove condition (c) of Assertion J. Suppose that x(T ) = k ∈ S.
In this case, since the set {s ∈ [0, T ] : x(s) = k} is the union of a finite number
of disjoint intervals of positive lenght, x is continuous at T . Suppose now that
x(T ) = d. By assumption (d) of this lemma, (Rℓxn)(T ) = (Rℓxn)(T−) for
all ℓ ≥ 1, n ≥ 1. Since Rℓxn converges to Rℓx in the Skorohod topology, the
continuity at T is inherited by Rℓx. Denote by [aℓ, T ] the constancy interval
of Rℓx and fix m ≥ 1. Since x(T ) = d and since (Rℓx)(T ) converges to x(T ),
there exists ℓ0 ≥ 1 such that for all ℓ ≥ ℓ0, (Rℓx)(T ) ≥ m. By definition of
aℓ and since x ≥ Rℓx, for all aℓ ≤ t ≤ T , x(t) ≥ (Rℓx)(t) = (Rℓx)(T ) ≥ m.
This proves that x(T−) = d = x(T ). Condition (c) of Assertion J is therefore
in force, which concludes the proof of the lemma. ⊓⊔

Corollary 4.10. Let x be a trajectory in E([0, T ], Sd) which satisfies condi-

tions (b)–(d) of the previous lemma and such that ΛT (x) = 0. Then, x belongs

to E∗([0, T ], Sd).

Proof. By the proof of Lemma 4.9, x satisfies conditions (a)–(c) of Assertion
J. Since condition (d) of this assertion holds by assumption, the corollary is
proved. ⊓⊔

3 Weak Convergence of Probability Measures.

We examine in this section the weak convergence of probability measures on
E([0, T ], Sd).

Fix m ≥ 1 and consider a sequence xn in D([0, T ], Sm) converging to x in
the Skorohod topology. Then, xn converges to x in E([0, T ], Sd). Indeed,

d(xn, x) =
∑

ℓ≥1

1

2ℓ
dS(Rℓxn,Rℓx)

=
1

2m
dS(xn, x) +

m
∑

ℓ=1

1

2ℓ
dS(Rℓxn,Rℓx) .
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By hypothesis and by Assertion G, this sum vanishes as n ↑ ∞.
Let F : E([0, T ], Sd) → R be a continuous function for the soft topology.

Then, its restriction to D([0, T ], Sm), m ≥ 1, is continuous for the Skorohod
topology. Indeed, consider a sequence xn converging in D([0, T ], Sm) to x. By
the previous paragraph, xn converges to x in the soft topology of E([0, T ], Sd).
Since F is continuous in this topology, F (xn) converges to F (x).

Lemma 4.11. A sequence of probability measures Pn on E([0, T ], Sd) con-

verges weakly to a measure P if and only if for each m ≥ 1 the sequence of

probability measures Pn ◦ R
−1
m defined on D([0, T ], Sm) converges weakly to

P ◦R−1
m with respect to the Skorohod topology.

Proof. Suppose that the sequence Pn converges weakly to P and fix m ≥ 1.
Since Rm : E([0, T ], Sd) → D([0, T ], Sm) is continuous for the soft topology,
Pn ◦R−1

m converges weakly to P ◦R−1
m .

Conversely, suppose that Pn ◦R−1
m converges weakly to P ◦R−1

m for every
m ≥ 1. Fix a bounded, uniformly continuous function F : E([0, T ], Sd) → R

and ǫ > 0. Since F is uniformly continuous, there exists δ > 0 such that |F (y)−
F (x)| ≤ ǫ if d(x, y) ≤ δ. Let m ≥ 1 such that 2−(m−1) < δ. Since d(x,Rmx) ≤
2−(m−1) < δ, the difference EPn

[F (x)]−EPn
[F (Rmx)] is absolutely bounded

by ǫ, uniformly in n. A similar estimate holds for P replacing Pn.
We have shown right before the lemma that F : D([0, T ], Sm) → R is

continuous for the Skorohod topology. As Pn◦R
−1
m converges weakly to P ◦R−1

m

in the Skorohod topology, and since F is bounded and continuous, there exists
n0 such that for all n ≥ n0, |EPn

