
Lectures on Measure Theory

General recommendations.

• These lectures assume that the audience is familiar with measure theory.
• The videos do not replace the books. I suggest to choose one among the
many listed at the end of these notes and to read the corresponding sections
before or after the videos.

• After the statement of a result, interrupt the video and try to prove the
assertion. It is the only way to understand the difficulty of the problem, to
differentiate simple steps from crucial ones, and to appreciate the ingenuity
of the solution. Sometimes you find an alternative proof of the result.

• In many exercises in Taylor’s book, you should replace semi-ring, ring and
σ-ring by semi-algebra, algebra and σ-algebra (exceptions will be men-
tioned).

• You can speed-up or slow-down the video. By pressing settings at the
bottom-right corner, you can modify the playback speed.

• Send me an e-mail if you find a mistake which is not reported in these notes.
• If you typed in latex, with no personal definitions nor the use of special
packages, solutions to some exercises proposed below, send the file. Hope-
fully, I’ll create a note with solutions to the exercises, acknowledging the
authors of the solutions.

• A note about the methodology. I ask the students to view the video(s)
before the class. In the first part of the lecture, I recall the content of the
video. Sometimes, I ask one of the students to replace me. Occasionally,
the student is randomly chosen. This is the opportunity for the students to
ask questions on the content of the class. In the second part of the lecture, I
present some of the applications included in the “Further Readings” topic.

November 21, 2022
1



2

Lecture 1: A non-measurable set

Summary. This lecture is based on [Taylor, Section 4.4].

Content and Comments.

0:00 Let P(R) be the family of subsets of R. We prove that it is not possible to
define a function λ : P(R) → R+ ∪ {+∞} such that

– λ( (a, b] ) = b− a for all a < b;
– λ(A+ x) = λ(A) for all A ∈ P(R), x ∈ R;
– λ(∪j≥1Aj) =

∑

j≥1 λ(AJ ) for all countable family Aj of disjoint sub-
sets of R.

The proof uses the axiom of choice. There are model in set theory without
the axiom of choices in which all subsets of R are measurable. See Solovay,
Robert M. (1970), “A model of set-theory in which every set of reals is
Lebesgue measurable”, Annals of Mathematics, Second Series, 92 (1): 1–56,
doi:10.2307/1970696.

Further Readings.

The Wikipedia page on “Vitali set” is very well made. That on “Banach–Tarski
paradox” offers a nice complement to the subjet by showing that additive measures
that extend volume cannot be defined on P(R3).
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Lecture 2: Classes of subsets and set functions

Summary. This lecture is based on [Taylor, Sections 1.5 and 3.1].

Content and Comments.

0:00 Definition of a semi-algebra S of subsets of a set Ω. Note that Taylor
considers semi-rings. The difference is that in the definition of semi-algebra
one requires the set Ω to belong to the class of sets, while this is not required
in the definition of semi-rings.

4:02 Example of semi-algebras.
9:12 Definition of an algebra A of subsets of a set Ω.
12:12 Definition of a σ-algebra F of subsets of a set Ω. At [12:36], I say semi-

algebra. I meant, of course, σ-algebra.
14:17 Intersections of arbitrary algebras is an algebra. The same holds for σ-

algebras. This is the Lemma of [Taylor, Sections 1.5].
21:20 Algebra generated by a class C of subsets of Ω.
29:29 Lemma: A characterization of the elements of the algebra A = A(S) gen-

erated by a semi-algebra S. [Taylor, Theorem 1.4].
49:18 Definition of additive functions µ : C ⊂ P(Ω) → R+ ∪ {+∞}.
52:34 Let µ : C → R+ ∪ {+∞} be additive function. If there exists A ∈ C such

that µ(A) < ∞, then µ(∅) = 0.
54:39 Let µ : C → R+ ∪ {+∞} be an additive function. It E ⊂ F , then µ(E) ≤

µ(F ).
58:44 Examples of additive functions. Discrete measures.

1:01:04 Definition of σ-additive functions µ : C ⊂ P(Ω) → R+ ∪ {+∞}.
1:03:33 Example of an additive function µ : C ⊂ P((0, 1)) → R+ ∪ {+∞} which is

additive and not σ-additive.

Further Readings.

A. [Billingsley, Section 1.2] has many examples. In contrast with the lectures,
this reference focuses on finite measures.

B. At the end of [Taylor, Section 2.5], the notion of Borel σ-álgebra is intro-
duced (this the σ-álgebra generated by open sets in a topological space). It
is shown in particular that the Borel σ-álgebra coincides with that gener-
ated by the semi-álgebre of semi-open intervala.

In all exercises in Taylor’s book below, you should replace semi-ring, ring and σ-ring
by semi-algebra, algebra and σ-algebra.

Recommended exercises.

*a. Prove [Taylor, Theorems 1.3 and 1.6],
b. [Taylor, Section 1.5], exercises 1, 2, 4, 5, 7, 10.
*c. Let S be a semi-algebra of subsets of a set X . Show that ∅ belongs to S.
*d. Fill the details of Examples 1–6 in [Taylor, Section 3.1].
*e. Prove [Taylor, Theorem 3.1].
*f. Check which of the Examples 1–6 are σ-additives.
g. [Taylor, Section 3.1], exercises 5, 6.

