4

Topology

Consider the birth and death chain n(t) on Exy = {0,..., N} defined in Chap-
ter 77 associated to the functions H(z) = 2%(1 — z)%, a > 1, and &(x) = 1,
x € [0,1]. To define the jump rates of this chain, let mxy be the probability

measure given by
1 1

Zy Hy(k)’

where Hy(k) = H(k/N), 1 < k < N — 1, Hy(0) = Hy(N) = N°, and
where Zy is the partition function Zy = Y <y Hn(k)™!. The jump rates
Ry (x,y) of n(t) are defined for n(t) to be reversible with respect to my:

WN(IC) =

FN(k)

0<k<N,

R(k, j) = 0 otherwise.

Fix a sequence 1 < fy < N and let &, = {0,...,¢n}, €% = {N —
KN,...,N}, SNZS}VUS?V, AN:EN\SN. Let WN:EN%{I,ZO} be the
order parameter:

2
Un(n) = Y jl{ne &y} + 01{ne An},
j=1

and let XV (t) = Un(n(tN**1)) be the value of the order parameter at time
t, where time has been speeded-up by N®*!. We prove in Chapter ?? that on
the time-scale N*1 7(t) evolves as a symmetric Markov chain on {1, 2}.
Far from the boundary, in the interval {eN,...,(1 —€)N}, € > 0, the
dynamics of the birth and death chain () corresponds to the one of a weakly
asymmetric random walk. Hence, in the diffusive time scale N? in the interval
{eN,...,(1 — ¢)N} the birth and death chain 7(¢) evolves as a Brownian
motion with a drift. In constrast, close to the boundaries the chain has a drift
of order one in the direction of the boundary, which increases as it approaches
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the boundary. This drift encloses the process in a microscopic neighborhood
of the boundary, which is only surmounted in a time scale of order N1,

This model presents, therefore, two macroscopic time scales: the diffusive
one, N2, which corresponds to the time needed to reach the boundary from
the bulk, and the longer time scale N1, which is the time needed to escape
from a microscopic neighborhood of a boundary site. The graph of a typical
realization of X% (¢) is depicted in Figure ??7. As N 1 oo, the length of the
excursions to 0 decreases to vanish in the limit. These evanescent excursions
to 0 precludes the convergence of the process XV (t) in the Skorohod topology.
We present in this chapter a weaker topology, tailor maded to handle such
cases which are typical in the metastable context.

The chapter is organized as follows. For a metric space M, denote by
D([0,T),M), T > 0, the space of right-continuous functions « : [0,7] — M
with left-limits. We introduce in 1.8 a metric d in a subspace of D([0,T7], S5),
where S; is the one-point compactification of N. The completion of this sub-
space with respect to the metric d consists of trajectories = : [0,7] — Sy
which at each point ¢ € (0,7) may have at most two left-limits and two right-
limits, on in N and the other one equal to 0, the point added to N to turn
it into a compact metric space. The space of such trajectories is denoted by
E([0,T],S5). We introduce this space in Section 1 below and examine the
properties

1 The space E([0,T1],.S,)

Assume now that the order parameter takes a countable number of values,
S =N ={1,2,...}. Let Sy be the one-point compactification of S: Sy =
S U {0}, o = oo, where the metric in S, is given by d(k,j) = [k~ — j71|.
Generic elements of the set S; are denoted by the symbols n, m.

We adopt the following nomenclature. A sequence of real numbers {¢; : j >
1} is said to the be increasing if t; < t;+1 for all j, with a similar convention
for decreasing sequences. This sequence is said to the be non-decreasing if
t; < tj41 for all j. We write t; 1 ¢ to say that the increasing sequence t;
converges to t and t; | t to say that the decreasing sequence t; converges to
t. Similarly, a function f : [a,b] — R is said to be increasing, decreasing if

f(s) < f(t), f(s) > f(t), respectively, for s < t.

Definition 4.1. A measurable function x : [0,T] — Sy is said to have a soft
left-limit at t € (0,T] if one of the following two alternatives holds

(a) The trajectory x has a left-limit at t, denoted by x(t—);
(b) The set of cluster points of x(s), s Tt, is a pair formed by 0 and a point
in S, denoted by x(t ).

A soft right-limit at t € [0,T) is defined analogously. In this case, the right-
limit, when it exists, is denoted by x(t+), and the cluster point of the sequence
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x(s), s | t, which belongs to S when the second alternative is in force is denoted
by x(t®).

More concisely, a trajectory x has a soft left-limit at ¢ if and only if there
exists n € S such that for all m > 1, there exists § > 0 for which z(s) €
{n}uUSS forallt—4§<s<t.

The second alternative in the previous definition asserts that there exist

n € S and two increasing sequences t;, ¢ 1 t such that lim;z(t;) = n,
lim; z(t7) = 0. Moreover, if x(t]) converges for some sequence t] 1 t,

lim; z(t7) € {n,d}.

We call z(t©) the finite soft left-limit of a at t. Whenever we refer to
x(t—) it means that = has a left-limit at ¢. Similarly, when we refer to z(t &),
it is understood that x has not a left-limit at ¢, but that the alternative (b)
of the previous definition is in force. An analogous convention is adopted for
x(t+) and z(t ®).

Remark 4.2. Since Sy is a compact set, to prove that x has a soft right-limit
at t we only have to show uniqueness of limit points in S. In other words, we
have to prove that if £; and #/ are sequences decreasing to ¢ and if z(t;), z(t})
converge to m € S, n € S, respectively, then m = n.

Definition 4.3. A trajectory x : [0,T] — Sy which has a soft right-limit at t
1s said to be soft right-continuous at t if one of the following three alternatives

holds

(a) x(t+) ewxists and is equal to 0;
(b) z(t+) exists, belongs to S, and x(t+) = x(t);
(c) z(t®) exists and x(t®) = ().

A trajectory x : [0,T] — Sy which is soft right-continuous at every point
t € [0,T] is said to be soft right-continuous.

A trajectory x is soft right-continuous at ¢ if and only if there exists n € S
such that for all m > 1, there exists 6 > 0 for which z(s) € {n} U Sg, for all
t<s<t+d.

Note that if x is soft right-continuous at ¢ and if z(t+) = 0, then z(t)
may be different from x(t+). In contrast, if z(t) = 0, then x(t+) exists and
z(t+) =0 = x(t).

Clearly, if = is soft right-continuous at t, for every m > 1, there exists
€ > 0 such that for all t < s <t +¢,

x(s) = z(t) or x(s) > m . (1.1)

Similarly, if = has a soft left-limit at ¢, there exists n € S with the following
property. For every m > 1, there exists € > 0 such that for all t — e < s < ¢,

xz(s) =norx(s) >m. (1.2)
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Let E([0,7T],S5) be the space of soft right-continuous trajectories x :
[0,T] — Sy with soft left-limits.

Fix a trajectory « in E([0,T7], Sp) such that a(t) = 0 for some ¢ € [0,T].
Since it is soft right-continuous, by Definition 4.3,

x(t+) exists and x(t+) = 0. (1.3)

Let S, = {1,...,m}, m > 1. For a trajectory z in E([0,77], Sy), t € [0,T],
m > 1, let
or (t) = sup{s <t:x(s) € Sm}. (1.4)

If the set {s < t:xz(s) € S,,} is empty, we set o2, (t) = 0, but this convention
does not play any role below and we could have defined o¥, (t) in another way.
When there is no ambiguity and it is clear to which trajectory we refer, we
denote o%,(t) by o, ().

Fix t € (0,7] and m > 1. Suppose that o,,,(t) > 0 and that x(op, (1)) & S,
so that z(s) & Sy, for o, (t) < s < t. By (1.2), there exist n € S and € > 0
such that for each s € (0,,(t) — €, 04, (t)) either z(s) = n or z(s) > m. By
definition of ¢,,(t) we must have n € Sy,. Moreover, z(c,,(t)—) = n if « has
a left-limit at 0,,(t), and x(0,,(t)©) = n if not.