[F (Rmx)] − EP [F (Rmx)]| ≤ ǫ. Putting
togheter the previous estimates we conclude that for all n ≥ n0,

∣

∣EPn
[F (x)]− EP [F (x)]

∣

∣ ≤ 3 ǫ ,

which concludes the proof of the lemma. ⊓⊔

Proposition 4.12. Let {Pn : n ≥ 1} be a sequence of probability measures on

E∗([0, T ], Sd) which converges weakly to a measure P in E([0, T ], Sd) endowed
with the soft topology. Assume that

(a)

lim
m→∞

lim sup
ℓ→∞

lim sup
n→∞

EPn

[

∫ T

0

1{(Rℓx)(s) ≥ m} ds
]

= 0 ;

(b)For each m ≥ 1,

lim
k→∞

lim sup
ℓ→∞

lim sup
n→∞

Pn

[

Nm(Rℓx) ≥ k
]

= 0 ;

(c) For each m ≥ 1,

lim
ǫ→0

lim sup
ℓ→∞

lim sup
n→∞

Pn

[

Nm(Rℓx)
⋃

k=1

{Tm,k(Rℓx) < ǫ}
]

= 0 ;
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(d)For every ℓ, n ≥ 1,

Pn

[

(Rℓx)(T ) = (Rℓx)(T−)
]

= 1 .

Then, P is concentrated on E∗([0, T ], Sd).

Proof. It is not difficult to show that for eachm ≤ ℓ the map y →
∫ T

0
1{y(s) ≥

m} ds is continuous in D([0, T ], Sℓ). Therefore, the map y →
∫ T

0
1{(Rℓy)(s) ≥

m} ds is bounded and continuous in E([0, T ], Sd). By assumption (a), given
ǫ > 0, there exists m0 such that for all m ≥ m0,

lim sup
ℓ→∞

EP

[

∫ T

0

1{(Rℓx)(s) ≥ m} ds
]

≤ ǫ .

Since Rℓx increases pointwisely to R∞x = x, by the monotone convergence
theorem,

EP

[

ΛT (x)
]

≤ EP

[

∫ T

0

1{x(s) ≥ m} ds
]

≤ ǫ .

Letting ǫ ↓ 0, we conclude that EP [ΛT (x)] = 0, i.e., that

P [ΛT (x) = 0] = 1 . (3.1)

By Assertion K, the functionals Nm, m ≥ 1, are continuous for the Skoro-
hod topology. The sets {x ∈ D([0, T ], Sℓ) : Nm(x) ≥ k} = {x ∈ D([0, T ], Sℓ) :
Nm(x) ≤ k− 1}c are therefore open and, by assumption (b), for every m ≥ 1,

lim
k→∞

lim sup
ℓ→∞

P
[

Nm(Rℓx) ≥ k
]

= 0 . (3.2)

As Nm(Rℓx) is a non-decreasing sequence in ℓ, the set {Nm(Rℓx) ≥ k} is
contained in {Nm(Rℓ+1x) ≥ k}. Thus, for every m ≥ 1,

P
[

⋂

k≥1

⋃

ℓ≥m

{Nm(Rℓx) ≥ k}
]

= lim
k→∞

lim
ℓ→∞

P
[

Nm(Rℓx) ≥ k
]

= 0 ,

where the last equality follows from (3.2). Since this identity holds for every
m ≥ 1,

P
[

⋂

m≥1

⋃

k≥1

⋂

ℓ≥m

{Nm(Rℓx) ≤ k}
]

= 1 . (3.3)

A straightforward modification of the proof of Assertion K shows that for

every ℓ ≥ m, the set
⋂Nm(y)

k=1 {Tm,k(y) ≥ ǫ} is closed in D([0, T ], Sℓ). Therefore,
by assumption (c),

lim
ǫ→0

lim sup
ℓ→∞

P
[

Nm(Rℓx)
⋃

k=1

{Tm,k(Rℓx) < ǫ}
]

= 0 .
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Since the duration of the visits to a point m may only decrease as ℓ increases,
⋃Nm(Rℓx)

k=1 {Tm,k(Rℓx) < ǫ} ⊂
⋃Nm(Rℓ+1x)

k=1 {Tm,k(Rℓ+1x) < ǫ}. In particular,
by the previous displayed equation,

P
[

⋂

j≥1

⋃

ℓ≥m

Nm(Rℓx)
⋃

k=1

{

Tm,k(Rℓx) <
1

j

}]

= 0 .

