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Continuous-time Markov chains
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1

Continuous-time Markov Chains

c01

We introduce in this chapter continuous-time Markov chains and present their
main properties. We assume that the reader is familiar with the theory of
discrete-time Markov chains, which can be found, for example, in Chung
[1967], Freedman [1971], or in Norris [1998].

1 Markov Chains
bbsec01

Fix a countable set E endowed with the discrete topology. The elements of E,
called configurations or points, are denoted by the Greek letters η, ξ and ζ. pt(η, ξ)

bs09 Definition 1.1. A set of functions pt : E × E → R+, t ≥ 0, is a transition
probability if for all η, ξ ∈ E, s, t ≥ 0,

(a) p0(η, ξ) = δη,ξ, where δη,ξ represents the delta of Kroenecker;

(b) pt(η, ξ) ≥ 0,
∑
ζ∈E pt(η, ζ) = 1;

(c) pt+s(η, ξ) =
∑
ζ∈E pt(η, ζ) ps(ζ, ξ);

(d) For each (η, ξ) ∈ E × E, the function t 7→ pt(η, ξ) is right-continuous at

t = 0.

Property (c) is known as the Chapman-Kolmogorov equations. It follows
from the previous conditions that, for each (η, ξ) ∈ E × E, the function t 7→
pt(η, ξ) is right-continuous at every t > 0. Indeed, by properties (b) and (c),
for t ≥ 0, s > 0,

pt+s(η, ξ) − pt(η, ξ) =
∑
ζ 6=η

ps(η, ζ)
{
pt(ζ, ξ) − pt(η, ξ) } .

By property (b), the absolute value of this expression is bounded by

2
{

1 − ps(η, η)
}
,
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4 1 Continuous-time Markov Chains

which, by (d), vanishes as s ↓ 0. In particular, the function t 7→ pt(η, ξ) is
measurable.

A set of functions pt : E × E → R+, t ≥ 0, is said to be a substochastic
transition probability if it fulfills all the previous conditions with (b) replaced
by

pt(η, ξ) ≥ 0 ,
∑
ζ∈E

pt(η, ζ) ≤ 1 .

Let Ω be a nonempty set. Elements ofΩ are represented by ω. Recall that a
filtration on Ω is an increasing sequence of σ-algebras of subsets of Ω, and that
a probability space is a triple (Ω,F ,P), where F is a σ-algebra of subsets of
Ω and P is a probability measure defined on F . In analogy with this definition
we introduce the notion of Markov spaces.Ft, F∞

bbs01 Definition 1.2. A Markov space is a triple (Ω, (Ft : t ≥ 0), {Pη : η ∈ E}),
where (Ft : t ≥ 0) is a filtration on Ω and {Pη : η ∈ E} is a family of
probability measures defined on F∞, the smallest σ-algebra which contains all
sets Ft.

A family (η(t) : t ≥ 0) of E-valued random variables defined on the proba-
bility space (Ω,F∞) is said to be adapted to the filtration Ft if for each t ≥ 0
η(t) is Ft-measurable.

bs07 Definition 1.3. Let pt(η, ξ) be a transition probability. A sequence of E-
valued random variables (η(t) : t ≥ 0) defined on a Markov space (Ω, (Ft :
t ≥ 0), {Pη : η ∈ E}) is a continuous-time Markov chain with transition
probability pt(η, ξ) if

(a) The family (η(t) : t ≥ 0) is adapted to the filtration Ft;

(b) For all η ∈ E, Pη[ η(0) = η ] = 1;

(c) For all η ∈ E, the trajectories η(t) are right-continuous, Pη-almost surely;

(d) For all η, ξ ∈ E, s, t ≥ 0,

Pη[ η(t+ s) = ξ | Ft ] = ps(η(t), ξ) , (1.1) b14

Pη-almost surely.

We shall abreviated in the sequel continuous-time Markov chain by Markov
chain. Property (c) states that for each η ∈ E, there exists a set A ∈ F∞ such
that Pη[A] = 1 and for each ω ∈ A, the function η( · , ω) : R+ → E is right-
continuous.Fηt

Denote by Fηt , t ≥ 0, the σ-algebra spanned by η(s), 0 ≤ s ≤ t. The
filtration (Fηt : t ≥ 0) is called the natural filtration. A collection of E-
valued random variables (η(t) : t ≥ 0) which fulfills (1.1) for some filtration
Ft which contains the natural filtration, Ft ⊃ Fηt , and some substochastic
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1 Markov Chains 5

transition probability pt is said to satisfy the Markov property with respect
to the filtration Ft and the substochastic transition probability pt.

Markov chains do exist! We construct below a Markov chain from two
parameters: a positive function λ : E → (0,∞) and a transition matrix p,
which is a function p : E × E → R+ such that

p(η, ξ) ≥ 0 ,
∑
ζ∈E

p(η, ζ) = 1 , η , ξ ∈ E . (1.2) b01

Consider a probability space (Ω,F ,P) on which is defined a discrete-time
Markov chain Y = (Yn : n ≥ 0) with transition matrix p(η, ξ) given by (1.2).
Assume that

(a) Yn is a recurrent chain;

(b)P[Y0 = η] > 0 for all η ∈ E;

(c) A sequence (en : n ≥ 0) of i.i.d. mean-one, exponential random variables

independent of Y is also defined on (Ω,F ,P).
en

Define the probability measure Pη, η ∈ E, on (Ω,F) by

Pη[ · ] = P[ · |Y0 = η] .

Expectation with respect to P, Pη is denoted by E, Eη, respectively. Pη
SjFix ζ ∈ E. We associate to every sample path of Y the sequence of random

times (Tn : n ≥ 0) given by

Tn =
en

λ(Yn)
· Let S0 = 0 , Sj =

j−1∑
k=0

Tk . (1.3) b20

Since Y is recurrent, limn→∞ Sn =
∑
i≥0 Ti =∞, Pζ-almost surely. In partic-

ular, the time-change

N(t) = min{n ≥ 0 :

n∑
i=0

Ti > t} (1.4) b05

is Pζ-almost surely finite for every t ≥ 0 and

η(t) = YN(t)

is a right-continuous trajectory with left limits well defined for all t ≥ 0. We
may also express η(t) in terms of the random times Sj and the Markov chain
Yj as

η(t) =
∑
j≥0

Yj 1{Sj ≤ t < Sj+1} , (1.5) b45
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6 1 Continuous-time Markov Chains

where 1{B} stands for the indicator function of the set B. The right-hand side
is a function of t and of the sequences (Yk : k ≥ 0), (Tk : k ≥ 0), represented
by F : R+ × EN × (0,+∞)N → E:

F(t ; (ηk : k ≥ 0) ; (tk; k ≥ 0) ) :=
∑
j≥0

ηj 1{sj ≤ t < sj+1} , (1.6) bb51

where s0 = 0, sj =
∑

0≤i<j ti. Hence, for every ξ ∈ E, t ≥ 0,

Pζ [η(t) = ξ] = Pζ
[
F(t; (Yk : k ≥ 0); (Tk : k ≥ 0) ) = ξ

]
. (1.7) b47

Note that η(0) = ζ, Pζ-almost surely. Figure 1.1 illustrates a typical trajectory.

t

E

S0 S1

η(t) = Y0

T0

S2

η(t) = Y1

T1

S3

η(t) = Y2

T2

Fig. 1.1. A trajectory of the continuous-time process η(t). figb1

1{B}
F bs10 Proposition 1.4. For η, ξ ∈ E, t ≥ 0, let

pt(η, ξ) = Pη[η(t) = ξ] .

Then, pt is a transition probability and for all s, t ≥ 0, η, ξ ∈ E,

Pη[η(t+ s) = ξ | Fηt ] = ps(η(t), ξ) . (1.8) b02

Moreover, the sequence of random variables (η(t) : t ≥ 0) defined on (Ω, (Fηt :
t ≥ 0), {Pη : η ∈ E}) is an E-valued continuous-time Markov chain with
transition probability given by {pt : t ≥ 0}.

Proof. We first prove (1.8). Fix η ∈ E. Since, by definition, η(t) is Fηt -
measurable, to prove (1.8) we only have to show that for every event A in
Fηt ,

Pη[η(t+ s) = ξ , A] = Eη
[
Pη(t)[η(s) = ξ] 1{A}

]
.

Since the σ-algebra Fηt is generated by the variables η(s), 0 ≤ s ≤ t, by
Dynkin’s π−λ theorem, it is enough to prove this identity for sets of the form
A = {η(s1) = ζ1, . . . , η(s`) = ζ`, η(t) = ζ} for ` ≥ 0, 0 ≤ s1 < · · · < s` < t,
ζ1, . . . , ζ`, ζ ∈ E. Assuming that A takes this form, we rewrite the left-hand
side of the previous formula as
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1 Markov Chains 7∑
j≥0

Pη[η(t+ s) = ξ , A , Sj ≤ t < Sj+1] . (1.9) b44

On the set Sj ≤ t < Sj+1, η(t) = Yj . More generally, on this event, the
set A can be expressed in terms of the variables (Y0, . . . , Yj , T0, . . . , Tj−1). For
example, the event {η(si) = ζi} can be represented as

j−1⋃
k=0

{
{Sk ≤ si < Sk+1} ∩ {Yk = ζi}

}
∪
{
{Sj ≤ si} ∩ {Yj = ζi}

}
.

Therefore, the event A can be replaced by a set A′ expressed only in terms of
the variables (Y0, . . . , Yj , T0, . . . , Tj−1). Moreover, since η(t) = ζ on the set A
and η(t) = Yj on the set Sj ≤ t < Sj+1, Yj = ζ on A′.

Let FY,ej , j ≥ 0, the σ-algebra spanned by {Y0, . . . , Yj , e0, . . . , ej−1}. Note

that FY,ej coincides with the σ-algebra spanned by {Y0, . . . , Yj , T0, . . . , Tj−1}.
In view of the previous paragraph, taking a conditional expectation with re-
spect to FY,ej , we may write the probability appearing in (1.9) as

Eη
[
1{A′ , Sj ≤ t}Pη[η(t+ s) = ξ , t < Sj+1 | FY,ej ]

]
.

Consider the previous conditional probability. Since Sj+1 = Sj + Tj , we
may rewrite Sj+1 > t as Tj > t − Sj and η(t + s) as F(s; {Yj+k : k ≥
0}; {Tj− (t−Sj), Tj+k : k ≥ 1}), where the function F has been introduced in

(1.6). The variable Sj is measurable with respect to FY,ej and has to be treated
below as a constant. With this notation, the previous conditional probability
becomes

Pη[ F(s) = ξ , Tj > t− Sj | FY,ej ] , (1.10) bc01

where we wrote F(s) for F(s; {Yj+k : k ≥ 0}; {Tj − (t − Sj), Tj+k : k ≥ 1}).
Given FY,ej , Y ′k = Yj+k, k ≥ 0, is a discrete-time Markov chain which starts
from Yj and whose transition matrix p(η, ξ) is given by (1.2), and e′k = ej+k are
i.i.d. mean one exponential random variables, independent from the sequence
Y ′k. The previous conditional probability is therefore equal to

PYj
[

F
(
s; {Y ′k : k ≥ 0}; {T ′0− (t−Sj), T ′k : k ≥ 1}

)
= ξ , T ′0 > t−Sj

]
, (1.11) bc02

where T ′k = e′k/λ(Y ′k) and Sj is treated as a constant and is not integrated.
Note that the probability measure Pη has been replaced by PYj , as the discrete-
time Markov chain Y ′k starts from Yj . We present at the end of this section,
in (1.13), a detailed derivation of this identity.