Let R,,x be the trajectory which records the last site visited in S,,:
(Rpmx)(t) =1if 2(s) € Sy, for 0 < s <t, and

x(om(t))  if x(om(t)) € Sm,
(Rnx)(t) = S x(om(t)—) if 2(om(t)) € Sm and z(0,, (t)—) exists, (1.5)
(0 (t)©) otherwise,

if there exists 0 < s < t such that x(s) € S,,.

Note that (R,2)(0) = 2(0) if 2(0) € S, and (R,2)(0) =1 if 2(0) € S,s.
The convention that (R,,z)(t) = 1 if x(s) ¢ Sy, for 0 < s < ¢ corresponds
to assume that the trajectory z is defined for ¢ < 0 and that x(t) = 1 in this
time interval.

Consider a trajectory x in D([0,7],S5), m > 1 and ¢t € (0,7]. Assume
that x(t) € Sy, and that there exists 0 < s < ¢ such that z(s) € S,,. Since x
is right-continuous, o,,(t) > 0 and (0., (t)) = x(0m (t)+) & Sm. Hence, since
x has left-limits, under the above conditions,

Rnx)(t) = x(om(t)—) . (1.6)
Note that we may have o,,(t) =t in this example.

Assertion A Fix a trajectory x in E([0,T],S5). For each m > 1, R,z is a
tragectory in D([0,T1], Sp,).

Proof. Fix m > 1. We first prove the right continuity of R,,x. Fix t € [0,T).
By (1.1), there exists § > 0 such that for all ¢t < s < ¢49, either x(s) = z(¢) or
x(s) > m. Suppose that z(t) belongs to Sy,. In this case, (R, z)(s) =«
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(Rmax)(t) for t < s < t+ 6. On the other hand, if x(t) &€ Sy, 2(s) € Sm
for t < s <t+ 4 so that 6,,(8) = 0., (t) in this interval. Therefore, in view
of (1.5), (Rnmz)(s) = Rma)(t) for t < s < t+ . This proves that R,,x is
right-continuous.

We turn to the proof of the existence of a left limit at ¢ € (0,7]. If x(t—)
exists and belongs to S,,, (Rn,z)(s) = x(t—) for all s < t close enough of
t. If (t—) exists and does not belong to S,,, o,,(s) is constant in an open
interval (t—0,t), which implies that (R,,z)(s) is constant in the same interval.
Finally, suppose that x(t ©) exists. In view of (1.2), there exists § > 0 such
that for all t — § < s < ¢, either x(s) > m or z(s) = z(t©). If (t©) < m,
(Rmz)(s) = z(t©) in some interval (¢t — §',¢), & > 0. If z(¢t©) > m, then
om(8) is constant in the interval (t — d,t), so that R,,x is constant in the
same interval. This concludes the proof of the assertion. 0O

The next example shows that the trajectories R,,x, m > 1, do not char-
acterize the trajectory .

Ezample 4.4. Fix 0 < s <t < T and a sequence {t; : j > 1} such that t; < T,
tj | t. Consider the trajectories z, y € E(([0,T], Sp) given by

v = 1{[0,8)} + o1{[s,t]} + > {lt;.t;-1)} + (1, 7T},

Jj=2

y = 10,0} + > i 1{ltt-0)} + (4, T}

j>2
It is clear that R,z = R,y for all m > 1.

For a trajectory x € E([0,T], S5), let 02 (t) be the time of the last visit to
S:
o2 (t) = sup{s <t:xz(s) € S},
with the convention that o (t) = 0 if z(s) = 0 for 0 < s < t. As before, when
there is no ambiguity and it is clear to which trajectory we refer, we denote

o (t) by oo (t).
Let Rz be the trajectory which records the last site visited in S:
(Roox)(t) =1 if z(s) =0 for all 0 < s < ¢, and

2(0xo(t)) ifz(ox(t)) €S,
(Rocz)(t) =  2(000(t)—) if 2(0x(t)) € S and if z(0s (t)—) exists,
(000 (t)©) otherwise,

if there exists 0 < s < ¢ such that z(s) € S. As for the operator R,,, the
convention that (Reex)(0) = 1 if x(0) = ? corresponds in assuming that
the trajectory is defined for ¢t < 0 and that z(¢) = 1 for ¢ < 0. Note that
(Rooz)(0) € S and that (Roox)(0) = 2(0) if and only if 2(0) € S.

Page: 69 job: book macro: svmono.cls date/time: 25-Sep-2013/18:43

g

Roo



E([Oa T]a SD)

70 4 Topology

Consider a trajectory x in D([0,T], S,) and ¢ € (0,T]. Assume that x(t) &
S and that there exists 0 < s < t such that z(s) € S. Since z is right-
continuous, 0o (t) > 0 and (0 (t)) = x(0ae(t)+) € S. Hence, since = has
left-limits, under the above conditions,

(Roox)(t) = z(oo(t)—) . (1.7)

Denote by E([0,T],S,) the set of trajectories in E([0,77],Sp) such that
x(0) € S and which fulfill the following condition. If z(¢) = 0 for some ¢ €
(0,7T], then o(t) > 0 and z(0(t)) = (0o (t)—) = 0.

Lemma 4.5. The trajectory Roox belongs to E([0,T],Ss).

Proof. Fix a trajectory x in E([0,T7],Sy). By definition (Rocz)(0) € S. We
first show that Rocz belongs to E([0,T7],S5).

We claim that Rz has a left-limit at ¢ € (0, 7] if « has one. Suppose first
that x(t—) = 0. If there exists 6 > 0 such that x(s) = for s € (¢t — d,t), then
0 18 constant in this interval. By definition, Aoz is constant in the same
interval and has therefore a left-limit at ¢. On the other hand, if there exists a
sequence t; 1 ¢ such that x(t;) € S, 0oc(s) > t1 for t1 < s <t. As z(t—) =0,
for every m > 1, there exists ¢ > 0 such that z(s) > m for t —§ < s < t.
Therefore (Roox)(s) > m for t; < s < t, where ¢ is the smallest element of
the sequence t; which is greater than ¢t —¢. This proves that (Roox)(t—) exists
and is equal to d. Suppose now that x(t—) € S. In this case z(s) = z(t—) € S
for s in some interval (¢t — 4, ¢). In particular, (Reox)(s) = z(s) = z(t—) in the
same interval, which proves the claim. The trajectory x of Example 4.4 shows
that the left-limits of x and SRz at some point ¢t may be different.

Suppose now that z(t©) exists and is equal to n € S. By definition there
exists a sequence t; 1t such that x(¢;) — n, which means that z(¢;) = n for
Jj sufficiently large. By definition, (Rooz)(t;) = n for the same indices. Fix
m > n. By (1.2), there exists 6 > 0 such that x(s) = n or z(s) > m for all
t —9 < s < t. Hence, if we denote again by ¢; the smallest element of the
sequence t; which is greater than ¢ — §, for t§ < s < ¢, (Reex)(s) = n or
(Rsox)(s) > m. This proves that Roox has a soft left-limit at ¢.

The trajectory Reox is soft right-continuous. Fix t € [0,7") and assume
that 2(t) = 0. If z(s) = 0 in some interval (¢,t+¢€), 0o and Kooz are constant
on the interval [t,t + €); while if there exists a sequence t; | ¢ such that
z(t;) € Sforall j, (Roox)(t+) = 0. In both cases, Roox is soft right-continuous
at t.

Suppose now that z(t) belongs to S so that (Rex)(t) = z(t) € S. By
soft right-continuity of = at ¢, for a fixed m > 1, there exists § > 0 such that
x(s) € {z(t)} U SE, for all t < s < t + §. By definition of Rz the same
property holds for Rz, which proves its soft right-continuity.