Since this equation holds for every m ≥ 1, we conclude that

P
[

⋂

m≥1

⋃

j≥1

⋂

ℓ≥m

Nm(Rℓx)
⋂

k=1

{

Tm,k(Rℓx) ≥
1

j

}]

= 1 . (3.4)

Finally, as the set {x ∈ D([0, T ], Sℓ) : x(T ) = x(T−)} is closed, by as-
sumption (d), for every ℓ ≥ 1,

P
[

(Rℓx)(T ) = (Rℓx)(T−)
]

= 1 ,

so that
P
[

⋂

ℓ≥1

{(Rℓx)(T ) = (Rℓx)(T−)}
]

= 1 . (3.5)

Denote by A the intersection of the events with full measure appearing
in (3.1), (3.3), (3.4), (3.5). By Corollary 4.10, any trajectory in A belongs to
E∗([0, T ], Sd). This proves the proposition. ⊓⊔

In view of condition (b), to prove condition (c) of Proposition 4.12, it is
enough to show that for each k,m ≥ 1,

lim
ǫ→0

lim sup
ℓ→∞

lim sup
n→∞

Pn

[

Tm,k(Rℓx) < ǫ
]

= 0 . (3.6)

We conclude this section with two remarks needed later. Fix a trajectory
x in E([0, T ], Sd) and m ≥ 1. Then,

d(x,Rmx) ≤
1

2m−1
· (3.7)

This bound follows from the observation that RkRmx = Rkx for k ≤ m, and
from the fact that dS(y, z) ≤ 1 if y and z are trajectories in D([0, T ], Sℓ) for
some ℓ ≥ 1.

Let x, y be two trajectories in D([0, T ], Sd) such that dS(x, y) < [m(m +
1)]−1 for some m ≥ 1. Then,

d(x, y) ≤
1

m(m+ 1)
+

1

2m
· (3.8)

Indeed, since dS(x, y) < [m(m + 1)]−1, by definition of the Skorohod metric
there exists an increasing function λ : [0, T ] → [0, T ] such that
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max
{

‖x− y ◦ λ‖∞ , ‖λ‖o
}

<
1

m(m+ 1)
·

Since ‖x − y ◦ λ‖∞ < [m(m + 1)]−1, if x(s) ≤ m for some s ∈ [0, T ], then
(y ◦ λ)(s) = x(s) and, conversely, if (y ◦ λ)(r) ≤ m for some r ∈ [0, T ], then
x(r) = (y ◦ λ)(r). It follows from these relations that Rkx = Rk(y ◦ λ) for all
k ≤ m. Hence, in view of Assertion F, Rkx = (Rky) ◦ λ, and

dS(Rkx,Rky) ≤ max
{

‖Rkx− (Rky) ◦ λ‖∞ , ‖λ‖o
}

<
1

m(m+ 1)
·

To conclude the proof of (3.8) it remains to recall that dS(Rkx,Rky) ≤ 1 for
all k.

4 Applications

In view of Lemma 4.11 and of Proposition 4.12, to prove that a sequence of
probability measures Pn in E∗([0, T ], Sd) converges in the soft topology to a
probability measure P in E∗([0, T ], Sd), we have first to show that the pro-
jections Pn ◦R

−1
m , m ≥ 1, converge in the Skorohod topology of D([0, T ], Sm)

to P ◦ R
−1
m , and then to prove that the assumptions (a)–(c) of Proposition

4.12 are fulfilled. We show in this section, by inspecting three examples, that
the conditions (a)–(c) of Proposition 4.12 follow from the convergence of the
order parameter to a Markov process and from the fact that asymptotically
the process spends a negligible amount of time on ∆N .