By the loss of memory of exponential distributions, for every bounded
function f , mean λ−1 exponential random variable e, and r > 0,

E[f(e− r) 1{e > r}] = e−λr E[f(e)] .
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8 1 Continuous-time Markov Chains

Hence, the probability appearing in the penultimate displayed formula is equal
to

e−λ(Yj)(t−Sj) PYj
[
F
(
s; {Y ′k : k ≥ 0}; {T ′k : k ≥ 0}

)
= ξ
]

= e−λ(Yj)(t−Sj) PYj [η(s) = ξ] .

Up to this point, we have shown that (1.9) is equal to∑
j≥0

Eη
[
1{A′ , Sj ≤ t} e−λ(Yj)(t−Sj) PYj [η(s) = ξ]

]
.

Since Yj = ζ on the set A′, we may replace in the previous expression
PYj [η(s) = ξ] by Pζ [η(s) = ξ] and drop out this probability from the ex-
pectation. On the other hand, repeating the previous argument based on the
loss of memory of exponential distributions, we obtain that

Eη
[
1{A′ , Sj ≤ t} e−λ(Yj)(t−Sj)

]
= Pη

[
A′ , Sj ≤ t < Sj+1

]
.

Hence, the sum (1.9) is equal to

Pζ [η(s) = ξ]
∑
j≥0

Pη
[
A′ , Sj ≤ t < Sj+1

]
.

At this point, we may replace back A′ by A and sum over j to conclude the
proof of (1.8).

We claim that pt(η, ξ) is a transition probability. Condition (a) of Defini-
tion 1.1 follows from the definition of η(0) and the one of Pη, while condition
(b) follows from the fact the sequence Sj diverges: for every η ∈ E, t ≥ 0,∑

ξ∈E

pt(η, ξ) =
∑
ξ∈E

Pη[η(t) = ξ] =
∑
ξ∈E

∑
j≥0

Pη[η(t) = ξ , Sj ≤ t < Sj+1] .

On the set {Sj ≤ t < Sj+1}, η(t) = Yj and
∑
ξ∈E Pη[Yj = ξ] = 1. The

previous sum is thus equal to
∑
j≥0 Pη[Sj ≤ t < Sj+1] = 1. Condition (c) of

Definition 1.1 corresponds to the Markov property (1.8):

pt+s(η, ξ) = Pη[η(t+ s) = ξ] =
∑
ζ∈E

Pη[η(t) = ζ , η(t+ s) = ξ] .

Taking the conditional expectation with respect to Fηt , by (1.8), the previous
sum is equal to∑

ζ∈E

Pη[η(t) = ζ]Pζ [η(s) = ξ] =
∑
ζ∈E

pt(η, ζ) ps(ζ, ξ) .

Finally, condition (d) of Definition 1.1 can be proven from the non-degeneracy
of the function λ. For η, ξ ∈ E,
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1 Markov Chains 9

pt(η, ξ) = Pη[η(t) = ξ] = Pη[η(t) = ξ , T0 > t] + Pη[η(t) = ξ , T0 ≤ t] .

The first term on the right-hand side is equal to δη,ξ(1 − Pη[T0 ≤ t]), while
the second term is bounded by Pη[T0 ≤ t]. This shows that the absolute value
of pt(η, ξ) − δη,ξ is bounded by Pη[T0 ≤ t] = 1 − e−λ(η)t, which vanishes as
t ↓ 0. This proves that pt(η, ξ) is a transition probability.

It remains to prove that (η(t) : t ≥ 0) is an E-valued continuous-time
Markov chain on (Ω, (Fηt : t ≥ 0), {Pη : η ∈ E}) with transition probability
(pt : t ≥ 0). Conditions (a), (b) and (c) of Definition 1.3 hold by construction,
while conditions (d) has been derived in the first part of the proof. ut

Fix a configuration η ∈ E. Denote by τ1 the time of the first jump of η(t):

τ1 := inf
{
t > 0 : η(t) 6= η(0)

}
. (1.12) bb10

By construction, τ1 = S1 = T0 = e0/λ(Y0). Since, under Pη, Y0 = η and
e0 is a mean-one exponential random variable, τ1 is an exponential random
variable with mean λ(η)−1. Hence, the process remains at η a random time
exponentially distributed and λ(η), introduced in (1.2), represents the param-
eters of the exponential distribution. The parameters λ(η), η ∈ E, are called
the holding rates of the Markov chain η(t).

The variable η(τ1) stands for the site visited after the first jump. By con-
struction, η(T1) = Y1. Since Yn is a discrete-time Markov chain, Pη[η(τ1) =
ξ] = Pη[Y1 = ξ] = p(η, ξ). Thus, p(η, ξ) represents the probability that the
process η(t) jumps from η to ξ. The matrices p(η, ξ), R(η, ξ) = λ(η) p(η, ξ) are
called, respectively, the jump probabilities and the jump rates of the chain.

brm1 Remark 1.5. We only used the assumption that the discrete-time Markov
chain associated to the transition matrix p(η, ξ) is recurrent to ensure that the
sequence of random times Sj defined above (1.4), increases to +∞ Pη-almost
surely. This assumption could be replaced by the assumption that the holding
rates λ(η) are bounded, supη∈E λ(η) <∞.

brm1 Remark 1.6. In the above construction, we may assume, without loss of gen-
erality, that the transition matrix p(η, ξ), introduced in (1.2), vanishes on the
diagonal, p(η, η) = 0. Indeed, assume that this is not the case, p(η, η) > 0 for
some η ∈ E. Assume that the discrete-time Markov chain Yn starts from η,
Y0 = η. Let N be the time the chain Yn jumps to E \ {η}:

N = min{n ≥ 1 : Yn 6= η} ,

and let Y ′1 be the first site visited, Y ′1 = YN. The random variable T ′0 =∑
0≤j<N Tj represents the jump time of η(t):

T ′0 :=

N−1∑
j=0

Tj = inf{t ≥ 0 : η(t) 6= η} ,
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10 1 Continuous-time Markov Chains

and Y ′1 the value of the chain at time T ′0: Y ′1 = η(T ′0).
It is clear that Pη[Y ′1 = ξ] = p(η, ξ)/[1− p(η, η)]. We claim that T ′0 has an

exponential distribution of parameter λ(η)[1−p(η, η)]. To verify this assertion
we compute the Laplace transform of T ′0. Fix θ > 0 and observe that

Eη
[
e−θT

′
0
]

= Eη
[

exp{−θ
N−1∑
j=0

Tj}
]

=
∑
n≥1

Eη
[
1{N = n} exp{−θ

n−1∑
j=0

Tj}
]
.

Denote by G the σ-algebra spanned by the Markov chain Yn. We may rewrite
the previous sum as

∑
n≥1

Eη
[
1{N = n}Eη

[
exp{−θ

n−1∑
j=0

Tj} | G
] ]

because N is G-measurable. Given G, on the set N = n, the random variables
Tj , 0 ≤ j < n are i.i.d. mean λ(η)−1 exponential random variables. The
previous sum is thus equal to∑

n≥1

Eη
[
1{N = n}

( λ(η)

θ + λ(η)

)n ]
=

[1− p(η, η)]u

1− u p(η, η)
,

as N is a mean [1− p(η, η)]−1 geometric random variable. Here u = λ(η)/[θ+
λ(η)]. The previous ratio is equal to

λ(η)[1− p(η, η)]

θ + λ(η)[1− p(η, η)]
,

which is the Laplace transform of an exponential random variable of parameter
λ(η)[1 − p(η, η)]. Since the Laplace transform characterizes the distribution,
the claim is proved.

This computation indicates that the continuous-time Markov chain {η′(t) :
t ≥ 0} constructed from the discrete-time Markov chain Y ′n, whose transition
matrix p′(η, ξ) is given by

p′(η, ξ) =
p(η, ξ)

1− p(η, η)
, η 6= ξ , p′(η, η) = 0 ,

and holding rates λ′ : E → R+ by

λ′(η) = [1− p(η, η)]λ(η) ,

has the same distribution as η(t). This claim can be checked, We leave the
details to the reader. This proves the assertion made at beginning of the
remark because p′(η, η) = 0.
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1 Markov Chains 11

We turn to the identity between (1.10) and (1.11). Recall the notation
introduced in the proof of Proposition 1.4. We claim that for every j ≥ 0 and
r ≥ 0,

Pη
[

F(s; {Yj+k : k ≥ 0}; {Tj − r, Tj+k : k ≥ 1}) = ξ , Tj > r
∣∣FY,ej

]
= PYj

[
F
(
s; {Yk : k ≥ 0}; {T0 − r, Tk : k ≥ 1}

)
= ξ , T0 > r

]
.

(1.13) bb52

Since the right-hand side is measurable with respect to FY,ej , we have just

to show that for every set A in FY,ej ,

Pη
[

F(s; {Yj+k : k ≥ 0}; {Tj − r, Tj+k : k ≥ 1}) = ξ , Tj > r , A
]

= Eη
[
1{A}PYj

[
F
(
s; {Yk : k ≥ 0}; {T0 − r, Tk : k ≥ 1}

)
= ξ , T0 > r

] ]
.

By Dynkin’s π-λ theorem we may assume that the set A is of the form A1∩A2,
where A1, A2 depend only on {Yi : 0 ≤ i ≤ j}, {ei : 0 ≤ i ≤ j−1}, respectively.
On the other hand, the set {F(s; {Yj+k : k ≥ 0}; {Tj − r, Tj+k : k ≥ 1}) =
ξ} ∩ {Tj > r} is a function of the variables {(Yj+k, ej+k) : k ≥ 0}, denoted by
f .

With this notation, the left hand side of the previous displayed equation
becomes

Eη
[
f 1{A1}1{A2}

]
. (1.14) bb01

Take the conditional expectation with respect to FYj , the σ-algebra spanned
by Y0, . . . , Yj . Since the sequence ek is independent of the chain Yk and since
A1 is measurable with respect to FYj , the previous expectation is equal to

Eη
[
1{A1}Eη

[
f | FYj

] ]
Pη[A2] = Eη

[
1{A1}1{A2}Eη

[
f | FYj

] ]
.

As the sequence ek is independent of the chain Yk, by the Markov property
for the chain Yk,

Eη
[
f({Yj+k : k ≥ 0} , {ej+k : k ≥ 0})

∣∣FYj ]
= EYj

[
f({Yk : k ≥ 0} , {ej+k : k ≥ 0})

]
.

Since the sequence ek is independent of the chain Yn and is identically dis-
tributed, we may replace {ej+k : k ≥ 0} by {ek : k ≥ 0} in this formula. We
have thus proved that (1.14) is equal to

Eη
[
EYj
[
f({Yk : k ≥ 0} , {ek : k ≥ 0})

]
1{A1}1{A2}

]
,

as claimed.
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12 1 Continuous-time Markov Chains

2 Strong Markov Property
secb02

Let E be a countable set. Unless otherwise stated, we consider in this section
an E-valued, continuous-time, right-continuous process (η(t) : t ≥ 0) defined
on a probability space (Ω,F ,P), and adapted to a filtration (Ft : t ≥ 0),
where Ft ⊂ F for all t.

A function T : Ω → [0,∞] is said to be a stopping time with respect to the
filtration Ft if {T ≤ t} ∈ Ft for all t ≥ 0. When it is clear from the context
to which filtration we refer, we simply say that T is a stopping time.