We conclude the proof of the lemma showing that PR,z belongs to
E([0,T],S,). Fix t € (0,7] such that (Reox)(t) = 0. Denote by 00 (t), Goo(t)
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the time of the last visit to S before time ¢ of the trajectory x, Roox, respec-
tively. Clearly x(t) = 0, otherwise (Rooz)(t) = z(t) € S. We also have that
o(t) > 0 because if o(t) = 0, (Roox)(t) would belong to S: (Rex)(t) =1 by
definition if z(s) = 0 for 0 < s < ¢, and (Reox)(t) = z(0) € S if 2(s) =
for 0 < s < t. It follows from the definition of Rz and from the identity
(Roo)(t) =0 that 2(0ae(t)) = x(0x6 (t)—) = 0.

Since x(s) = 0 for 000 (t) < s < t, and since (00 (t)) = (000 (t)—) = 0, we
have that (Rocz)(s) =0, 0o (t) < 8 <1, Foo(t) = 0o (t), (Roo)(0eo(t)—) =
0. O

Assertion B Let © be a trajectory in E([0,T],S,). Then, Roox = x.

The proof of this assertion is elementary. It follows from this claim and
from Lemma 4.5 that R : E([0,T7],S,) — E(]0,T],S,) is a projection. The
next assertion shows that R,z converges pointwisely to = if = belongs to
E([0,T], Sy).

Assertion C Fiz a trajectory x in E([0,T], Sy). Then, Ry,x converges point-
wisely and lim,, R,,x = Roo.

Proof. 1t is clear from the definition of R,z that R,z < R, +1x. In partic-
ular, the pointwise limit always exists. Fix 0 < ¢t < T and suppose initially
that x(t) € S. In this case, for m > z(t), (Rnz)(t) = (Rooz)(t).

Suppose from now on that z(t) =0. If z(s) =0 for 0 < s <, (R,x)(t) =
1 = (Roox)(t) for all m > 1, while if 2(0) € S and x(s) =0 for 0 < s < 1,
(Rmx)(t) = 2(0) = (Roox)(¢) for all m > x(0). We may therefore assume that
there exists 0 < s < t such that z(s) € S so that 0o (t) = 0% (t) > 0.

If 2(0ao(t)) € S, for m > x(00o(t)) we have that (R,,z)(t) = (Reox)(t),
while if 2(0ao(t)) = 0 and if 2(0(t)—) exists, (Rooz)(t) = z(0a(t)—) =
lim,,, (R, x)(¢). Finally, suppose that z(0(t)) = 0 and that z(o(t)—) does
not exist. Then, by definition, (Ree)(t) = 2(0s (£)©) and for m > (04 (£)O)
(Rmx)(t) = 2(0x0 (t)©). This proves the assertion. O

The next statement follows from Assertions B and C.

Assertion D Fiz two trajectories x, y in E([0,T],Sy). If Rx = Ry for
all m large enough, then x = y.

For two trajectories x, y € E([0,T], Sy), let

d(z,y) = Z idm(:c,y) , where d,,,(z,y) = ds(Rmz, Rmy) - (1.8)

2’m
m>1

Example 4.4 shows that d is not a metric in E([0,T], Sp), but the next
assertion states that it is a metric in E([0,T], Sp).

Assertion E The map d is a metric in E([0,T], Sy).
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Proof. Tt is clear that d is finite, non-negative and symmetric, and that d
satisfies the triangular inequality. Suppose that d(z,y) = 0. Then, R,,x =
R,y for all m > 1. Hence, by Assertion D, z =y. O

Ezample 4.6. Fix to < T and let x,, € D([0,T],Sy) be the sequence given by
z, = 1{[0,t0)} + n1{[to,to +n 1)} + {[to+n"",T]}.

While this sequence does not converges in the Skorohod topology, it converges
to the constant trajectory equal to 1 in the metric d. This sequence is a
caricature of a typical trajectory of the processes examined in this book. In a
certain time scale these processes spend a shorter and shorter amount of time
on a set which has a vanishing asymptotic probability, but which has to be
crossed when moving from one metastable set to another. The unique reason
to introduce the metric d is to define a topology in which such a sequence
converges.
In constrast, and as we want, for £ € N, ¢ £ 1, the sequence

yn = {[0,t0)} + £1{[to,to +n" )} + L{[to+n"", T]}

does not converge. This is needed because the points in S represent the
metastable sets and we require in the definition of metastability the con-
vergence in the Skorohod topology of the trace of the process on finite subsets
of S.

The undesirable aspect of the metric d is that the sequence

zn = H{[0,t0)} + n1{[to, T}

also converges to the constant trajectory equal to 1. To exclude such cases,
we shall introduce in the next section a subset of trajectories in E([0,77],.55)
which spend only a negligible amount of time in 0 and we shall introduce
compactness conditions which ensure that the limit points of a sequence of
trajectories belongs to this set. These compactness conditions will exclude
sequences as z, which spend a non-negligible amount of time in a set S, for
some m.

We conclude this section proving in Proposition 4.8 below that the space
E([0,T],S,) endowed with the metric d is complete and separable. Denote by
A the set of increasing and continuous functions A : [0, 7] — [0, 7] such that
A0) =0, \(T)=T.For X € A, let

o A(t) — A(s
A = s [ 10620220
0<s<t<T - S

Assertion F Let x be a trajectory in D([0,T], Sim+1) and fit A € A. Then,
Rm(x o N) = (Rnz) o X. The same identity holds for a trajectory x in
D([0,T], S5).
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Proof. Since x € D([0,T], Si41), there exist k > 1,0 =1ty <t; < -+ <t} =
T, and lg, ..., 0k € Sp1 such that ¢; # 4,41, 0 <i<k—2, and

.T(t) = i& 1{[ti,ti+1)}(t) + f}cl{t:tk}. (19)

Note that £;_1 may be equal to ¢} in which case z is left continuous at 7T'. It
is easy to obtain from this formula explicit expressions for R,,(z o X) and for
(Rmx) o A and to check that they are equal.

Consider now a trajectory x in D([0,T7],S5). Fix A € A and m € S. Recall
that we denote by ¢, (t) the last visit to S, before time ¢ for the trajectory y.
It is easy to verify that o2} (t) = A~ (0%, (At)), where 2A = o A\, At = A(t).

Fix t € [0,T] and suppose that z(s) & Sy, for 0 < s < A(¢). In this case,
xA(8) &€ Sy, for 0 < s <t and (R (zA))(t) =1 = (Rnx)(Ab).

If 2(A(t)) € Sm, Rm(zN)(t) = (zN)(t) = (Rma)(At). Tt remains to con-
sider the case in which z(s) € Sy, for some 0 < s < A(t) and z(A(t)) & Sim.
By (1.6),

(R (@N)(#) = (@N)(o7} ()=) = (@A) (o7, (M) -)
= 2(on, (M) =) = (Rmz)(AD)) ,

which proves the claim. 0O
Assertion G The map Ry, : D([0,T], Spt1) — D([0,T], Sm) is continuous.

Proof. Let x,, be a sequence of trajectories in D([0, T, S;,+1) which converges
in the Skorohod topology to . We will prove that the sequence of trajectories
Rz, in D([0,T], Sp,) converges in the Skorohod topology to R, .

Fix € < [m(m + 1)]7!. Since x,, converges to z, there exists ng such that
for all n > ng

max {[Jen = 2Alloo , N7} < €,

for some A € A, where ||, — 2| sc = supg<;<r d(@n(t), zA(t)). Since we chose
€ < [m(m+1)]71, we must have that x, = 2 so that R,,,x, = R, (z)). Since
by Assertion F, R, (zA) = (Rz) o A, we conclude that

ds(fﬁmx,fﬁmxn) < max{”(mmxn)(t) - (mmx)()‘t)llow ”)‘HO} < €,

which proves the assertion. O

Assertion H Let y be a trajectory in D([0,T],Sy,), m > 2, and let x =
Rym—1y. Suppose that x is discontinuous at t € (0,T). Then, y(t) = x(t) and
y is discontinuous at t.