1. Random walks among traps. Consider the random walk among traps
η(t) = ηN (t) introduced in Chapter ??, and recall that we denoted by πN the
stationary state. Fix T > 0 and denote by QN

k , k ≥ 1, the probability measure
on D([0, T ], Sd) induced by the random walk ZN(t) = ΨN (η(βN t)) starting
from k. Note that time has been speeded-up by βN = vℓN (x

N
1 )−1, where

vℓN (xN
1 ) is the probability to escape from the ball of radius ℓN centered at

the deepest trap xN
1 :

vℓN (x
N
1 ) = PxN

1

[

HB(xN
1
,ℓN )c < H+

xN
1

]

.

Note also that the measure QN
k is concentrated on the set D([0, T ], S|VN |),

where VN represents the set of vertices of the graph in which the evolution
takes place.βN

It is clear from this last observation that ΛT (x) = 0,QN
k – almost surely. On

the other hand, if we denote by τj , j ≥ 1, the holding times of the trajectory
x(t), x(t) is discontinuous at T if and only if τ1 + · · · + τj = T for some j.
Since, QN

k [τ1 + · · · + τj = T ] = 0 for each j ≥ 1, QN
k is concentrated on the

set D∗([0, T ], Sd).
Denote by PN the probability measure on E([0, T ], Sd) defined by PN =

QN
k ◦R−1

∞ . By the last observation, PN is concentrated on E∗([0, T ], Sd). We

Page: 84 job:book macro: svmono.cls date/time:25-Sep-2013/18:43



4 Applications 85

claim that the sequence PN fulfills all the assumptions of Proposition 4.12.
We start with assumption (a). Since Rℓx ≤ x, it is enough to show that

lim
m→∞

lim sup
N→∞

EPN

[

∫ T

0

1{x(s) ≥ m} ds
]

= 0 . (4.1)

By definition of PN ,

EPN

[

∫ T

0

1{x(s) ≥ m} ds
]

= EQN
k

[

∫ T

0

1{x(s) ≥ m} ds
]

≤
1

πN (k)

∑

j≥1

πN (j)EQN
j

[

∫ T

0

1{x(s) ≥ m} ds
]

.

Since πN is the stationary state, the previous sum is equal to T πN{Sc
m−1},

where, we recall, Sm = {1, . . . ,m}. As, for every k ≥ 1,

lim
m→∞

lim sup
N→∞

πN{Sc
m}

πN (k)
= 0 ,

condition (4.1) is in force.
We first prove Conditions (b) and (c) of Proposition 4.12 under the as-

sumption that β := supN≥1 βN is finite. This is the case of the random walk

on a torus Td
N in dimension d ≥ 3.

Since Nm(Rℓx) ≤ Nm(x), ℓ ≥ 1, to prove condition (b) of Proposition
4.12, it is enough to show that for each m ≥ 1,

lim
j→∞

lim sup
N→∞

PN

[

Nm(x) ≥ j
]

= 0 . (4.2)

The above probability is equal to QN
k [Nm(x) ≥ j ]. Denote by τmi , i ≥ 1,

the holding times at m. This is a sequence of i.i.d. mean β−1
N Wm exponential

random variables. Since {Nm(x) ≥ j} ⊂ {τm1 + · · · + τmj ≤ T }, the previous

probability is bounded by QN
k

[

τm1 + · · ·+ τmj ≤ T
]

≤ P
[

T1+ · · ·+Tj ≤ T
]

,

where Ti, i ≥ 1, is a sequence of i.i.d. mean β−1 Wm exponential random
variables. This expression vanishes as j ↑ ∞, which proves (4.2).

In view of (3.6) and since Tm,j(Rℓx), j ≥ 1, are identically distributed, to
prove condition (c) of Proposition 4.12 we need to show that for each m ≥ 1,

lim
ǫ→0

lim sup
ℓ→∞

lim sup
N→∞

PN

[

Tm,1(Rℓx) < ǫ
]

= 0 .

Since Tm,1(Rℓx) ≥ Tm,1(x), ℓ ≥ m ≥ 1, to prove condition (c) of Proposition
4.12 we just have to show that for each m ≥ 1,

lim
ǫ→0

lim sup
N→∞

PN

[

Tm,1(x) < ǫ
]

= 0 . (4.3)

With the notation introduced in the previous paragraph, the probability above
is equal to QN

k [ τm1 < ǫ ]. As τm1 is a mean β−1
N Wm exponential random variable
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and as βN ≤ β, the previous probability is less than or equal to P [T <
ǫ ], where T is a mean β−1 Wm exponential random variable. This proves
condition (c) of Proposition 4.12 in the case where supN βN < ∞.