The sets {T < t}, {T = t} belong to Ft if T is a stopping time since

{T < t} =
⋃
n≥1

{T ≤ t− (1/n)} ∈ Ft , (2.1) b48

and {T = t} = {T ≤ t} \ {T < t}.
For a subset A of E, denote by HA the hitting time of the set A:

HA = inf{t > 0 : η(t) ∈ A} ,

and by H+
A the time of the first return to A:

H+
A = inf{t > τ1 : η(t) ∈ A} ,

where τ1 is the time of the first jump, introduced in (1.12).

bs06 Lemma 1.7. For every subset A of E, HA and H+
A are stopping times with

respect to the natural filtration Fηt .

Proof. Since η is right-continuous and E countable, for every t ≥ 0,

{HA ≤ t} =
⋃

0≤s<t
s∈Q

{η(s) ∈ A} ∪ {η(t) ∈ A} ∈ Fηt .

By the same reasons,

{H+
A ≤ t} = {η(t) ∈ A , η(t) 6= η(0)} ∪

⋃
0<s<t
s∈Q

[
{η(s) 6= η(0)} ∩ {η(t) ∈ A}

]

∪
⋃

0<s<r<t
r,s∈Q

[
{η(s) 6= η(0)} ∩ {η(r) ∈ A}

]
.

The right-hand side clearly belongs to Fηt . ut

Observe that the denumerability of the set E played an important role in
the proofs above as we used the fact that the trajectories η(t) are piecewise
constant to the right (for all t ≥ 0 there exists ε > 0 such that η(s) = η(t) for
t ≤ s < t+ ε).
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2 Strong Markov Property 13

Recall from (1.12) that we denote by τ1 the time of the first jump. Denote
by (τk : k ≥ 1) the times of the successive jumps:

τk+1 := inf
{
t > τk : η(t) 6= η(τk)

}
, k ≥ 1 . (2.2) bb12

We claim that the jump times (τj : j ≥ 1) are stopping times with respect
to the natural filtration. We prove this assertion for j = 1 and leave the
general statement to the reader. For every t ≥ 0,

{τ1 ≤ t} = {η(t) 6= η(0)} ∪
⋃

0<s<t
s∈Q

{η(s) 6= η(0)} ∈ Fηt . (2.3) bb11

For a stopping time T with respect to a filtration Ft, denote by FT the
subset of events A in F such that

A ∩ {T ≤ t} ∈ Ft for all t ≥ 0 .

The set FT is a σ-algebra which represents the events which occured before
T . If S and T are two stopping times with respect to the same filtration and
S ≤ T , it is not difficult to show that

FS ⊂ FT . (2.4) b50

When the filtration Ft is the natural filtration of a Markov chain η(t), we
represent the σ-algebra FT by FηT .

bs12 Lemma 1.8. Let S, T be two stopping times with respect to the natural filtra-
tion Fηt of a right-continuous process η(t). The sets {S ≤ T}, {S < T} and
the random variable η(T ) are FηT measurable.

Proof. We prove the measurability of the set {S ≤ T} and leave the other
case to the reader. It is enough to show that {T < S} belongs to FηT . Since
η(t) is right-continuous, for each t ≥ 0,

{T < S} ∩ {T ≤ t} =
[
{T = t} ∩ {S > t}

]
∪

⋃
0<s<t
s∈Q

{T < s < S} .

This set belongs to Fηt in view of (2.1).
To prove the last assertion of the lemma, we need to show that {η(T ) = η}

belongs to FηT for every η ∈ E. Fix η ∈ E and note that

{T < t} =
⋃
m≥1

⋂
n>m

[2nt]−1⋃
k=0

{k/2n ≤ T < (k + 1)/2n} ,

where [a] represents the integer part of a. Denote the set {k/2n ≤ T < (k +
1)/2n} by An,k(T ). By the right continuity of η,
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14 1 Continuous-time Markov Chains

{η(T ) = η} ∩ {T < t} =
⋃
m≥1

⋂
n>m

[2nt]−1⋃
k=0

[
An,k(T ) ∩ {η((k + 1)/2n) = η}

]
,

which belongs to Fηt . Therefore,

{η(T ) = η} ∩ {T ≤ t} =
[
{T = t} ∩ {η(t) = η}

]
∪
[
{η(T ) = η} ∩ {T < t}

]
belongs to Fηt , which concludes the proof of the lemma in view of (2.1). ut

We return to the framework of Markov chains.

bs13 Definition 1.9. A Markov chain (η(t) : t ≥ 0) defined on a space (Ω, (Ft :
t ≥ 0), {Pη : η ∈ E}) with transition probability pt(η, ξ) is said to be a strong
Markov process if for every η, ξ ∈ E, s ≥ 0 and stopping time T (with respect
to the filtration Ft),

Pη[η(T + s) = ξ | FT ] = ps(η(T ), ξ) ,

on {T <∞}, Pη almost surely.

bs11 Lemma 1.10. Let (η(t) : t ≥ 0) be a continuous-time Markov chain defined
on a space (Ω, (Ft : t ≥ 0), {Pη : η ∈ E}) with transition probability pt(η, ξ),
as introduced in Definition 1.3. Then, η(t) is a strong Markov process.

Proof. Fix η, ξ ∈ E and s ≥ 0. By Lemma 1.8, ps(η(T ), ξ) is FT measurable.
It remains to show that for every set A in FT ,

Pη
[
η(T + s) = ξ , A , T <∞

]
= Eη

[
1{A , T <∞} ps(η(T ), ξ)

]
. (2.5) b49

Assume first that the stopping time T takes values on a countable set T.
In this case, the left hand side of (2.5) is equal to∑

t∈T
Pη
[
η(t+ s) = ξ , A , T = t

]
.

Since T is a stopping time, A∩{T = t} belongs to Ft. By the Markov property
(1.1), the previous expression is equal to∑

t∈T
Eη
[
1{A , T = t} ps(η(t), ξ)

]
= Eη

[
1{A , T <∞} ps(η(T ), ξ)

]
,

which proves (2.5).
Fix a stopping time T and define the function Tn : Ω → [0,∞] by Tn = 0

on the set {T = 0}, Tn =∞ on {T =∞} and

Tn =
∑
k≥0

k + 1

2n
1{k/2n < T ≤ (k + 1)/2n}
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3 Some Examples and Minimal Chains 15

on the set {0 < T < ∞}. The reader will check that Tn is a stopping time
which assumes countably many values, that T ≤ Tn and that Tn decreases to
T on the set {T <∞}.

Since T ≤ Tn, by (2.4), A ∈ FT ⊂ FTn . Therefore, by the first part of the
proof,

Pη
[
η(Tn + s) = ξ , A , Tn <∞

]
= Eη

[
1{A , Tn <∞} ps(η(Tn), ξ)

]
.

Since {Tn < ∞} = {T < ∞}, and since Tn decreases to T as n ↑ ∞, by the
right continuity of η(·) the left hand side of the previous identity converges to
the left hand side of (2.5) as n ↑ ∞. By similar reasons and by the dominated
convergence theorem, the right-hand side of the previous identity converges
to the right-hand side of (2.5) as n ↑ ∞. ut

3 Some Examples and Minimal Chains
secb04

We present in this section some examples of Markov chains which exhibit
pathologies which one would not suspect may exist. In Example 1.13 and 1.14
the chain explodes in finite time, while in Example 1.17 it remains in each
configuration a mean-0 exponential time.

While discrete-time Markov chains are described by their transition ma-
trices, only elementary continuous-time Markov chains have transition prob-
abilities which can be computed explicitly. This means that continuous-time
Markov chains have to be characterized differently.

Proposition 1.12 states that transition probabilities pt(η, ξ) are differen-
tiable at t = 0. Denote by Q(η, ξ) its derivative and let q(η) = −Q(η, η). It
is clear that q(η) and Q(η, ξ), η 6= ξ, are non-negative. According to Propo-
sition 1.12, Q(η, ξ) is finite out of the diagonal, q(η) belongs to [0,+∞], and∑
ξ∈E Q(η, ξ) ≤ 0 if q(η) <∞.
Examples 1.13 and 1.14 show that the matrix Q(η, ξ) does not characterize

the transition probability pt(η, ξ), but if we impose further conditions it does.
This is the content of Proposition 1.15. To complete the picture, Proposition
1.16 asserts that given a transition probability pt such that q(η) < ∞ for
all configurations η, there always exists a Markov chain η(t) whose transition
probability is pt. To show that some Markov chains do not fulfill the condition
q(η) < ∞, we present in Example 1.17 a chain in which q(η) = ∞ for all
configurations η ∈ E.

We start proving that the transition probability of the Markov chain de-
fined by (1.5) is differentiable at t = 0.

bbs05 Lemma 1.11. Fix a transition matrix p(η, ξ) and a positive function λ : E →
(0,∞). Let η(t) be the Markov chain introduced in Proposition 1.4. Denote its
transition probability by pt(η, ξ). Then, pt(η, ξ) is differentiable at t = 0 and
its derivative, denoted by p′0(η, ξ), is given by

p′0(η, η) = −λ(η) [1− p(η, η)] , p′0(η, ξ) = λ(η) p(η, ξ) , η 6= ξ ∈ E .
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16 1 Continuous-time Markov Chains

Proof. Fix two configurations η, ξ 6= η ∈ E. If p(η, η) = 1, by construction,
under Pη, η(t) = η for all t ≥ 0. In particular, pt(η, η) = 1 and pt(η, ξ) = 0
for all t ≥ 0. The assertion of the lemma follows.

Assume that p(η, η) < 1, and recall from (1.12) that we represent by τ1
the time of the first jump of η(t). By (2.3), τ1 is a stopping time. Hence, by
the strong Markov property at time τ1, pt(η, ξ) = Pη[η(t) = ξ] is equal to

Pη
[
τ1 > t , η(t) = ξ

]
+ Pη

[
τ1 ≤ t , η(t) = ξ

]
= δη,ξ Pη[τ1 > t] + Eη

[
1{τ1 ≤ t} pt−τ1(η(τ1), ξ)

]
.

By Exercise 1.30, Pη[η(τ1) = η] = 0 and Pη[η(τ1) = ζ] = p?(η, ζ) :=
p(η, ζ)/[1 − p(η, η)] for ζ 6= η. Moreover, under Pη, τ1 is independent of
η(τ1) and is distributed as an exponential random variable of parameter
λ?(η) := λ(η) [1− p(η, η)]. Thus,

pt(η, ξ) = δη,ξ e
−λ?(η)t +

∫ t

0

λ?(η) e−λ?(η)s
∑
ζ∈E

p?(η, ζ) pt−s(ζ, ξ) ds . (3.1) bb04

It follows from this equation, from the fact that pr(ζ, ξ) ≤ 1,
∑
ζ p?(η, ζ) = 1

and from the inequality 1− e−x ≤ x, x ≥ 0, that

1

t

{
1− pt(η, η)

}
≤ λ?(η) ,

1

t
pt(η, ξ) ≤ λ?(η) , η 6= ξ ∈ E . (3.2) bb05

To prove that t−1pt(η, ξ), η 6= ξ ∈ E, converges to λ(η)p(η, ξ) =
λ?(η)p?(η, ξ) as t ↓ 0, fix ε > 0 and consider a finite subset A of E such
that

∑
ζ∈Ac p?(η, ζ) ≤ ε. Assume that A contains ξ. Since pt−s(ζ, ξ) ≤ 1,

1− e−x ≤ x, x ≥ 0,

1

t

∫ t

0

λ?(η) e−λ?(η)s
∑
ζ∈Ac

p?(η, ζ) pt−s(ζ, ξ) ds ≤ ε λ?(η) .