Proof. We first show that y(¢t) = x(¢) if = is discontinuous at ¢ € (0,7]. We
proceed by contradiction. Fix t € (0, 7] and suppose that y(t) # x(t), so that

Page: 73 job: book macro: svmono.cls date/time: 25-Sep-2013/18:43



74 4 Topology

y(t) = m. We want to show that z is continuous at t. Since y belongs to
D([0,T],Sm), y can be represented as in (1.9). By definition of $R,,_1, the
only points where = can be discontinuous are the points t;, 1 <i < k. If t = ¢;
and z(t;) # y(t;), then y(t;) = m, y(ti—1) € Sm—1 (because y(t;—1) € Sy, and
y(ti,1> 7é y(tﬂ = m) so that ZL'(tZ> = y(tifl) = SC(ti,1> = ZL'(tzf) and x is
left-continuous at t;.

We now prove the second claim of the assertion. Fix ¢ € (0, 7] and suppose
that x is discontinuous at ¢. By the first part of the claim, y(t) = x(t) € Spm—1.
By definition of R,,—1, y(t—) = z(t—) or y(t—) = m. In the first case y is
discontinuous at ¢t because so is . In the second case y is also discontinuous
at t because y(t) € Sp—1. O

Lemma 4.7. Let y,, € D([0,T],Sm) a sequence of trajectories such that
RinYm+1 = Ym for all m > 1. Then, there exists a trajectory y in E([0,T],Sy)
such that Ry = ypm for all m > 1.

Proof. Since R,z < z, the sequence y,, is increasing and has therefore a
pointwise limit, denoted by y.

Suppose that y(t) = n € S for some ¢ € [0, 7). In this case y,(t) = n
for all m > n. Indeed, if y,,,(t) # n for some mg > n, then for all m > my,
either ym (t) = ymo(t) or ym(t) = m > n, which contradicts the fact that
lim,, ¥ () = y(t) = n.

There exists 1 < mg < oo such that y,,,(0) = 1 for m < mg and y,,(0) =
mg for m > myg. For any trajectory x, by our convention in the definition of
mmv
x(0) if 2(0) < m,

1 if 2(0) > m.

(Rmr)(0) = {

Therefore ¢, (0) = (Rimym+1)(0) satisfies the relation

ym(o) _ {ym-i-l(o) if ym-i-l(o) < m, (1'10)

1 if ym41(0) =m+1.

Let mg = min{j > 1 : y;(0) # 1}. Assume that mo < oo, otherwise there
is nothing to be proven. By (1.10) for m = mg — 1, ym,(0) = mg, and by
definition of mg, yi(0) = 1 for k < mg. By (1.10) for m = mq, yme+1(0) =
Ymo (0) = myo. Repeating this argument, we conclude that y(0) = myg for all
k > mg, as claimed.

The trajectory y has a soft left-limit at each point ¢t € (0,T]. Fix t € (0,7
and suppose that there exists an increasing sequence t; converging to ¢ and
such that y(t;) — n € S. For j large enough y(¢;) = n. We assume, without
loss of generality, that this holds for all j: y(t;) = n for all j > 1. By the
penultimate paragraph, y,(t;) = n for all m > n and j > 1. This proves that
Ym(t—) = n for all m > n. In particular, by Remark 4.2, y has a soft left-limit
at 1.
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It is not difficult to construct an example of a sequence y,, for which y
has a soft left-limit at ¢ € (0,77, but not a left-limit, i.e., a sequence y,, for
which there exist increasing sequences t;, t;- converging to ¢t and such that
y(t;) > ne s, y(t) —o.

The trajectory y is soft right-continuous. Fix ¢ € [0,7') and suppose that
there exists a decreasing sequence t; converging to ¢ and such that y(t;) —
n € S. The argument presented above shows that y,,(t) = n for all m > n,
which proves, in view of Remark 4.2, that y has a soft right-limit at ¢ equal
to n. Since y,,(t) = n for all m > n, y(t) = n, which proves that y is soft
right-continuous at ¢.

Fix t € (0,T] and assume that there exists m for which y,, is discontin-
uous at t. By Assertion H, yn,11(t) = ym(t) and y,,41 is discontinuous at t.
Repeating this argument, we conclude that y,(t) = y,(t) for all n > m so
that y(t) = ym(t) € S.

The trajectory y belongs to E([0,T],Sy). We proved above that y(0) € S.
Assume that y(t) = 0 for some t € (0,7T]. By the previous paragraph, ¢ is a
continuity point of y,, for every m. Denote by [(;,,7.,) the largest interval
which contains ¢ and in which y,, is constant. £,, is a non-decreasing sequence
bounded above by t. Denote by ¢ its limit. It is clear that ¢ = o¥ (t), that
y(¢) =0 and that y(¢—) = 9, which proves that y belongs to E([0,T7],S5).

It remains to show that R,y = y,, for allm > 1. Fix m > 1 and ¢t € [0, 7).
If ¢ is a point of discontinuity of y,,, by Assertion H, y,(t) = ym(¢) for all
n > m so that y(t) = ym(t) € Sm and (Rny)(t) = ym(t). If t is a continuity
point of y,,,, as above, let [(,,, r,,) the largest constancy interval of y,, which
contains t. If £,, > 0, ¢, is a discontinuity point of y,, so that y(¢,,) =
Ym (bm) € Sy By definition of the sequence yi, for k > m and ¢, < s <,
Y (8) = Ym(s) = Ym(€m) or yi(s) > m. Hence, for £, < s <t, y(s) = ym(lm)
or y(s) > m, so that (R, y)(t) = Ym(lm) = ym(t). If £, = 0 and y,,,(0) # 1,
the same argument holds since the sequence yi(0), & > m, is constant by
the assertion above (1.10). If ¢, = 0 and y,,(0) = 1, the argument can be
adapted even if the sequence yi(0) may not be constant. By the assertion
above (1.10), for k > m and 0 < s < t, yx(s) = ym(s) = 1 or yi(s) > m.
Hence, for 0 < s <t, y(s) =1 or y(s) >m. If y(s) >m for all 0 < s < ¢, by
our convention in the definition of R,,, (Rny)(t) =1 = y,(¢). If there exists
0 < s < t such that y(s) = 1 we also have that (R,,y)(t) = 1 = y,(¢). This
concludes the proof of the lemma. 0O

Proposition 4.8. The space E([0,T],Sy) endowed with the metric d(x,y) is
complete and separable.

Proof. Consider a Cauchy sequence {x, : n > 1} in E([0,7T],S;) for the
metric d. By definition of d, for each m > 1, R,,z, is a Cauchy sequence
in D([0,T],S,,) for the metric dg. Since this space is complete, there exists
ym € D([0,T],Sy,) such that R, 2, — Y. By Assertion G, R ym+1 = Ym.
Hence, by Lemma 4.7, there exists y € E([0,T],S,) such that R,y = y,, for
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all m > 1. Therefore, R, x,, = Y = Ry, which implies that x,, converges
to y in E([0,T], Sp). This proves the completeness.

The separability of E([0,T],S;) follows from the separability of each set
D([0,T],Sm). For each m > 1, there exists a sequence of trajectories zp, n,
n > 1, which is dense in D([0,T7],Sy,) for the metric dg. We claim that the
countable set of trajectories x,, , n > 1, m > 1 is dense.

Fix a trajectory z in E([0,T], Sp) and € > 0. Take m > 1 such that 27 < ¢
and ., ,, in D([0, 77, S,,) such that ds (@ n, Rimr) < min{e, [m(m —1)]711}.
There exists A in A such that

max{|[Zm.n — (Rm) 0 Moo, [AI°} < min{e, [m(m —1)] 7"}

Since ||Tm,n — (Rmx) 0 Moo < [m(m — 1)]7L, 2y = (Rimz) o A Hence, by
Assertion F, for £ < m, Rz = Re[(Rmax) 0 A] = (Rex) o A In particular,

dS(mﬂxm,naméx) < ||)‘||O < €.