We conclude this section proving conditions (b) and (c) of Proposition 4.12
without the assumption that supN βN < ∞. Recall that we denote by AN the
set of the first MN deepest traps, AN = {xN

1 , . . . , xN
MN

}. Let UN
1 be the time

of the first visit to AN , UN
1 = inf{t ≥ 0 : η(t) ∈ AN}, and define recursively

the sequence of stopping times UN
j , j ≥ 1, by

UN
j+1 = inf

{

t ≥ UN
j : η(t) ∈ AN , ∃UN

j ≤ s ≤ t s.t. η(s) 6∈ BN

}

,

where BN = ∪MN

i=1B(xN
i , ℓN). Hence, the sequence UN

j represents the succesive
visits to the deepest traps after escaping from these traps. We refer to the time
interval [UN

j , UN
j+1) as the j-th excursion.

For m ≥ 1, let e1(m) = min{j ≥ 1 : η(UN
j ) = xN

m} be the first excursion

to the trap xN
m. Define recursively ei(m), i ≥ 1, by

ei+1(m) = min{j > ei(m) : η(UN
j ) = xN

m} .

Note that we may have ei+1(m) = ei(m) + 1, as the process may escape from
the trap xN

m and then return to it before visiting any other deep trap. We
refer to [UN

ei(m), U
N
ei1 (m)+1) as the i-th excursion to xN

m.

Let GN
i , i ≥ 1, be the number of visits to xN

m during the i-th excursion
to xN

m, in other words, GN
i is the number of visits to xN

m in the time interval
[UN

ei(m), U
N
ei1(m)+1). The random variables GN

i , i ≥ 1, are i.i.d. and have a

mean βN geometric distribution. Let TN
i,p, p ≥ 1, be the p-th holding time

at xN
m after UN

ei(m). To clarify this definition, observe that the random walk

η(tβN ) remains at xN
m in the time interval [UN

ei(m), U
N
ei(m) + TN

i,1) and that

TN
i+1,p = TN

i,GN
i +p

. The random variables TN
i,p are i.i.d., have a mean Wm/βN

exponential distribution, and are independent from the sequence GN
i .

Fix N large enough for MN ≥ ℓ so that Nm(Rℓx) ≤ Nm(RMN
x). In this

case,

{Nm(Rℓx) ≥ j} ⊂
{

j
∑

i=1

GN
i

∑

p=1

TN
i,p ≤ T

}

.

It follows from the conclusion of the last paragraph that
∑

1≤p≤GN
i
TN
i,p, i ≥ 1,

forms a sequence of i.i.d. mean Wm exponential random variables. This proves
condition (b) of Proposition 4.12.

In view of (3.6) and since Tm,j(Rℓx), j ≥ 1, are identically distributed, to
prove condition (c) of Proposition 4.12 we need to show that for each m ≥ 1,

lim
ǫ→0

lim sup
ℓ→∞

lim sup
N→∞

PN

[

Tm,1(Rℓx) < ǫ
]

= 0 .
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Since Tm,1(Rℓx) ≥ Tm,1(RMN
x), it is in fact enough to show that for each

m ≥ 1,
lim
ǫ→0

lim sup
N→∞

PN

[

Tm,1(RMN
x) < ǫ

]

= 0 .

This probability is equal to QN
k [Tm,1(RMN

x) < ǫ ] and Tm,1(RMN
x) ≥

∑GN
1

p=1 T
N
1,p, a mean Wm exponential random variable. Therefore,

PN

[

Tm,1(RMN
x) < ǫ

]

≤ P [T < ǫ] ,

where T is a mean Wm exponential random variable, which proves condition
(c) of Proposition 4.12.

2. Zero-range processes. Consider the zero-range process η(t) = ηN (t)
introduced in Chapter ??. We assume that η(t) is defined in some probability
space (Ω,F ,P). For N > L, let the projection ΨN : EL,N → {1, . . . , L}∪ {N}
be defined by

ΨN (η) =

L
∑

x=1

j 1{η ∈ E
x
N} + N1{η ∈ ∆N} .