On the other hand, by (3.2), for each fixed pair (ζ, ξ), pt(ζ, ξ) is continuous
at t = 0. There exists therefore t0, such that

max
ζ∈A\{ξ}

sup
0≤t≤t0

pt(ζ, ξ) ≤ ε , sup
0≤t≤t0

[1− pt(ξ, ξ)] ≤ ε .

Hence, for t ≤ t0,

1

t

∫ t

0

λ?(η) e−λ?(η)s
∑
ζ∈A

p?(η, ζ) pt−s(ζ, ξ) ds = p?(η, ξ)
1− e−λ?(η)t

t
+ O(ε) ,

where O(ε) is a remainder whose absolute value is bounded by 2λ?(η)ε. This
proves that t−1pt(η, ξ), η 6= ξ ∈ E, converges to λ?(η)p?(η, ξ) as t ↓ 0. The
proof that t−1[1− pt(η, η)], converges to λ?(η) as t ↓ 0 is similar. ut
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3 Some Examples and Minimal Chains 17

Actually, all transition probabilities are differentiable at t = 0 and not
only the one resulting from the construction presented in Proposition 1.4.

bs21 Proposition 1.12. Let pt(η, ξ) be a transition probability. Then,

Q(η, ξ) :=
d

dt
pt(η, ξ)

∣∣∣
t=0

= p′0(η, ξ)

exists for all η, ξ ∈ E. Moreover, 0 ≤ Q(η, ξ) < ∞ for η 6= ξ and q(η) =
−Q(η, η) ∈ [0,∞]. Finally,

∑
ξ∈E Q(η, ξ) ≤ 0 if q(η) <∞.

The proof of this proposition can be found in Section II.2 of Chung [1967]
or in Section 5.2 of Freedman [1971]. The matrix Q is called the Q-matrix as-
sociated to the transition probability pt(η, ξ). By Exercise 1.31, the parameter
q(η) represents the holding rate at η.

A configuration η is called stable if q(η) <∞ and instantaneous if q(η) =
∞. If q(η) = 0, the configuration η is said to be absorbing. By equation (12)
of Section 5.2 in Freedman [1971], a configuration η is absorbing if and only
if pt(η, η) = 1 for all t ≥ 0.

The next two examples show that the matrix Q does not determine the
transition probability pt(η, ξ) and that we may have

∑
ξ∈E Q(η, ξ) < 0 for a

stable configuration η. Example 1.17 illustrates the fact that all configurations
of a Markov chain may be instantaneous.

bs26 Example 1.13 A birth process. Let E = N ∪ {0} and consider a function
r : E → (0,∞) such that ∑

k∈E

1

r(k)
< ∞ . (3.3) b12

Let Ω be an abstract set and F a σ-algebra of subsets of Ω. Let e(k) : Ω → R,
k ∈ E, be measurable functions. Assume that there are probability measures
P`, ` ∈ E, on (Ω,F) which turn the random variables e(k), k ∈ E, independent
and under which e(k) = 0, k < `, P`-almost surely, and e(k), k ≥ `, have an
exponential distribution of parameter r(k). It is not difficult to construct a
product space (Ω,F) which can carry these probability measures. Let S0 = 0,

Sj =

j−1∑
i=0

e(i) , j ≥ 1 .

In view of (3.3), for all k ∈ E, X := lim`→∞ S` < ∞ Pk-almost surely, since
Ek[X] <∞, where Ek stands for the expectation with respect to Pk. X is called
the explosion time of the chain. According to Exercise 1.33, it is a stopping
time with respect to the natural filtration.

Let Ed = E ∪ {d} be the one-point compactification of E with respect to
the discrete topology. Define the Ed-valued random variables {η(t) : t ≥ 0}
by
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18 1 Continuous-time Markov Chains

η(t) =

{
j if Sj ≤ t < Sj+1 for some j ≥ 0 ,

d if t ≥ X .
(3.4) b23

Fix ` ∈ E. Under P`, Sj = 0 for 0 ≤ j ≤ ` and S`+1 = e(`) is an exponential
random variable of parameter r(`). Hence, η(t) = ` for 0 ≤ t < S`+1.

Let pt(j, k) = Pj [η(t) = k], j, k ∈ E, t ≥ 0. By Exercise 1.34, Pj [X ≤ t] > 0
for all j ∈ E, t > 0. Hence,

∑
k≥0 pt(j, k) = Pj [X > t] < 1 and pt is not a

transition probability, but a substochastic transition probability. It is also easy
to show that pt(j, k) is differentiable at t = 0 and that its derivative Q satisfies
−Q(k, k) = r(k), Q(k, k + 1) = r(k), k ≥ 0, Q(k, j) = 0 otherwise.

The reader can check, repeating the arguments presented in the proof of
Proposition 1.4, that η(t) satisfies the Markov property with respect to the
natural filtration and the substochastic transition probability pt if we add on
both sides of (1.1) the condition that the process did not explode by time t:
On the set {X > t}, for every s ≥ 0 and ξ ∈ E,

Pη[ η(t+ s) = ξ | Fηt ] = ps(η(t), ξ) . (3.5) bb14

Since pt is not a transition probability, η(t) is not an E-valued Markov
chain, but it can be turned into a Markov chain by adding the point d to the
configuration space.

Instead of defining η(t) as d after the explosion time X, we could have
restarted the process afresh from a fixed point j0, or from a point j chosen
according to some probability measure µ on E. Repeating this procedure each
time the process explodes, we construct an E-valued Markov chain defined on
the entire line R+. The derivative at time 0 of the transition probability of
this Markov chain is not affected by the rule which dictates the behavior after
the explosion. In particular, the matrix Q does not depend on the rule and
does not determine the transition probability since each rule gives rise to a
different Markov chain and a different transition probability. M

Minimal chain. Let E be a denumerable set and let Q0(η, ξ) be a real-valued
matrix on E such that

Q0(η, ξ) ≥ 0 for η 6= ξ , q0(η) = −Q0(η, η) ≥ 0 ,∑
ξ∈E

Q0(η, ξ) = 0 for all η ∈ E . (3.6) b13

Note that q0(η) < ∞ since we are assuming the matrix Q0(η, ξ) to be real-
valued. Let λ(η), p(η, ξ) be the holding rates, transition matrix given by

λ(η) = q0(η) , p(η, ξ) =

{
Q0(η, ξ)/q0(η) if q0(η) > 0 and ξ 6= η,

0 otherwise .
(3.7) bb02

If the set E is infinite, let Ed = E∪{d} be the one-point compactification of
E with respect to the discrete topology. The construction presented after (1.2)
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3 Some Examples and Minimal Chains 19

togheter with the ones of the previous example permit to define a transition
probability pt(η, ξ) on Ed and a Ed-valued Markov chain (η(t) : t ≥ 0), defined
by (3.4), on a Markov space (Ω, (Fηt : t ≥ 0), {Pη : η ∈ Ed}).

This Markov chain is called the minimal Markov chain. The stopping time
X is called the explosion time of the mininal chain. By restricting the transition
probability pt to E we obtain a substochastic transition probability pt:

pt(η, ξ) = pt(η, ξ) , η , ξ ∈ E ,

called the minimal substochastic transition probability. This minimal sub-
stochastic transition probability is a transition probability if and only if
X = ∞ Pη-almost surely for all η ∈ E. Moreover, the derivative at time 0
of the minimal substochastic transition probability pt is equal to Q0.

If E is a finite set, the explosion time is infinite Pη-almost surely for all η ∈
E, and the construction presented after (1.2) provides a transition probability
pt and an E-valued Markov chain defined for all t > 0. In this case also the
Q-matrix of pt is equal to Q0.

Here is another example to illustrate the fact that the matrix Q does not
characterize the transition probabilities pt(η, ξ).

bs22 Example 1.14 Let E be the set of nonnegative rationals, E = Q+ endowed
with the discrete topology and the usual order. Denote by Ed = E ∪ {d} the
one-point compactification of E. Recall that a function f : [0,∞)→ Ed equal
to d at t, f(t) = d, is right-continuous at t if for every finite subset A of E,
there exists δ > 0 such that f(s) 6∈ A for t < s < t + δ. This observation
extends to left-limits.

Consider a function r : E → (0,∞) such that for all ξ ∈ E,∑
η<ξ

1

r(η)
< ∞ ,

∑
η∈E

1

r(η)
= ∞ , (3.8) b08

where the first sum is carried over all points η ∈ E which are smaller than ξ.
Let e(η), η ∈ E, be real-valued measurable functions defined on some space
(Ω,F). Assume that there are probability measures Pη, η ∈ E, on (Ω,F)
which turn the random variables e(ξ), ξ ∈ E, independent and under which
e(ξ), ξ < η, are equal to 0 Pη-almost surely, and e(ξ), ξ ≥ η, have an exponen-
tial distribution of parameter r(ξ). It is not difficult to construct a product
space (Ω,F) which can carry these probability measures. Let

E(η) =
∑
ζ<η

e(ζ) .

By (3.8), for all ξ ∈ E, Pξ-almost surely, E(η) < ∞ for all η ∈ E, and
limη→∞ E(η) =∞.

Define the random variables (η(t) : t ≥ 0) by
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20 1 Continuous-time Markov Chains

η(t) =

{
η if E(η) ≤ t < E(η) + e(η) for some η ∈ E,

d if t 6∈
⋃
η∈E [E(η),E(η) + e(η)) .

Lemma 6.19 in Freedman [1971] asserts that for every t ≥ 0, ξ ∈ E, Pξ[η(t) ∈
E] = 1. The reader will verify that Pξ-almost surely the trajectories η(t) are
right-continuous, have left-limits, and start from ξ, η(0) = ξ.

For η, ξ ∈ E, let
pt(ξ, ζ) = Pξ[η(t) = ζ] .

The proof of Proposition 1.4 shows that pt is a transition probability and that
(η(t) : t ≥ 0) is an E-valued Markov chain on the Markov space (Ω, (Fηt :
t ≥ 0), {Pη : η ∈ E}) with transition probability pt, where Fηt is the natural
filtration.

Fix ξ, ζ in E. By construction, pt(ξ, ξ) = Pξ[e(ξ) > t] so that q(ξ) =
− p′0(ξ, ξ) = r(ξ). On the other hand, since pt(ξ, ζ) = Pξ[η(t) = ζ], pt(ξ, ζ) = 0
for ζ < ξ and pt(ξ, ζ) ≤ Pξ[e(ξ) + e(ξ′) ≤ t] provided ξ < ξ′ < ζ. This proves
that Q(ξ, ζ) = p′0(ξ, ζ) = 0 for ξ 6= ζ and provides an example of a Markov
chain for which 0 < q(η) <∞, Q(η, ξ) = 0 for all points η 6= ξ. In particular,∑
ξ Q(η, ξ) < 0 for all η.
Moreover, if we interchange the position in R of two points η, ξ ∈ E

and define a new Markov chain accordingly, the derivative at time 0 of the
transition probability of this new chain is equal to Q. M

We have seen in the previous examples that the Q-matrix does not char-
acterize the transition probability. The next proposition provides sufficient
conditions for a substochastic transition probability pt to be the unique tran-
sition probability associated to a given Q-matrix.