Putting together the previous estimates, as dg(x,y) < 1 for any pair of tra-
jectories in D([0,T1],S¢), we obtain that

This concludes the proof of the proposition. O

2 The space D*([0,T], S,)

Denote by D*([0,T], Sp) the subset of all trajectories in D([0, 7], Sy) which
spend no time at 0 and which are continuous at time 7"

D*([0,T],8,) = {x e D([0,T],S,) : Ap(z) = 0, a(T—) = x(T)} ,

where
Ar(z) = /0 1{z(s) =0} ds .

Since a trajectory x in D*([0,T], Sy) spends no time at 9, o®(¢t) = t for all
t € [0,7T)]. In particular, by definition of the map R, for « in D*([0,T7], Sp)

Foa)(t) {x(t) if z(t) € S, 1)

x(t—) if x(t) = 0.

Therefore, (Roox)(t) # x(t) only if 2(t) =0 # z(t—) and (Reoz)(T) = z(T).
Assertion I The map R : D*([0,T],Sy) — E([0,T],S5) is one-to-one.
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Proof. Fix two trajectories x, y € D*([0,T],Sp) and suppose that Rz =
Rooy. Let A = {t € [0,T] : z(t) = v or y(t) = 2}. By (2.1), z(t) = y(¢t) for
t ¢ A. Hence, since the set A has measure zero and since x and y are right
continuous, z(t) = y(t) for ¢ € [0,T"). On the other hand, as we have seen just
below (2.1), 2(T) = Rooz)(T) = Rooy)(T) = y(T). O

We denote by E*([0,T],S5) the range of the map R, : D*([0,T7], S5) —
E([O,T],Sa)

Assertion J A trajectory y in E(][0,T],Sy) belongs to E*([0,T],S5) if and
only if

(a) y has left and right-limits at every point;

(b) If y(t+) =0 for some t € [0,T'), then y(t) = y(t—);

(c)y is contmuous at T;
)A

(d) Ar(y) =

Proof. Fix a trajectory y in E*([0,T],S5). Let « € D*([0,T],S5) such that
y = Reox. It follows from (2.1) that y(t+) = z(t+), y(t—) = z(t—), which
proves (a). Assume that y(t4+) = 0 for some t € [0,T). As we just have seen,
x(t+) = 0. Since z is right continuous, x(t) = 0. Thus, by (2.1), y(t) = z(t—).
By the first part of the proof, x(t—) = y(t—), so that y(t) = y(t—), which
proves (b). To verify (c¢), recall from (2.1) that y(T') = «(T") and from the first
part of the proof that y(T—) = x(T—). Since x belongs to D*([0,T7],S5),
x(T) = z(T—-) so that y(T) = y(T—). Finally, since y(t) € S whenever
z(t) € S, x(t) =0 if y(t) =9, and Ar(y) < Ap(z) = 0.

Conversely, let y be a trajectory in E([0,7T],Sy) which fulfills conditions
(a)—(d). Let = be the trajectory defined by z(t) = y(t+), 0 < t < T,
z(T) = y(T). We claim that x € D*([0,T],Sy). By definition, = is right
continuous and has left limits, and z(t+) = y(t+), z(t—) = y(t—). Therefore,
x € D([0,T], Sy), and, by assumption (c), (T) = z(T—).

By definition of x,

T
Ar(z) = /0 1{y(s+) =0} ds.

Fix t € [0,T) such that y(t4+) = d. Then, either y(t) = 0 or, by assumption
(b), y(t—) = y(t) € S. The first set of points has Lebesgue measure zero
because Ar(y) = 0 by assumption (d). The second set is at most countable
because y is constant on an interval [t — €, t] if y(t—) = y(¢) € S. This proves
that AT(:L') =0.

It remains to show that Rooz = y. Suppose that z(t) € S. By the definition
(2.1) of Reo, (Roox)(t) = x(t) = y(t+). Since y is soft right-continuous and
since y has a right-limit which belongs to S, y(t+) = y(t), so that (Recx)(t) =
y(t). Suppose now that z(t) = 9, so that y(t+) = 9. By definition (2.1) of R,
(Roo)(t) = x(t—) = y(t—). Since y(t+) = 0, by assumption (b), y(t—) = y(t)
so that (Reoz)(t) = y(t). O
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The set E*([0,T],Sy) is clearly not closed, but Lemma 4.9 below pro-
vides sufficient conditions for the limit = of a converging sequence z, in
E*([0,T], S5) to belong to E*([0,T], S5).

Denote by D.([0,T], Sy), m > 1, the subset of trajectories in D([0, T, S,,)
which are continuous at T. Note that D.(][0,7T],Sm) is a closed subset of
D([0,T],Sm) and that the trajectory R,z belongs to D.([0,T], Sym) if © €
E*([0,7], Sb).

For a trajectory € D.([0,T],Sm,) and 1 < j < m, denote by N, =
N, (x) the number of visits to j in the time interval [0,T], and denote by
Tj1,-..,Tjmn, the holding times at j. Hence, if the trajectory x is given by

k—1
x(t) = Z&l{[ti,tiﬂ)}(z&) + O {[ty, T},

where 0 = tg < t1 < -+ <t < T,and ¢; # £;41,0 < i < k—1, and if
we denote by I; the set {i € {0,...,k} : £; = j}, we have that N;(z) = |I;].
Moreover, if ; > 1 and if I; = {iy, ..., im, }, where iq < iqq1 for 1 <a <Ny,

Tjh = t(’il + 1) — t(il) RN Tj,‘ﬁj = t(’imj +1)— t(’imj) . (2.2)

In this formula, to avoid small indices we represented ¢;, by ¢(i,). By conven-
tiOIl, Tjﬁ[ =0 for £ > ‘ﬁj.

Assertion K The functionals DMy, 1 <
to the Skorohod topology in D.([0,T], Sy
are closed.

Proof. Fix 1 < k < m, and let {x,, : n > 1} be a sequence in D.([0,T], Sp)
which converges to a trajectory = in the Skorohod topology. Fix € < [m(m —
1)]~!. Since x,, converges to x, there exists n sufficiently large and A € A such
that

k < m, are continuous with respect
), and the sets {x : Tj, > a}, a >0,

|2 — Ao < €.

Since € < [m(m — 1)]7! we have that z,, = 2\ so that M (z)\) = Ni(zy,).
Since My (xA) = Ny(x), we conclude that the sequence Ny (x,,) is eventually
constant and converges to My ().

To prove that the sets {z : T}, > a} are closed, fix 1 < j < m, £ > 1,
a > 0, and consider a sequence z,, converging in the Skorohod topology to
some trajectory x. Suppose that T} ¢(z,) > a for all n > 1 and fix 0 < € <
[m(m—1)]~L. There exists \,, € Asuch that ||z, —2A\,||ec < €, [|[An]]® < € for all
n large enough. As in the first part of the proof, we deduce from this estimate
that z,, = 2\, so that 9 (z,) = N, (xA,) = N, (x) and Tj (zn) = T e(xAn)
for n large enough. Since Tj¢(z,) > a, £ < N;(z,) = N;(x). Denote by
[s,t) the time interval of the ¢-th visit to j for the trajectory z, so that
Tjo(zAn) = X\ (1) =N, 1 (s). Since T} ¢(2,) = T} o(z\,,) and since T} () > a,
A E(t) — A H(s) > a. However, as [[A,]|2 <€, e ¢(t —s) < A HE) — A, M(s) <
e(t — s). Therefore, Tj(x) =t — s > e [N\, ' (t) — A\, 1(s)] > e “a, which
proves the assertion. 0O
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Note that in the next lemma all conditions are formulated in terms of the
trajectories Ryxy,.