It could be more natural to define ΨN (η) as d in the set ∆N . However, with
such a definition ΨN (η(t)) would not be a trajectory inD([0, T ], Sd) and theory
developped in the previous sections could not be applied.

Fix T > 0, 1 ≤ x ≤ L, and a configuration η in E
x
N . Denote by QN

η the

probability measure on D([0, T ], Sd) induced by the random walk XN (t) =
ΨN (η(N1+αt)) starting from η. Note that time has been speeded-up by N1+α

and that the measure QN
η is concentrated on the set D([0, T ], SN).

It is clear from this last observation that ΛT (x) = 0, QN
η – almost surely.

On the other hand, if we denote by τj , τ
η
j , j ≥ 1, the holding times of the

processes XN (t), η(Nα+1t), respectively, XN (t) is discontinuous at T if and
only if τ1 + · · · + τj = T for some j. Since, τ1 + · · · + τj = τη1 + · · · + τηk for
some k ≥ j and since P[τη1 + · · · + τηℓ = T ] = 0 for all ℓ ≥ 1, we have that
QN

η [τ1 + · · · + τj = T ] = 0 for each j ≥ 1. Therefore, QN
η is concentrated on

the set D∗([0, T ], Sd).
Denote by PN the probability measure on E([0, T ], Sd) defined by PN =

QN
η ◦R−1

∞ . By the last observation, PN is concentrated on E∗([0, T ], Sd). We
claim that the sequence PN fulfills all the assumptions of Proposition 4.12.
We start with assumption (a). As in the previous example, it is enough to
show that (4.1) holds. By definition of PN , for N ≥ m ≥ L,

EPN

[

∫ T

0

1{x(s) ≥ m} ds
]

= EQN
η

[

∫ T

0

1{x(s) ≥ m} ds
]

= Eη

[

∫ T

0

1{η(sNα+1) ∈ ∆N} ds
]

,

which is the statement of Lemma ?? in ?.
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We turn to condition (b) of Proposition 4.12. As in the example of random
walks among traps, it is enough to prove (4.2). Denote by Tj , j ≥ 1, the
holding times between successive visits to the metastable sets: T1 = inf{t >
0 : η(t) ∈ E

N},

Tj+1 = inf{t > 0 : η(Tj + t) ∈ E
N \ EN

η(Tj)
} , Tj = T1 + · · ·Tj , j ≥ 1 .

Denote by TE

j , j ≥ 1, the same sequence for the trace process ηE(t), TE
1 =

inf{t > 0 : ηE(t) ∈ E
N}.

For 1 ≤ k ≤ L, let e1(k) = min{j ≥ 1 : η(Tj) ∈ Ek} be the first visit to
the metastable set Ek. Define recursively ei(k), i ≥ 1, by

ei+1(k) = min{j > ei(k) : η(Tj) ∈ Ek} .

It is clear that TE
j ≤ Tj , j ≥ 1, and that {Nk(X

N ) ≥ j} ⊂ {Te1(k) + · · ·+

Tej(k) ≤ T } ⊂ {TE

e1(k)
+ · · ·+TE

ej(k)
≤ T }. Since the sequence TE

ej(k)
represents

the holding times at k for the process XN (t) = ΨN(ηE(N1+αt)), and since the
process XN (t) converges in the Skorohod topology to a Markov process on
{1, . . . , L},

lim sup
N→∞

Pη

[

TE

e1(k)
+ · · ·+ TE

ej(k)
≤ T

]

≤ P
[

S1 + · · ·+ Sj ≤ T
]

,

where Si, i ≥ 1, is a sequence of non-degenerate i.i.d. exponential random
variables. As j ↑ ∞, this expression vanishes, which proves (4.2).

It remains to prove assertion (c) of Proposition 4.12. As argued in the
previous example, it is enough to show that (4.3) holds for every m ≥ 1. With
the notation introduced above, it means that we have to show that

lim
ǫ→0

lim sup
N→∞

Pη

[

Te1(m) < ǫ
]

= 0 .

Since TE

e1(m) ≤ Te1(m), it is enough to prove the previous assertion with

TE

e1(m) replacing Te1(m). This follows from the convergence of TE

e1(m) to a
non-degenerate exponential distribution.
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