For a bounded function f : E → R and a matrix Q satisfying (3.6), we
denote by Qf : E → R the function defined by

(Qf)(η) =
∑
ξ∈E

Q(η, ξ) f(ξ) .

Note that the sum is well defined because f is bounded and the absolute value
of Q(η, ·) is summable.

bs24 Proposition 1.15. Let Q0 be a matrix satisfying (3.6). The following state-
ments are equivalent:

(a) There exists λ > 0 for which the equation (λ − Q0)f = 0 has only one
bounded solution;

(b) For all λ > 0, the equation (λ−Q0)f = 0 has only one bounded solution;
(c) The minimal substochastic transition probability constructed from Q0 is a

transition probability;
(d) The minimal Markov chain constructed from Q0 is non-explosive;
(e) There is at most one substochastic transition probability pt(η, ξ) whose Q-

matrix is Q0.
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3 Some Examples and Minimal Chains 21

Parts of the proof of this Proposition can be found Sections II.18 and
II.19 of Chung [1967], in the proof of Theorem 7.51 of Freedman [1971], and
in Sections 2.7 and 2.8 of Norris [1998].

The last result of this section states that given a transition probability
pt(η, ξ) there always exists a Markov chain η(t) whose transition probability
is pt provided all points are stable, q(η) = − p′0(η, η) <∞ for all η ∈ E.

bs23 Proposition 1.16. Let E be a countable state space endowed with the discrete
topology and let pt(η, ξ) be a transition probability on E such that q(η) =
− p′0(η, η) < ∞ for all η ∈ E. There exist a Markov space (Ω, (Ft : t ≥
0), {Pη : η ∈ E}) and a collection (η(t) : t ≥ 0) of E-valued random variables
which is a Markov chain in (Ω, (Fηt : t ≥ 0), {Pη : η ∈ E}) with transition
probability pt(η, ξ).

This is Theorem 7.12 in Freedman [1971]. The reader will find in Section
II.7 of Chung [1967] and in Chapter 9 of Freedman [1971] a more general
version of this statement.

In all previous examples and statements, we assumed all configurations to
be stable. We conclude this section with an example where all configurations
are instantaneous.

bs25 Example 1.17 Fix λ, µ > 0, and consider the continuous-time Markov chain
on {0, 1} such that λ(0) = λ, λ(1) = µ, p(0, 1) = p(1, 0) = 1. By diagonalizing
the matrix

Q =

[
−λ λ
µ −µ

]
the reader can show that the transition probability pt(η, ξ) of this Markov
chain is given by

pt(0, 0) =
µ

µ+ λ
+

λ

µ+ λ
e−t(µ+λ) , pt(0, 1) = 1 − pt(0, 0) ,

pt(1, 1) =
λ

µ+ λ
+

µ

µ+ λ
e−t(µ+λ) , pt(1, 0) = 1 − pt(1, 1) .

(3.9) b10

Consider infinitely many independent copies of this chain. Denote by ηi,
i ≥ 1, the i-th coordinate of a sequence η ∈ {0, 1}N. Let

E =
{
η ∈ {0, 1}N :

∑
i≥1

ηi <∞
}
.

For η ∈ E, denote by N(η) the first coordinate which vanishes as well as all
the successive ones: N(η) = min{k ≥ 1 : ηj = 0 for all j ≥ k}. For example
N(0) = 1 if 0 represents the configuration with all coordinates equal to 0.

Consider two sequence of non-negative numbers {µk : k ≥ 1} and {λk :
k ≥ 1} such that µk + λk > 0 and
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22 1 Continuous-time Markov Chains∏
k≥1

µk
µk + λk

> 0 . (3.10) b09

Since 1− x ≤ e−x,

0 <
∏
k≥1

µk
µk + λk

=
∏
k≥1

(
1− λk

µk + λk

)
≤ exp

{
−
∑
k≥1

λk
µk + λk

}
,

so that ∑
k≥1

λk
µk + λk

< ∞ .

On a space (Ω,F), consider independent {0, 1}-valued Markov chains
{ζk(t) : t ≥ 0}, k ≥ 1, which jump from 0 (resp. 1) to 1 (resp. 0) at
rate λk (resp. µk). Define the continuous-time, E-valued process η(t) by
η(t) = (ζ1(t), ζ2(t), . . . ). For a configuration η ∈ E, η = (η1, η2, . . . ), de-
note by Pη the probability measure on (Ω,F) under which the process ζk(t)
starts from ηk.

Fix η ∈ E. We claim that Pη[η(t) ∈ E] = 1 for all t ≥ 0. Indeed, if we

denote by p
(k)
t (i, j) the transition probability of the process ζk(t), in view of

(3.9), for k ≥ N(η),

Pη[ζk(t) = 1] = p
(k)
t (0, 1) ≤ λk

µk + λk
·

Since the sequence λk/(µk + λk) is summable by Borel-Cantelli lemma,

Pη[η(t) 6∈ E] = Pη[ζk(t) = 1 i. o. ] = 0 ,

which proves the claim.
For η, ξ ∈ E, t ≥ 0, let

pt(η, ξ) =
∏
k≥1

p
(k)
t (ηk, ξk) . (3.11) b24

The set of functions pt : E × E → R is a transition probability. The proof of
this assertion is divided in several steps. It is clear that p0(η, ξ) = δη,ξ because

the transition probabilities p
(k)
t satisfy this identity. On the other hand, for

all t ≥ 0, pt(η, ξ) ≥ 0, η, ξ ∈ E, and

∑
ζ∈E

pt(η, ζ) =
∑
ζ∈E

∏
k≥1

p
(k)
t (ηk, ζk) =

∏
k≥1

1∑
ζk=0

p
(k)
t (ηk, ζk) = 1 .

It remains to check conditions (c) and (d) of Definition 1.1. We claim that
for all ` ≥ 1, ξ1, . . . , ξ` in E, and 0 < t1 < · · · < t`,

Pη
[
η(t1) = ξ1 , . . . , η(t`) = ξ`

]
=

`−1∏
j=0

ptj+1−tj (ξ
j , ξj+1) , (3.12) b11
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3 Some Examples and Minimal Chains 23

provided t0 = 0, ξ0 = η. Condition (c) follows from this identity with ` = 1,
2.

To prove (3.12), fix ` ≥ 1, configurations ξ1, . . . , ξ` in E, and 0 < t1 <
· · · < t`. By definition of η(t), for any η ∈ E,

Pη
[
η(t1) = ξ1 , . . . , η(t`) = ξ`

]
=
∏
k≥1

Pη
[
ζk(t1) = ξ1k , . . . , ζ

k(t`) = ξ`k
]
.

Expressing the previous probabilities in terms of the transition probability

p
(k)
t of the Markov chain ζk(t), the right-hand side becomes

∏
k≥1

`−1∏
j=0

p
(k)
tj+1−tj (ξ

j
k, ξ

j+1
k ) =

`−1∏
j=0

∏
k≥1

p
(k)
tj+1−tj (ξ

j
k, ξ

j+1
k ) ,

which proves (3.12)
To prove condition (d) of Definition 1.1, we have to show that for every

η ∈ E,
lim
t→0

pt(η, η) = 1 .

By definition of pt(η, η),

pt(η, η) =
∏
k≥1

Pη[ζk(t) = ηk] .

for every M ≥ N(η), the right-hand side is equal to

M−1∏
k=1

Pη[ζk(t) = ηk]
∏
k≥M

p
(k)
t (0, 0) ≥

M−1∏
k=1

Pη[ζk(t) = ηk]
∏
k≥M

µk
µk + λk

,

where the inequality follows from (3.9). By (3.10), we may choose M large
enough for the second product to be close to 1. Once this has been done, using

the fact that p
(k)
t is a transition probability for each fixed k, we may choose

t small enough for the first product to be close to 1. This proves that pt is a
transition probability.

Assume that ∑
k≥1

λk = ∞ .

Under this further condition all states are instantaneous: −q(η) := p′0(η, η) =
∞. Indeed, let D(t), t > 0, the set of all non-negative dyadics less than or equal
to t: D(t) = {k/2N : N ≥ 1 , k ≥ 0 , k/2N ≤ t}. We first claim that for t > 0
and η ∈ E,

Pη
[
η(r) = η for all r ∈ D(t)

]
= 0 . (3.13) b25

This is easy. By definition of the process η(t),

Pη
[
η(r) = η for all r ∈ D(t)

]
≤ Pη

[
ζk(r) = 0 for all r ∈ D(t) , k ≥ N(η)

]
.
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24 1 Continuous-time Markov Chains

By the independence and by definition of the process ζk(t) this last probability
is equal to ∏

k≥N(η)

e−λkt = exp
{
−

∑
k≥N(η)

λk t
}

= 0 ,

which proves (3.13).
We further claim that

Pη
[
η(r) = η for all r ∈ D(t)

]
= e−q(η)t , (3.14) bb13

where −q(η) is the derivative at t = 0 of the transition probability pt defined
by (3.11). By the Markov property, for N ≥ 1,

Pη
[
η(k/2N ) = η for 0 ≤ k ≤ [t2N ]

]
= p1/2N (η, η)[t2

N ] .

By definition of q(η), the right-hand side converges to e−q(η)t as N ↑ ∞,
while the left-hand side converges to the left-hand side of (3.14). By (3.13)
and (3.14), all states η ∈ E are instantaneous, as q(η) =∞ for all η ∈ E.

We just proved that η(t) is not right-continuous at t = 0 for the discrete
topology. Indeed, the event {η(t) is right-continuous at t = 0} can be repre-
sented as ⋃

k≥1

{
η(t) = η(0) for all 0 ≤ t < k−1

}
,

and we proved that each of these sets has Pη-measure zero. In particular, if
we want to turn η(t) into a Markov chain we need to change the topology.
The product topology is the right choice. M

Conclusion: We showed in this section that Markov chains may exhibit sev-
eral different pathologies. To avoid such degeneracies, from now on, we con-
centrate our attention on minimal chains associated to Q-matrices satisfying
the conditions (3.6). More precisely, we shall fix a Q-matrix R satisfying the
hypotheses (3.6) and consider the minimal chain associated to R. Proposi-
tion 1.15 provides conditions under which the minimal chain is the unique
Markov chain whose Q-matrix is R. In particular, in this case we are not
losing generality by considering the mininal chain.

4 Canonical Version
secb05

Denote by D([0,∞), E) the set of right-continuous trajectories x : [0,∞)→ E
with left-limits, endowed with the Skorohod topology which turns the space
D([0,∞), E) complete and separable. We refer to Billingsley [1999] for all
assertions presented without proofs in this section. Denote by D the Borel
σ-algebra of subsets of D([0,∞), E).

Let Xt : D([0,∞), E) → E, t ≥ 0, be the evaluation of the trajectory at
time t, Xt(x) = x(t), and denote by Ft ⊂ D, t ≥ 0, the smallest σ-algebra
which turns the maps Xs, 0 ≤ s ≤ t, measurable.
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5 Recurrent Chains 25

In Section 1, we constructed a family (η(t) : t ≥ 0) of E-valued random
variables on a probability space (Ω,F ,P). If we denote by ω the elements
of Ω and by η(t, ω) the value of the random variable η(t) at ω, in view of
(1.5), for P-almost all ω, the map t → η(t, ω) is an element of D([0,∞), E).
In particular, the function η : Ω → D([0,∞), E), defined by

η(ω)(t) = η(t, ω) , t ≥ 0 ,

is well defined. By [Billingsley, 1999, Theorem 16.6], the map η : (Ω,F) →
(D([0,∞), E),D) is measurable. Let Pη, η ∈ E, be the probability measure
on (D([0,∞), E),D) defined by

Pη := Pη ◦ η−1 .