Lemma 4.9. Let {x,, : n > 1} be a sequence in E*([0,T], Sy) which converges
tox € E([0,T],Sy) in the metric d. Assume that

(a)
T
lim sup sup/ 1{Rz,(s) >m}ds = 0;
0

m—=00 y>1 p>1
(b) For each m > 1, there exists ky, € N such that Ny, (Rexy) < kpy, for all
{>m andn >1;
(¢c) For each m > 1, there exists €y > 0 such that Ty, 1 (Rexn) > € for all
1<k <N (Rexn), £ >m andn > 1;
(d) For all ¢ > 1, n > 1, Ry, is continuous at T

Then, = belongs to E*([0,T], Sy).

Proof. We need to prove that the trajectory x fulfills conditions (a)—(d) of
Assertion J. We first claim that Ap(z) = 0. Fix € > 0. By assumption (a),
there exists m > 1 such that

T
/0 1{(Rex,)(s) > m}ds < ¢

for all n > 1, ¢ > 1. Fix £ > m. The sequence Ryx, converges almost ev-
erywhere to JRyx because it converges in the Skorohod topology. Hence, by
Fatou’s lemma,

n—oo

/0 1{(Rex)(s) > m}ds < liminf/o 1{(Rexn)(s) > m}ds < €.

Since Rz converges pointwisely to x, by the dominated convergence theorem,

T
/0 {z(s) >m}ds < e,

so that Ar(z) <e.

We now show that = has left and right limits and that condition (b) of
Assertion J is in force. Since = belongs to E([0,T], Sy) to prove the first claim
it is enough to exclude the possibility that = has a finite soft limit at some
point ¢ € [0,T]. Fix m > 1. By assumptions (b) and (c) of this lemma, there
exist ky, > 1 and €,, > 0 such that N, (Rexy,) < ky, and Ty, k(Rezy) > €, for
all 1 <k <M, (Rexy), £ > m, n > 1. Since Ryx,, converges in the Skorohod
topology to Rex, by Assertion K, N,,, (Rex) < ky, and Ty, 1 (Rex) > €, for all
1 <k <MN(Rex), £ > m. As the sequence N, (Rex) increases with £, it is
constant for £ large enough. Denote by [s{,t{), ..., [s%, %) the N = N, (R2)
time-intervals in which Rz visits m. Since Ty, x(Rex) > €, for all k, £ >

Page: 79 job: book macro: svmono.cls date/time: 25-Sep-2013/18:43



80 4 Topology

s¢ + €. By Assertion H, st7! = sf, 1 <4 < N, and t/ < t{. Since Rz
converges pointwisely to Rooz = x, the set {s € [0,T] : 2(s) = m} is the
union of N disjoint intervals of lenght greater or equal to €,,, which are closed
at the left boundary and open or closed at the right boundary. In particular,
m can not be the finite soft limit of x at some point ¢ € [0, T']. Since this holds
for every m, = does not have a left or a right finite soft limit at some time
t € [0, T]. This proves condition (a) of Assertion J.

We turn to condition (b) of Assertion J. Suppose that x(t+) = 0 for some
t€1]0,T). If x(t) = 0, since x € E([0,T],5) and Ap(z) =0, 0 (t) = ¢ and,
by definition of the set E([0,T],Sy), z(t—) = x(t). If z(t) = m € S, since
x(t+) = 0, ¢ is the right endpoint of an interval [s;, ¢;] obtained as the limit of
the intervals [sf , tf) introduced in the previous paragraph. Since the interval
is not degenerate, x(t—) = m = x(t), which proves condition (b) of Assertion
J.

We finally prove condition (c) of Assertion J. Suppose that z(T) =k € S.
In this case, since the set {s € [0,T] : 2(s) = k} is the union of a finite number
of disjoint intervals of positive lenght, x is continuous at T". Suppose now that
x(T) = v. By assumption (d) of this lemma, (Rez,)(T) = (Rex,)(T—) for
all £ > 1, n > 1. Since Rypx,, converges to Ryx in the Skorohod topology, the
continuity at T is inherited by 2Rez. Denote by [as, T the constancy interval
of Rz and fix m > 1. Since x(T') = and since (Ryx)(T") converges to z(T),
there exists ¢y > 1 such that for all £ > ¢y, (Rex)(T") > m. By definition of
ag and since x > Rz, for all ap <t < T, x(t) > (Rex)(t) = (Rex)(T) > m.
This proves that #(T—) = = z(T"). Condition (c) of Assertion J is therefore
in force, which concludes the proof of the lemma. 0O

Corollary 4.10. Let x be a trajectory in E([0,T),Sy) which satisfies condi-
tions (b)—(d) of the previous lemma and such that Ar(xz) = 0. Then, x belongs
to E*([0,T7,S,).

Proof. By the proof of Lemma 4.9, = satisfies conditions (a)—(c) of Assertion
J. Since condition (d) of this assertion holds by assumption, the corollary is
proved. 0O

3 Weak Convergence of Probability Measures.

We examine in this section the weak convergence of probability measures on
E([0,T], Sy).

Fix m > 1 and consider a sequence z,, in D([0,T], Sy,) converging to z in
the Skorohod topology. Then, x,, converges to = in E([0,T], S5). Indeed,

1
d(an,z) = > o7 ds(Rewn, Rex)

>1
1 1
= 2—md5($n,$) + ;?ds(mglﬂmm@l‘).
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By hypothesis and by Assertion G, this sum vanishes as n 1 co.

Let F : E([0,T],S5) — R be a continuous function for the soft topology.
Then, its restriction to D([0, T, Sy, ), m > 1, is continuous for the Skorohod
topology. Indeed, consider a sequence z,, converging in D([0,T], S,,) to z. By
the previous paragraph, z,, converges to x in the soft topology of E([0, T, S3).
Since F is continuous in this topology, F(z,) converges to F(x).

Lemma 4.11. A sequence of probability measures P, on E([0,T],S;) con-
verges weakly to a measure P if and only if for each m > 1 the sequence of
probability measures P, o R,,1 defined on D([0,T],S,,) converges weakly to
P o R, with respect to the Skorohod topology.

Proof. Suppose that the sequence P,, converges weakly to P and fix m > 1.
Since Ry, : E([0,T],S,) = D([0,T],S,,) is continuous for the soft topology,
P, o R} converges weakly to P o R, L.

Conversely, suppose that P, o R} converges weakly to P o R, ! for every
m > 1. Fix a bounded, uniformly continuous function F' : E([0,T],S;) — R
and € > 0. Since F is uniformly continuous, there exists 6 > 0 such that |F(y)—
F(z)| < eif d(z,y) < 4. Let m > 1 such that 2= (™~ < §. Since d(z, R,x) <
2-(m=1) < § the difference Ep, [F(z)] — Ep, [F(R,,x)] is absolutely bounded
by €, uniformly in n. A similar estimate holds for P replacing P,.

We have shown right before the lemma that F' : D([0,7],S,) — R is
continuous for the Skorohod topology. As P,,oR,,! converges weakly to PoR; !
in the Skorohod topology, and since F' is bounded and continuous, there exists
no such that for all n > ng, |Ep, [F(Rmnz)] — Ep[F(Rmax)]| < e. Putting
togheter the previous estimates we conclude that for all n > ny,

| Ep,[F(x)] - Ep[F(2)]| < 3e,
which concludes the proof of the lemma. 0O

Proposition 4.12. Let {P, : n > 1} be a sequence of probability measures on
E*([0,T], Sy) which converges weakly to a measure P in E([0,T], Sy) endowed
with the soft topology. Assume that

(a)
lim limsuplimsup Ep, [/0 1{(Rx)(s) > m} ds} =0;

Mm—=00 00 n—00

(b) For each m > 1,

lim lim sup lim sup Pn[‘ﬁm(iﬁgz) > k} =0;

k=00 ps00  n—oo
(¢c) For each m > 1,
‘ﬁm(%[z)

lim lim sup lim sup Pn{ U {T (Rex) < e}} =0;

e=0 00 n—oo Pt}
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(d) For every £, n >1,

Pa[(Rez)(T) = (Rex)(T-)] = 1.
Then, P is concentrated on E*([0,T],Ss).