Expectation with respect to Pη is represented by Eη. The process (Xt : t ≥ 0)
defined on (D, (Ft : t ≥ 0), {Pη : η ∈ E}) is called the canonical version of
the Markov chain.

Denote by (ϑ(t) : t ≥ 0) the time shift operators on D(R+, E), ϑ(t) :
D(R+, E) → D(R+, E), [ϑ(t)x](s) = x(t + s), x ∈ D(R+, E), s, t ≥ 0. The
Markov property can be written as

Pη

[
Xs ◦ ϑt = ξ

∣∣Ft] = ps(Xt, ξ) .

For a probability measure µ on E, denote by Pµ the measure on D(R+, E)
defined by

Pµ =
∑
η∈E

µ(η) Pη .

Expectation with respect to Pµ is represented by Eµ

5 Recurrent Chains
nsec04

LetR be aQ-matrix satisfying the conditions (3.6), and let η(t) be the minimal
Markov chain whose Q-matrix is R. All statements of this section refer to this
chain even if we do not say it explicitely.

A minimal Markov chain η(t) is irreducible if

Pη[η(t) = ξ] > 0 (5.1) n08

for all η, ξ ∈ E, t > 0. An irreducible minimal Markov chain η(t) is recurrent
if

Pη[H+
η <∞] = 1 (5.2) n29

for all η ∈ E. We prove below in Lemma 1.18 that if (5.2) holds for one
configuration, then it holds for all configurations.

ns10 Lemma 1.18. Suppose that the chain is irreducible and that (5.2) holds for
some configuration η ∈ E. Then, (5.2) holds for all configurations ξ ∈ E.
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26 1 Continuous-time Markov Chains

Proof. Fix a configuration η ∈ E, assume that the chain starts from η and
denote by Hj , j ≥ 1, the times of the successive visits to η: H0 = 0, H1 = H+

η

and Hj+1 = Hj + H+
η ◦ ϑ(Hj), j ≥ 1. By (5.2), Pη[H+

η < ∞] = 1, and by
(5.1), Pη[Hξ < H+

η ] > 0. Since

{Hj+1 < Hξ} = {Hj < Hξ} ∩
{
{H+

η < Hξ} ◦ ϑ(Hj)
}
, (5.3) n22

taking conditional expectation with respect to FηHj , we obtain that

Pη[Hj+1 < Hξ] = Pη[Hj < Hξ] Pη[H+
η < Hξ] ,

insomuch that

Pη[Hj < Hξ] = Pη[H+
η < Hξ]

j , j ≥ 0 . (5.4) n23

Hence, since Hj →∞ Pη-almost surely and since Pη[H+
η < Hξ] < 1,

Pη[Hξ =∞] = lim
j→∞

Pη[Hj < Hξ] = 0 . (5.5) n06

On the other hand, since Pη[H+
η <∞] = 1,

Pη[Hξ < H+
η ] = Pη

[
Hξ < H+

η , H
+
η <∞

]
.

On the set {Hξ < H+
η }, H+

η = Hη ◦ ϑHξ . Therefore, by the strong Markov
property,

Pη[Hξ < H+
η ] = Pη[Hξ < H+

η ] Pξ[Hη <∞] .

Since Pη[Hξ < H+
η ] > 0, we conclude that Pξ[Hη <∞] = 1.

Up to this point we proved that Pη[Hξ < ∞] = Pξ[Hη < ∞] = 1. Under
Pξ

H+
ξ < Hη + Hξ ◦ ϑHη .

Therefore, by the strong Markov property,

Pξ[H
+
ξ <∞] ≥ Pξ

[
Hη <∞ , Hξ ◦ ϑHη <∞

]
= Pξ[Hη <∞] Pη[Hξ <∞] = 1 ,

as claimed. ut

If we replace in Example 1.14 the set of non-negative rationals, Q+, by
the set of rationals of the circle, Q|Z, we obtain an example of irreducible,
recurrent Markov chain whose Q-matrix R is such that R(η, ξ) = 0 for all
η 6= ξ.

Let η(t) be an irreducible recurrent chain. Assume that its Q-matrix, de-
noted by R, satisfies assumption (3.6). Denote by ξ(t) the minimal chain
constructed from the Q-matrix R and by qt(η, ξ) the transition probability of
ξ(t). The Q-matrix of ξ is R again.
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5 Recurrent Chains 27

This chain is non-explosive because the explosion time must be greater
than the total time spent by the chain on one configuration which is infinite,
being the sum of i.i.d. exponential random variables.

Recall from the construction of the Markov chain η(t) presented in the first
section of Chapter 1 that Yn represents the discrete-time embedded Markov
chain. Denote by HA, H+

A, A ⊂ E, the time the embedded chain Yn hits,
returns to the set A, respectively:

HA = min
{
k ≥ 0 : Yk ∈ A

}
, H+

A = min
{
k ≥ 1 : Yk ∈ A

}
. (5.6) n31

ns11 Lemma 1.19. The continuous-time Markov chain η(t) is irreducible if and
only if the embedded chain Yn is irreducible. In this case, the Markov chain
η(t) is recurrent if and only if the embedded chain Yn is recurrent.

Proof. Fix t0 > 0 and two configurations η 6= ξ ∈ E. By construction of the
chain η(t), Pη[η(t0) = ξ] > 0 if and only if Pη[Yn = ξ] > 0 for some n ≥ 1.
This proves the first assertion of the lemma.

On the other hand, since under Pη,

H+
η =

H+
η −1∑
k=0

ek
λ(Yk)

,

Pη[H+
η <∞] = 1 if and only if Pη[H+

η <∞] = 1. ut
Πη

HA
H+
A

Denote by Πη, η ∈ E, the measure on E defined by

Πη(ξ) = Eη

[ ∫ H+
η

0

1{η(s) = ξ} ds
]
, ξ ∈ E . (5.7) n30

By construction, for any non-negative function f : E → R, any subset A of
E, and any configuration η ∈ A, Pη almost surely,

∫ H+
A

0

f(η(s)) ds =

H+
A−1∑
k=0

ek
λ(Yk)

f(Yk) .

Since {ej : j ≥ 0} is a sequence of mean-one random variables independent
from the discrete-time Markov chain Yj , by the previous observation, for all
ξ ∈ E,

Πη(ξ) = Eη

[ H+
η −1∑
k=0

ek
λ(Yk)

1{Yk = ξ}
]

= Eη

[ H+
η −1∑
k=0

1

λ(Yk)
1{Yk = ξ}

]
.

Therefore,

λ(ξ)Πη(ξ) = Eη

[ H+
η −1∑
k=0

1{Yk = ξ}
]
. (5.8) n25
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28 1 Continuous-time Markov Chains

Denote by Mη, η ∈ E, the measure on E defined by

Mη(η) = λ(η)Πη(ξ) , ξ ∈ E . (5.9) n32

By construction,
Mη(η) = λ(η)Πη(η) = 1 . (5.10) n27

bbs02 Definition 1.20. A measure µ is invariant for the chain η(t) if for all η ∈ E∑
ξ∈E

µ(ξ)R(ξ, η) = λ(η)µ(η) .

A measure µ is invariant for the Markov chain η(t) if and only if the
measure M , defined by M(η) = µ(η)λ(η), is invariant for the embedded chain
Yn: ∑

ξ∈E

M(ξ) p(ξ, η) =
∑
ξ∈E

µ(ξ)R(ξ, η) = µ(η)λ(η) = M(η) . (5.11) n28

ns07 Lemma 1.21. Assume that the chain is recurrent. Each measure Πη, η ∈ E,
is invariant for the continuous-time Markov chain η(t).

Proof. Fix η ∈ E. In view of (5.9) and (5.11), we have to show that for every
ζ ∈ E, ∑

ξ∈E

Mη(ξ) p(ξ, ζ) = Mη(ζ) . (5.12) n26

On the one hand, by (5.8), the left hand side of this identity is equal to

∑
ξ∈E

Eη

[ H+
η −1∑
k=0

1{Yk = ξ} p(ξ, ζ)
]

= Eη

[ H+
η −1∑
k=0

p(Yk, ζ)
]
.

On the other hand, as the chain is recurrent, by Lemma 1.19, H+
η is finite

Pη-almost surely, so that Y0 = YH+
η

= η. Hence, by (5.8),

Mη(ζ) = Eη

[ H+
η −1∑
k=0

1{Yk = ζ}
]

= Eη

[ H+
η∑

k=1

1{Yk = ζ}
]

=
∑
k≥1

Eη

[
1{H+

η ≥ k}1{Yk = ζ}
]
.

The event {H+
η ≥ k} is measurable with respect to the σ-algebra FYk−1 =

σ(Y0, . . . , Yk−1). In particular, by the Markov property for the discrete-time
chain Yn, the previous sum is equal to∑

k≥1

Eη

[
1{H+

η ≥ k} p(Yk−1, ζ)
]
.
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5 Recurrent Chains 29

Performing the change of variables k′ = k − 1, we obtain that the previous
sum is equal to∑

k≥0

Eη

[
1{H+

η ≥ k + 1} p(Yk, ζ)
]

=
∑
k≥0

Eη

[
1{H+

η > k} p(Yk, ζ)
]
.

This is exactly the expression we obtained for the left hand side of (5.12) and
concludes the proof of the lemma. ut

Next lemma states that the measure Mη is the minimal one among the
invariant measures M for the chain YN such that M(η) = 1.

ns08 Lemma 1.22. Let M be an invariant measure for the embedded discrete-time
Markov chain Yn such that M(η) = 1. Then, Mη(ξ) ≤M(ξ) for all ξ ∈ E.

Proof. By assumption and since M(η) = 1, for each ξ ∈ E,

M(ξ) =
∑
ζ∈E

M(ζ) p(ζ, ξ) =
∑
ζ 6=η

M(ζ) p(ζ, ξ) + p(η, ξ) .

Replacing M(ζ) by
∑
ζ2∈EM(ζ2)p(ζ2, ζ) and separating the term ζ2 = η from

the others, we rewrite the previous sum as∑
ζ1,ζ2 6=η

M(ζ2) p(ζ2, ζ1) p(ζ1, ξ) +
∑
ζ1 6=η

p(η, ζ1) p(ζ1, ξ) + p(η, ξ) .

The sum of the second and third term can be written as

Eη

[
1{Y1 = ξ} + 1{Y2 = ξ}1{H+

η > 2}
]

=

1∑
k=0

Eη

[
1{Yk = ξ}1{H+

η > k}
]
.

Iterating this procedure, one obtains that

M(ξ) ≥
n∑
k=0

Eη

[
1{Yk = ξ}1{H+

η > k}
]

for any n ≥ 1. The inequality replaced the identity because we removed the
sum which carries the measures M . Letting n ↑ ∞ yields that

M(ξ) ≥
∑
k≥0

Eη

[
1{Yk = ξ}1{H+

η > k}
]

= Eη

[ H+
η −1∑
k=0

1{Yk = ξ}
]

= Mη(ξ)

as claimed. ut

ns12 Corollary 1.23. Suppose that the Markov chain η(t) is irreducible and recur-
rent. Then, two invariant measures for η(t) may only differ by a multiplicative
constant.
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30 1 Continuous-time Markov Chains

Proof. In view of Lemma 1.19 and of (5.11), it is enough to prove this state-
ment for irreducible and recurrent discrete-time Markov chains.

Let M be an invariant measure for the embedded chain Yn which is not
identically equal to 0. Fix a configuration η such that M(η) 6= 0. Multiplying
M by M(η)−1 we obtain a new invariant measure which differs from M by a
scalar multiple and such that M(η) = 1. We may therefore assume without
loss of generality that M(η) = 1 for some η.

Fix such a measure. By Lemma 1.22, Mη ≤M . Therefore, M? = M −Mη

is also an invariant measure, and M?(η) = 0. We claim that M?(ξ) = 0 for
all ξ ∈ E. Indeed, fix a configuration ξ. As the chain Yn is irreducible, there
exists n ≥ 1 such that Pξ[Yn = η] > 0. Therefore, since M? is an invariant
measure,

M?(η) =
∑
ζ∈E

M?(ζ) Pζ [Yn = η] ≥ M?(ξ) Pξ[Yn = η] .

This shows that M?(ξ) = 0 and concludes the proof of the lemma. ut

6 Positive-recurrent Chains
nsec06

We assume in this section that the chain η(t) is irreducible. An irreducible
Markov chain is positive-recurrent if

Eη[H+
η ] < ∞ (6.1) n05

for all η ∈ E. We prove below in Lemma 1.24 that if (6.1) holds for one
configuration, then it holds for all configurations.

ns06 Lemma 1.24. Suppose that the chain is irreducible and that (6.1) holds for
some configuration η ∈ E. Then, (6.1) holds for all configurations ξ ∈ E.

Proof. Fix a configuration ξ ∈ E and recall the definition of the sequence of
stopping times {Hj : j ≥ 0} introduced above. We first show by induction
that

Eη

[
Hj1{Hj < Hξ}

]
= jPη[H+

η < Hξ]
j−1 Eη

[
H11{H1 < Hξ}

]
(6.2) n21

for all j ≥ 1. This equation holds trivially for j = 1. Assume that it holds for
some j ≥ 1. Since on the set {Hj+1 < Hξ}, Hj+1 = Hj + H1 ◦ ϑHj , by the
strong Markov property and by (5.3),

Eη

[
Hj+11{Hj+1 < Hξ}

]
= Eη

[
Hj1{Hj < Hξ}

]
Pη[H+

η < Hξ]

+ Eη

[
H11{H1 < Hξ}

]
Pη[Hj < Hξ] .

By (5.4), the last term of the second line is equal to Pη[H1 < Hξ]
j , while by

the induction assumption the first expectation on the right-hand side is equal
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6 Positive-recurrent Chains 31

to the right-hand side of (6.2). Summing the two lines we conclude the proof
of (6.2).

We claim that
Eη[Hξ] < ∞ . (6.3) n20

Indeed, by (5.5), Hξ < ∞, Pη-almost surely. Therefore, since Hj → ∞, Pη-
almost surely,

Eη[Hξ] =
∑
j≥0

Eη

[
Hξ 1{Hj < Hξ < Hj+1}

]
≤
∑
j≥0

Eη

[
Hj+1 1{Hj < Hξ < Hj+1}

]
.

As above, write Hj+1 = Hj +H1 ◦ϑHj and apply the strong Markov property
to rewrite the previous sum as∑

j≥0

Eη

[
Hj 1{Hj < Hξ}

]
Pη[Hξ < H1]

+
∑
j≥0

Pη

[
Hj < Hξ

]
Eη

[
H1 1{Hξ < H1}

]
.

By (6.2), the first sum is bounded by Pη[Hξ < H+
η ]−1Eη[H+

η ], and, by (5.4),
the second sum is bounded by the same expression. This proves (6.3) in view
of (5.5).

We finally claim that
Eξ[Hη] < ∞ . (6.4) n24

Indeed, H+
η ≥ H+

η 1{Hξ < H+
η } ≥ Hη ◦ ϑHξ 1{Hξ < H+

η }. Therefore, by the
strong Markov property,

Eη[H+
η ] ≥ Eξ[Hη] Pη[Hξ < H+

η ] .

As the process is irreducible, Pη[Hξ < H+
η ] > 0, which proves (6.4).

We are now in a position to prove the lemma. Since H+
ξ ≤ Hη +Hξ ◦ϑHη ,

by the strong Markov property,

Eξ[H
+
ξ ] ≤ Eξ[Hη] + Eη[Hξ] .

This expression is finite in view of (6.3) and (6.4). ut

In the positive-recurrent case the measure Πη introduced in (5.7) is finite:

Πη(E) = Eη

[
H+
η

]
< ∞ .

In particular, normalizing the measure Πη, we obtain an invariant probability
measure, denoted by πη:

πη(ξ) =
Eη

[ ∫H+
η

0
1{η(s) = ξ} ds

]
Eη[H+

η ]
, ξ ∈ E . (6.5) n03
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ns13 Lemma 1.25. Suppose that the chain η(t) is irreducible and positive-recurrent.
Then, πη is the unique invariant probability measure.

Proof. Suppose that µ is an invariant probability measure for the chain η(t).
By (5.11), M(ξ) = λ(ξ)µ(ξ) and M̃η(ξ) = λ(ξ)πη(ξ) are invariant measures

for the embedded chain Yn. By Corollary 1.23 M and M̃η differ at most by
a scalar multiple. This property clearly extends to µ and πη. Since both are
probability measures, they must coindice. ut

ns14 Lemma 1.26. Suppose that the chain η(t) is non-explosive and that there
exists an invariant probability measure. Then, the chain is positive-recurrent.

Proof. Denote by π the invariant probability measure and recall from Section
1.3 that we denote by X the explosion time. Fix a configuration η ∈ E. We
have that

H+
η ∧ X =

Hη−1∑
k=0

ek
λ(Yk)

.

The inequality is false if we replace on the left hand side H+
η ∧X by H+

η because
if the process explodes before returning to η, H+

η > X =
∑

0≤k<Hη ek/λ(Yk).
By the previous displayed equation and by Tonelli’s theorem,

Eη

[
H+
η ∧ X

]
= Eη

[ Hη−1∑
k=0

ek
λ(Yk)

]
=
∑
ξ∈E

1

λ(ξ)
Eη

[ Hη−1∑
k=0

1{Yk = ξ}
]
.

Let Π be the measure on E defined by Π(ξ) = π(ξ)λ(ξ). By (5.11), Π is
an invariant measure for the embdedded chain Yn and so is the measure Π̂
defined by Π̂(ξ) = Π(ξ)/Π(η). This latter measure is such that Π̂(η) = 1. In
particular, by (5.8), (5.9) and Lemma 1.22,

Eη

[ Hη−1∑
k=0

1{Yk = ξ}
]

= Mη(ξ) ≤ Π̂(ξ) =
Π(ξ)

Π(η)
·

Putting togheter the previous two estimates, we obtain that

Eη

[
H+
η ∧ X

]
≤
∑
ξ∈E

1

λ(ξ)

Π(ξ)

Π(η)
=

1

Π(η)

∑
ξ∈E

π(ξ) .

As π is a probability measure and the chain is non-explosive,

Eη

[
H+
η

]
= Eη

[
H+
η ∧ X

]
≤ 1

λ(η)π(η)
,

as claimed. ut

Example 3.5.4 in Norris [1998] shows that the assumption that the chain
is non-explosive is needed in the previous result.
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7 Stationary States 33

7 Stationary States
nsec05

We prove in this section that a measure is invariant for a minimal, irreducible,
recurrent Markov chain if and only if it is stationary. We conclude the section
introducing reversible states.

bbs03 Definition 1.27. Let η(t) be a minimal Markov chain. A measure µ on E is
a stationary state for the chain η(t) if for every η ∈ E and t ≥ 0,

µ(η) =
∑
ξ∈E

µ(ξ) pt(ξ, η) .

bbs04 Lemma 1.28. Consider an E-valued minimal, irreducible, recurrent Markov
chain η(t). A measure µ on E is a stationary state for η(t) if it is an invariant
state. Conversely, if µ is a stationary state and the jump rate λ is summable
with respect to µ, then the measure µ is an invariant state.

Let µ be an invariant state. Recall from xxx that λ is summable with
respect to µ if and only if the measure M(η) = µ(η)λ(η) is a finite measure.
We the embedded chain Yk is positive-recurrent.

Proof (Proof of Lemma 1.28). Fix an invariant state µ. We will prove that µ
is stationary. Fix a configuration η ∈ E. By Corollary 1.23, µ is a multiple of
the measure Πη introduced in (5.7). It is therefore enough to prove that Πη

is a stationary state.
We first claim that for every t > 0,

Πη(ξ) = Eη

[ ∫ t+H+
η

t

1{η(s) = ξ} ds
]
, ξ ∈ E . (7.1) bb03

Indeed, since [0, t) ∪ [t, t+H+
η ) = [0, H+

η ) ∪ [H+
η , t+H+

η ),

Eη

[ ∫ t

0

1{η(s) = ξ} ds
]

+ Eη

[ ∫ t+H+
η

t

1{η(s) = ξ} ds
]

= Πη(ξ) + Eη

[ ∫ t+H+
η

H+
η

1{η(s) = ξ} ds
]
.

By the strong Markov property,

Eη

[ ∫ t+H+
η

H+
η

1{η(s) = ξ} ds
]

= Eη

[ ∫ t

0

1{η(s) = ξ} ds
]
,

which proves (7.1).
Fix a configuration ζ ∈ E and t > 0. By the definition of the measure Πη

introduced in (5.7), we have that
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34 1 Continuous-time Markov Chains

∑
ξ∈E

Πη(ξ) pt(ξ, ζ) =
∑
ξ∈E

Eη

[ ∫ H+
η

0

1{η(s) = ξ} ds
]

Pξ[η(t) = ζ] .

By Tonelli’s theorem we may write the previous sum as∫ ∞
0

ds
∑
ξ∈E

Pη

[
H+
η ≥ s , η(s) = ξ

]
Pξ[η(t) = ζ] .

Since the event {H+
η ≥ s} belongs to the σ-algebra Fηs ⊂ Fs, by the Markov

property,

Pη

[
H+
η ≥ s , η(s) = ξ , η(s+ t) = ζ

]
= Pη

[
H+
η ≥ s , η(s) = ξ

]
Pξ[η(t) = ζ] .

The penultimate displayed formula is thus equal, after summation over ξ, to∫ ∞
0

Pη

[
H+
η ≥ s , η(s+ t) = ζ

]
ds = Eη

[ ∫ t+H+
η

t

1{η(s) = ζ} ds
]
,

which, by (7.1), is equal to Πη(ζ).
To prove the converse, assume that µ is a stationary state for the minimal

chain η(t) and that the jump rate λ is summable with respect to µ. As µ is a
stationary state, for all η ∈ E, t > 0,∑

ξ∈E

µ(ξ)
1

t
{δη,ξ − pt(ξ, η)} = 0 .

By Lemma 1.11, as t ↓ 0, t−1{1 − pt(η, η)}, t−1pt(η, ξ) converge to λ(η),
R(η, ξ), respectively. Since λ is summable with respect to µ, by (3.2) and by
the dominated convergence theorem, letting t ↓ 0 in the previous displayed
sum yields ∑

ξ 6=η

µ(ξ)R(ξ, η) − λ(η)µ(η) = 0 ,

proving that µ is an invariant state. ut

Recall the definition of the measure Pµ introduced in xxx. If µ is a sta-
tionary state, for every n ≥ 1, 0 ≤ t1 < · · · < tn, t ≥ 0, ξ1, . . . , ξn ∈ E,

Pµ

[
η(t1 + t) = ξ1, . . . , η(tn + t) = ξn

]
= Pµ

[
η(t1) = ξ1, . . . , η(tn) = ξn

]
.