Proof. Tt is not difficult to show that for each m < £ the map y — fOT 1{y(s) >

m} ds is continuous in D([0, T, S¢). Therefore, the map y — fOT 1{(Rey)(s) >
m} ds is bounded and continuous in E([0,7],S,). By assumption (a), given
€ > 0, there exists mg such that for all m > my,

limsupEp[/OT 1{(Rex)(s) > m} ds} < e.

{— 00

Since Ryx increases pointwisely to Roox = x, by the monotone convergence
theorem,

T
EP[AT(:I:)] < Ep[/ 1{x(s) Zm}ds} < €.
0
Letting € | 0, we conclude that Ep[Ar(z)] =0, i.e., that
PlAp(xz)=0] = 1. (3.1)

By Assertion K, the functionals 91,,,, m > 1, are continuous for the Skoro-
hod topology. The sets {z € D([0,T], S¢) : My (z) > k} = {x € D([0,T], Se) :
M (x) < k—1}¢ are therefore open and, by assumption (b), for every m > 1,

lim limsup PN, (Rez) > k]| = 0. (3.2)
k—oo 00

As M, (Rex) is a non-decreasing sequence in ¢, the set {IM,,(Rex) > k} is
contained in {M,,(Re412) > k}. Thus, for every m > 1,

P[ N U{mm(zmz)zk}] = lim lim P{‘ﬁm(%ﬂ)zk} =0,

k— 00 £—00
k>14>m

where the last equality follows from (3.2). Since this identity holds for every
m>1,
P[ N U N O @Re) < k}] = 1. (3.3)
m>1k>14>m
A straightforward modification of the proof of Assertion K shows that for
every ¢ > m, the set ﬂzt:'l(y){Tmyk(y) > €} is closed in D([0, T, S¢). Therefore,
by assumption (c),

N (Rex)
li i sup P T s(Rex) < e} = 0.
i P[ U (TnaO) <
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3 Weak Convergence of Probability Measures. 83

Since the duration of the visits to a point m may only decrease as { increases,
Us m(mw){Tm (Rex) < €} C Uk l(m“lz){Tmﬁk(i}ieHx) < €}. In particular,
by the previous displayed equation,

9’1 (%[I)

[ﬂ U U {Tm,k(mé$)<%}} - 0.

j>1e>m =
Since this equation holds for every m > 1, we conclude that

9{11

{ Ny ﬂ ﬂ {Tm,k(fﬁew)z %H = 1. (3.4)

m>1j>14>m =

Finally, as the set {x € D([0,T],S¢) : (T) = «(T—)} is closed, by as-
sumption (d), for every ¢ > 1,

P[(Rex)(T) = Re)(T-)] = 1,

so that
P[ (H®a)(T) = (Rea)(T-)} | = 1. (3.5)

>1

Denote by A the intersection of the events with full measure appearing
n (3.1), (3.3), (3.4), (3.5). By Corollary 4.10, any trajectory in A belongs to
E*([0,T7], S5). This proves the proposition. O

In view of condition (b), to prove condition (c) of Proposition 4.12, it is
enough to show that for each k,m > 1,

lim lim sup lim sup Pn[Tmﬁk(ERg:c) < e] = 0. (3.6)

€20 ps00  n—oo

We conclude this section with two remarks needed later. Fix a trajectory
x in E([0,T],S,) and m > 1. Then,

d(z,Rpx) < !

< 5o (3.7)

This bound follows from the observation that SRxR,,x = Rix for £ < m, and
from the fact that dg(y,z) < 1if y and z are trajectories in D([0,T7],Sy) for
some £ > 1.

Let x, y be two trajectories in D([0,T],S,) such that dg(z,y) < [m(m +
1))~ for some m > 1. Then,

d(z,y) < m + 2% (3.8)

Indeed, since dg(z,y) < [m(m + 1)]7!, by definition of the Skorohod metric
there exists an increasing function A : [0, 7] — [0, 7] such that
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1
yo N I} < =
max {[lo =y o Mo, NI} < ooy
Since ||z — y 0 Moo < [m(m + 1)]7L, if 2(s) < m for some s € [0,T], then
(y o N)(s) = x(s) and, conversely, if (y o A\)(r) < m for some r € [0,T], then
x(r) = (y o A)(r). It follows from these relations that Rz = Ry (y o A) for all
k < m. Hence, in view of Assertion F, Rz = (Rry) o A, and
ds (B M) < mae {9z — Oy) o M A7} <~
’ - ’ m(m+1)

To conclude the proof of (3.8) it remains to recall that dg(Rgx, Riry) < 1 for
all k.

4 Applications

In view of Lemma 4.11 and of Proposition 4.12, to prove that a sequence of
probability measures P, in E*([0,7T],S;) converges in the soft topology to a
probability measure P in E*([0,T],S5), we have first to show that the pro-
jections P, oR,1, m > 1, converge in the Skorohod topology of D([0,T7, Sy.)
to P o, !, and then to prove that the assumptions (a)—(c) of Proposition
4.12 are fulfilled. We show in this section, by inspecting three examples, that
the conditions (a)—(c) of Proposition 4.12 follow from the convergence of the
order parameter to a Markov process and from the fact that asymptotically
the process spends a negligible amount of time on Ay.

1. Random walks among traps. Consider the random walk among traps
n(t) = n™ (t) introduced in Chapter ??, and recall that we denoted by 7y the
stationary state. Fix T' > 0 and denote by @,]CV , k > 1, the probability measure
on D([0,T],S,) induced by the random walk ZN(t) = ¥y (n(Bnt)) starting
from k. Note that time has been speeded-up by By = wve, (z)~!, where
vy (V) is the probability to escape from the ball of radius £y centered at
the deepest trap =] :
UZN(:C{V) = ]P)z{v [HB(IJIVJN)C < H:{V] .

Note also that the measure QX is concentrated on the set D([0,77, Sival)s
where Vv represents the set of vertices of the graph in which the evolution
takes place.

It is clear from this last observation that A7(z) = 0, QY- almost surely. On
the other hand, if we denote by 7;, j > 1, the holding times of the trajectory
x(t), z(t) is discontinuous at T" if and only if 7 + --- + 7; = T for some j.
Since, QN [r + -+ +7; = T] = 0 for each j > 1, Q¥ is concentrated on the
set D*(]0,T], Sy).

Denote by Py the probability measure on E([0,T],S;) defined by Py =
QY o R !. By the last observation, Py is concentrated on E*([0,77],S,). We
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claim that the sequence Py fulfills all the assumptions of Proposition 4.12.
We start with assumption (a). Since Ryx < z, it is enough to show that

lim limsup Ep, [/OT 1{z(s) > m} ds} =0. (4.1)

m—=00 N 00

By definition of Py,

EPN[/OTl{x(st}ds} - E@g[/oTl{x(s)zm}ds}

o1
— wn(k)

S i) By [ [ 1(0t6) 2 m s

Jjz1

Since 7y is the stationary state, the previous sum is equal to T wn{S5,_1},
where, we recall, S,, = {1,...,m}. As, for every k > 1,

lim limsupM =0,
m—0o0 N_soo TN (k)
condition (4.1) is in force.

We first prove Conditions (b) and (c) of Proposition 4.12 under the as-
sumption that 8 := supys; Sy is finite. This is the case of the random walk
on a torus ']T‘]iv in dimension d > 3.

Since N,,, (Rex) < Ny(x), £ > 1, to prove condition (b) of Proposition
4.12, it is enough to show that for each m > 1,

lim limsup Py [N (z) > j] = 0. (4.2)

J—7 Nooco
The above probability is equal to QY [,,(x) > j]. Denote by 7/, i > 1,
the holding times at m. This is a sequence of i.i.d. mean ﬁ;,l W, exponential
random variables. Since {M,,(z) > j} C {r{" + .-+ 7" < T}, the previous
probability is bounded by QY [ 7" +---+7/* <T| < P[Ti+---+T; <T],
where T;, i > 1, is a sequence of i.i.d. mean B~!W,, exponential random
variables. This expression vanishes as j 1 oo, which proves (4.2).