The distribution of the chain η(t) is thus translation invariant under Pµ: for
every s ≥ 0, {η(t) : t ≥ 0} and {η(t + s) : t ≥ 0} have the same distribution
under Pµ. In consequence, we may assume that the chain is defined in the
entire time line R, and for every t1 < · · · < tn, ξ1, . . . , ξn ∈ E,

Pµ

[
η(t1) = ξ1, . . . , η(tn) = ξn

]
= Pµ

[
η(0) = ξ1, . . . , η(tn − t1) = ξn

]
.
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Reversible chains. Fix a Q-matrix R satisfying the conditions (3.6). Assume
that the discrete-time Markov chain associated to the transition matrix p(η, ξ)
is recurrent. Let η(t) be the unique Markov chain whose Q-matrix is R.

A measure µ is said to satisfy the detailed balance conditions if

µ(η)R(η, ξ) = µ(ξ)R(ξ, η) , η 6= ξ ∈ E . (7.2) bb06

Recall that we denote by Mµ the measure defined by Mµ(η) = λ(η)µ(η).
A measure µ satisfies the detailed balance conditions if and only if

Mµ(η) p(η, ξ) = Mµ(ξ) p(ξ, η) , η 6= ξ ∈ E .

Since p(n+1)(η, ξ) =
∑
ζ∈E p

(n)(η, ζ)p(ζ, ξ), by induction we obtain that for
every n ≥ 1,

Mµ(η) p(n)(η, ξ) = Mµ(ξ) p(n)(ξ, η) , η 6= ξ ∈ E . (7.3) bb08

It is also clear that if a measure µ satisfies the detailed balance conditions
it is then an invariant measure:∑

η∈E
Mµ(η) p(η, ξ) =

∑
η∈E

Mµ(ξ) p(ξ, η) = Mµ(ξ) .

bbs06 Lemma 1.29. Let η(t) be a non-explosive minimal Markov chain. A measure
µ satisfies the detailed balance conditions with respect to the Q-matrix of η(t)
if and only if for all t ≥ 0,

µ(η) pt(η, ξ) = µ(ξ) pt(ξ, η) , η , ξ ∈ E . (7.4) bb07

Proof. Suppose that a measure µ satisfies the detailed balance conditions.
Fix two configurations η 6= ξ ∈ E and t > 0. Recall that we denote by Sj ,
j ≥ 0, the successive jumps of the chain η(t). Since the chain is non-explosive,
Sj → ∞ Pη-almost surely. In particular, µ(η) pt(η, ξ) = µ(η) Pη[η(t) = ξ] is
equal to

µ(η) pt(η, ξ) = µ(η) Pη[η(t) = ξ] =
∑
j≥1

µ(η) Pη

[
η(t) = ξ , Sj ≤ t < Sj+1

]
.

On the event {Sj ≤ t < Sj+1}, η(t) = Yj . Summing over all possible trajec-
tories Y1, . . . , Yj−1, for a fixed j the previous expression becomes∑
ξ1,...,ξj1∈E

µ(η) p(η, ξ1) · · · p(ξj−1, ξ) Pη

[ e0
λ(η)

+R ≤ t < e0
λ(η)

+
ej
λ(ξ)

+R
]
,

where R =
∑

1≤k≤j−1[ek/λ(ξk)]. In the probability Pη, integration is per-
formed with respect to the i.i.d. mean-one exponential random variables
e0 . . . , ej . At this point, the index η of Pη has no meaning.
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36 1 Continuous-time Markov Chains

One the one hand, as µ satisfies the detailed balance conditions, in view
of (7.3),

µ(η) p(η, ξ1) · · · p(ξj−1, ξ) =
λ(ξ)

λ(η)
µ(ξ) p(ξ, ξj−1) · · · p(ξ1, η) .

On the other hand, if e, f are independent, mean-one exponential random
variables, for every u > 0, a > 0, b > 0,

P
[ e
a
≤ u < e

a
+

f

b

]
=

a

b− a
{
e−au − e−bu

}
=

a

b
P
[ e
b
≤ u < e

b
+

f

a

]
.

Therefore, taking a condition expectation with respect to the σ-algebra
spanned by {e1, . . . , ej−1}, we obtain that

Pη

[ e0
λ(η)

+R ≤ t < e0
λ(η)

+
ej
λ(ξ)

+R
]

=
λ(η)

λ(ξ)
Pξ

[ e0
λ(ξ)

+R ≤ t < e0
λ(ξ)

+
ej
λ(η)

+R
]
.

For convenience, we replaced the index η of Pη on the left hand side by the
index ξ.

It follows from the two identities derived in the previous paragraph that
µ(η) pt(η, ξ) is equal to∑
j≥1

∑
ξ1,...,ξj1∈E

µ(ξ) p(ξ, ξj−1) · · · p(ξ1, η) Pξ

[ e0
λ(ξ)

+R ≤ t < e0
λ(ξ)

+
ej
λ(η)

+R
]
.

Since

p(ξ, ξj−1) · · · p(ξ1, η) Pξ

[ e0
λ(ξ)

+R ≤ t < e0
λ(ξ)

+
ej
λ(η)

+R
]

= Pξ

[
Y1 = ξj−1, . . . , Yj−1 = ξ1, Yj = η, Sj−1 ≤ t < Sj

]
,

summing over ξ1, . . . , ξj1 and over j we conclude that

µ(η) pt(η, ξ) = µ(ξ) pt(ξ, η) .

Conversely, suppose that (7.4) holds for all t ≥ 0, η, ξ ∈ E. Fix η 6= ξ.
Dividing both sides of this identity by t and letting t ↓ 0, in view of Lemma
1.29 we obtain that µ(η)R(η, ξ) = µ(ξ)R(ξ, η). ut

Let η(t) be a non-explosive, minimal Markov chain. Suppose that µ is an
invariant probability measure which satisfies the detailed balance conditions
with respect to the Q-matrix of η(t). It follows from the previous lemma that

Pµ

[
η(t0) = ξ0, . . . , η(tn) = ξn

]
= Pµ

[
η(−tn) = ξn, . . . , η(−t0) = ξ0

]
. (7.5) bb09

Since µ is a stationary state, we may assume that the chain η(t) is defined
on the time interval R. Let η∗(t) be the time-reversed chain: η∗(t) = η(−t). It
follows from (7.5) that if the stationary state µ satisfies the detailed balance
conditions, the dynamics of the time-reversed chain coincides with the original
dynamics.
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8 Exercises

bex1 Exercise 1.30. Let (η(t) : t ≥ 0) be the Markov chain introduced in Propo-
sition 1.4, and recall that τ1 represents the time of the first jump. Fix η ∈ E
and assume that p(η, η) < 1. Show that τ1 and η(τ1) are independent under
Pη, that τ1 is distributed according to an exponential random variable of pa-
rameter λ(η) [1− p(η, η)] and that Pη[η(τ1) = ξ] = p(η, ξ)/[1− p(η, η)] for all
ξ 6= η.

bex6 Exercise 1.31. Let η(t) be a Markov chain as in Definition 1.3 and recall
that τ1 represents the time of the first jump. Fix η ∈ E. Show that, under the
measure Pη, τ1 is exponentially distributed with parameter q(η) = − p′0(η, η).
Show, moreover, that η(τ1) and τ1 are independent random variables.

bex5 Exercise 1.32. Recall from (2.2) that (τk : k ≥ 1) represents the successive
times of jumps of a chain η(t). Show that each τk is a stopping time with
respect to the natural filtration Fηt .

bex2 Exercise 1.33. Show that the explosion time X, introduced in Example 1.13
is a stopping time with respect to the natural filtration (Fηt : t ≥ 0).

bex3 Exercise 1.34. In example 1.13, show that Pj [X ≤ t] > 0 for all j ∈ E, t > 0.
Prove identity (3.5).

bex4 Exercise 1.35. Recall the notation introduced in Definition 1.3. Fix η ∈ E.
Show that the sequence (Zk : k ≥ 0), defined by Z0 = η, Zk = η(τk), k ≥ 1,
forms a discrete-time Markov chain in which the configurations ξ such that
p(ξ, ξ) = 1 are absorbing points.

with transition probability p?(ξ, ζ) = p(ξ, ζ)/[1− p(ξ, xi)]
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Notation

Cb(E), 35
D([0,∞), E), 22
E, 3
Gλ, 40
HA, H+

A , 10
I, 36
Pt, 36
Sxy, 156
VA,B , 67
[a], 12
〈f , g〉π, 44
Ω, 3
‖R‖, 36
‖f‖∞, 35
‖ · ‖2, 44
H+
A, 25

HA, 25
η(t), 4
ηx, 141
�, 108
1{B}, 5
Eν , 51
Pµ, 23
Pν , 51
D(L), 37
FηT , 12
Fηt , 4
FT , 11
Ft, 3
R(λ− L), 37
X, 17
dx, 155
ν∗A,B , 87
νAB , 86
π, 44
σx,yη, 141
θ(t), 53
ϕ∗, 142
ϑ(t), 23
pt(η, ξ), 3
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Q-matrix, 15
h-trace, 91

Absorbing configuration, 15
Adapted random variables, 4
Adjoint generator, 46
Arc, 64

Canonical stationary state, 142
Closed operator, 39
Collapsed chain, 96
Condensation, 148
Conductance, 63, 77, 79
Continuous-time Markov chain, 4
Contraction semigroup, 36
Core, 39
Cpacity, 66
Cycle, 78

Detailed balance conditions, 33
Detailed balanced conditions, 48
Dirchlet form, 62
Dissipative operator, 37
Divergence free flow, 64
Dynkin’s martingale, 49

Equilibrium potential, 64, 67
Equivalence of ensembles, 144
Explosion time, 17

Filtration, 3
Natural, 4

Flow, 64
Strength, 65
Unitary, 65

Flow from A to B, 65
Fugacity, 142

Generator, 37
Gradient flow, 64
Grand canonical stationary state,

142
Graph, 39

Harmonic measure, 86
Head of an arc, 64
Hitting time, 10
Holding rates, 8

Infinitesimal Generator, 38
Instantaneous configuration, 15
Invariant measure, 43
Irreducible chain, 23

Jump probabilities, 8
Jump rates, 8

Markov chain
Continuous time, 4

Markov process
Strong, 12

Markov property, 4
Markov space, 3
Minimal chain, 16
Minimal Markov chain, 17
Minimal substochastic transition prob-

ability, 17

Natural filtration, 4

Operator
Closed, 39
Dissipative, 37
Self-adjoint, 48

Operator norm, 36
Oriented edges, 64

Partition function, 142
Positive recurrent chain, 28

Recurrent chain, 23
Resistance, 63
Resolvent, 40
Return time, 10

Self-adjoint operator, 48
Semigroup, 36
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Stable configuration, 15
Stationary measure, 43
Stationary state

Canonical, 142
Grand canonical, 142

Stopping time, 10
Strength of a flow, 65
Strong Markov process, 12
Strongly continuous semigroup, 36
Substochastic transition probabil-

ity, 3

Tail of an arc, 64
Trace process, 91
Transition matrix, 4
Transition probability, 3

Minimal substochastic, 17
substochastic, 3

Unitary flow, 65
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