In view of (3.6) and since T, j(Rex), j > 1, are identically distributed, to
prove condition (c) of Proposition 4.12 we need to show that for each m > 1,

lim lim sup lim sup PN[Tmﬁl(iﬁgz) < e} =0.
=0 y300 N—ooo

Since Ty, 1 (Rex) > Ton,1(x), £ > m > 1, to prove condition (c) of Proposition
4.12 we just have to show that for each m > 1,

lim lim sup Py [ Tm,1(2) < €] = 0. (4.3)

=0 N oo

With the notation introduced in the previous paragraph, the probability above
is equal to QY[ 77" < €]. As 7{" is a mean By W), exponential random variable
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and as Sy < f, the previous probability is less than or equal to P[T <
€], where T is a mean B~ !W,, exponential random variable. This proves
condition (c¢) of Proposition 4.12 in the case where supy Sy < 0.

We conclude this section proving conditions (b) and (c¢) of Proposition 4.12
without the assumption that sup By < co. Recall that we denote by Ay the
set of the first My deepest traps, Ay = {z,... ,x%N}. Let U be the time
of the first visit to Ay, UY = inf{t > 0:n(t) € Ay}, and define recursively
the sequence of stopping times UJN ,j>1, by

U;\frl = inf{tZUJN:n(t) €Ay, ﬂUjNgsgts.t. n(s) ¢BN},

where By = UMY B(zN, £ ). Hence, the sequence U JN represents the succesive
visits to the deepest traps after escaping from these traps. We refer to the time
interval [UJN , UJJYH) as the j-th excursion.

For m > 1, let e;(m) = min{j > 1: n(U¥) = )} be the first excursion
to the trap zY. Define recursively e;(m), i > 1, by
ei+1(m) = min{j > e;(m) : n(UJN) =2},

Note that we may have e;1(m) = e;(m) + 1, as the process may escape from
the trap 2 and then return to it before visiting any other deep trap. We

refer to [Ucf:[(m)7 Ugl (m)+1) as the i-th excursion to z).

Let G, i > 1, be the number of visits to 2 during the i-th excursion
to 1Y, in other words, GY is the number of visits to 2} in the time interval
[Ug(m),Ugl (m)+1)' The random variables GV, i > 1, are i.i.d. and have a

K2

mean Sy geometric distribution. Let T-],\;7 p > 1, be the p-th holding time
at = after Ué:’ (m)* To clarify this definition, observe that the random walk
n(tBxn) remains at x¥ in the time interval [Ug(m),UN(m) + T7) and that

€
T, = Ti,G$’+p' The random variables 77, are i.i.d., have a mean Wi/ BN

exponential distribution, and are independent from the sequence G¥.
Fix N large enough for My > ¢ so that 9, (Rex) < N, (Rary ). In this
case,
i G
[ (Re) = 5} < {1 <7}

i=1 p=1

It follows from the conclusion of the last paragraph that ", <p<GN ﬂ{\;, 1> 1,
forms a sequence of i.i.d. mean W,,, exponential random variables. This proves
condition (b) of Proposition 4.12.

In view of (3.6) and since Tp, j(Rex), j > 1, are identically distributed, to
prove condition (c) of Proposition 4.12 we need to show that for each m > 1,

lim lim sup lim sup PN[Tmﬁl(iﬁgz) < e} =0.

=0 300 N—ooo
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Since Ty 1(Rex) > Ty 1 (Raryx), it is in fact enough to show that for each
m>1,

lim 1imsupPN[Tm,1(9{MNx) < 6] =0.

=0 N oo

This probability is equal to QN [Ty1(Rumyz) < €] and Tpp1(Rayz) >

N
STy

1,p» @ mean Wy, exponential random variable. Therefore,

P [Thmi(Ruyz) <e] < P[T <,

where T is a mean W, exponential random variable, which proves condition
(c) of Proposition 4.12.

2. Zero-range processes. Consider the zero-range process n(t) = n'¥(t)
introduced in Chapter ??. We assume that 7(¢) is defined in some probability
space (£2, F,P). For N > L, let the projection ¥y : E, v — {1,..., L} U{N}
be defined by

L
Un(n) = Y j1{ne &y} + N1{ne Ay} .

r=1

It could be more natural to define ¥n(n) as 0 in the set Ay. However, with
such a definition ¥ (n(t)) would not be a trajectory in D([0,T7], Sy) and theory
developped in the previous sections could not be applied.

Fix T'> 0,1 <2 < L, and a configuration n in €%;. Denote by Qflv the
probability measure on D([0,7T],S,) induced by the random walk XV (¢) =
WUy (n(N1Tet)) starting from 7. Note that time has been speeded-up by N1*+e
and that the measure Q) is concentrated on the set D([0,T], Sy).

It is clear from this last observation that Ap(z) = 0, Q) almost surely.
On the other hand, if we denote by 7;, T;’, j > 1, the holding times of the
processes X (t), n(N*1t), respectively, XV (¢) is discontinuous at 7' if and
only if 71 4+ --- +7; = T for some j. Since, 71 +---+7; = 7/ +--- + 7,/ for
some k > j and since P[r)! +--- + 7,/ = T] = 0 for all £ > 1, we have that
Qf;[ [m +---+ 7 =T] =0 for each j > 1. Therefore, (@f]V is concentrated on
the set D*([0,T7, S5).

Denote by Py the probability measure on E([0,T],S;) defined by Py =
QN oM. By the last observation, Py is concentrated on E*([0,T7, S,). We
claim that the sequence Py fulfills all the assumptions of Proposition 4.12.
We start with assumption (a). As in the previous example, it is enough to
show that (4.1) holds. By definition of Py, for N > m > L,

Ep, [/OT 1{xz(s) > m} ds} = Egx [/OT 1{z(s) > m} ds}

= En[/OT 1{n(s N*Th) ¢ AN}ds} ,

which is the statement of Lemma 77 in ?.
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We turn to condition (b) of Proposition 4.12. As in the example of random
walks among traps, it is enough to prove (4.2). Denote by Tj, j > 1, the
holding times between successive visits to the metastable sets: T = inf{t >
0:n(t) € €N},

TjH:inf{t>0:77(Tj+t)GEN\E%\ET”}, T, = Th+---T;, j>1.

Denote by Tf, j > 1, the same sequence for the trace process n®(t), T¢ =
inf{t >0:7°(@) € EV}.

For 1 <k < L, let e;(k) = min{j > 1: n(T;) € Ex} be the first visit to
the metastable set £j. Define recursively e;(k), i > 1, by

ei+1(k) =min{j > e;(k) : n(T;) € Ex} .

It is clear that TF < Tj, j > 1, and that {Mx(XN) > j} C {Te, ) + - +
T,y <T}C {Tegl(k) +o-- +Te‘5j(k) < T'}. Since the sequence Te‘sj(k) represents
the holding times at k for the process XV (t) = ¥n (7 (N1*°1)), and since the
process XV (t) converges in the Skorohod topology to a Markov process on

1,...,LY,

limsup P, [T5 gy + -+ Ty <T] < P[Si4---+8; <T],
N—o00
where S;, ¢« > 1, is a sequence of non-degenerate i.i.d. exponential random
variables. As j 1 0o, this expression vanishes, which proves (4.2).
It remains to prove assertion (c) of Proposition 4.12. As argued in the
previous example, it is enough to show that (4.3) holds for every m > 1. With
the notation introduced above, it means that we have to show that

lim lim sup P;, [Tel(m) < 6] =0.

=0 Nooo
: e
Since T (
TE
e1(m) e
non-degenerate exponential distribution.

my < Te,(m), it is enough to prove the previous assertion with

replacing Tt (,,). This follows from the convergence of T to a

e1(m)
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