Suggested exercises.
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a. If F is an algebra (or a σ-algebra) then #F is a power of 2.
b. [Taylor, Section 1.5], exercises 3, 6, 9.
c. [Taylor, Section 3.1], exercises 1, 2, 3, 4.
d. Fill the details of Examples 2 – 6 of [Billingsley, Section 1.2].
e. Prove [Munroe, Theorems 10.2 and 10.3].
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Lecture 3: Set functions

Summary. This lecture is based on [Taylor, Sections 3.1 and 3.3].

Content and Comments.

0:00 Definition of continuous set functions (from below and from above).
5:41 Comment on the hypothesis that µ(En) < ∞ in the definition of continuity

from above.
7:17 Lemma: A algebra of sets, µ : A → R+ ∪ {+∞}. If µ is σ-additive then

it is continuous. If µ is continuous from below, then it is σ-additive. If
µ is finite and continuous from above at ∅, then it is σ-additive. [Taylor,
Theorem 3.2].

35:21 Comment on the hypothesis that µ is finite in the lemma above.
40:26 Theorem: Let S ⊂ P(Ω) be a semi-algebra of subsets of Ω and µ : S →

R+ ∪ {+∞} an additive set function. There exists a unique extension of
µ to the algebra A(S) generated by the semi-algebra S. [Taylor, Theorem
3.4].

1:00:43 In the previous theorem, if the set function µ : S → R+ ∪ {+∞} is σ-
additive, then the extension is also σ-additive. [Taylor, Theorem 3.4].

Further Readings.

A. [Billingsley, Section 10.1] has many examples.

Recommended exercises.

a. [Taylor, Section 3.1], exercises 10, 11, 14.
b. [Taylor, Section 3.3], exercises 3, 4.
c. Fill the details of examples 2, 3 and 4 in [Billingsley, Section 10.1].

Suggested exercises.

a. [Taylor, Section 3.1], exercises 7 (Here note that the results are false for
σ-algebras or algebras), 8, 9.

b. [Taylor, Section 3.3], exercises 1, 2.
c. [Billingsley, Section 10.1], exercises 1, 2.
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Lecture 4: Carathéodory theorem

Summary. This lecture is based on on [Taylor, Sections 4.1].

Content and Comments.

0:00 Summary of the lecture. How to extend a measure ν defined on an algebra
A to the σ-algebra generated by this algebra.

5:26 Definition of the set function (which will be shown to be an outer measure)
π∗ : P(Ω) → R+ ∪ {+∞}.

8:04 Definition of an outer measures.
10:26 Proof that π∗ is an outer measure.
22:07 definition of the measurable sets M.
24:08 The class M is a σ-algebra which contains the algebra A. In particular

it contains F(A), the σ-algebra generated by A. This is part of [Taylor,
Theorem 4.1].

1:00:51 π∗ restricted to M is σ-additive. This is part of [Taylor, Theorem 4.1].
1:14:41 Uniqueness of the extension on F(A) provided ν is σ-finite. [Taylor, The-

orem 4.2].
1:20:12 Definition of monotone classes.
1:23:00 Intersection of monotone classes is a monotone class. The monotone class

generated by a family of sets.
1:26:19 The monotone class generated by an algebra coincides with the σ-algebra

generated by the algebra. In particular, a monotone class which contains
an algebra also contains the σ-algebra generated by the algebra. This is
how this result will be applied.

1:27:21 Proof of the uniqueness of the extension on F(A). In fact under the same
condition, there is uniqueness of the extension on M (see the recommended
exercises e. and f. below).

1:41:31 Remarks on Carathéodory theorem.

Further Readings.

A. [Taylor, Sections 4.1] introduces the concept of regular outer measures and
inner measures. It applies the construction to the case of the Lebesgue
measure.

Recommended exercises.

a. [Taylor, Section 4.1], exercises 4, 7, 8, 10,
*b. [Taylor, Section 4.1], exercise 5, 11 (This exercise shows that the hypothesis

that ν is σ-finite is needed for the uniqueness of the extension), 12.
c. [Billingsley, Section 3], exercise 5.
d. Show that π∗(A) = inf

∑

i≥1 ν(Ei) where infimum is taken over sequences

of with Ei ∈ A for all i, A ⊂
⋃

i≥1 Ei AND Ei ∩ Ej = ∅ (that is: disjoint

sequences).
e. (π∗ is the “largest” extension) Given ν a σ additive function on A, let

µ be a measure that extends ν on M. Show that for any A ∈ M we
have µ(A) ≤ π∗(A). If π(Ω) is finite deduce that we necessarily have
µ(A) = π∗(A).
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f. Using the previous exercise, show that π∗ is also the only extension when
µ is σ-finite.

Suggested exercises.

a. [Taylor, Section 4.1], exercises 1, 2, 3, 6, 9. (exercises 2 and 9 need the
concept of regular outer measure, not yet seen)

b. [Billingsley, Section 3], exercise 2.
c. In the case where ν(Ω) < ∞ show that A ∈ M if

π∗(A) + π∗(Ω \A) = π∗(Ω).

This exercise illustrates that measurable sets are in fact the ones for which
the outer and inner measure coincide, where the inner measure π∗ is defined
by π∗(A) = π∗(Ω) − π∗(Ω \ A). (see [Taylor, pp 75]). π∗(A) and π∗(A)
corresponds to the largest and smallest possible value that that the measure
of A could assume in an extension of µ to a σ-algebra that includes A. In
that senseM corresponds to the “largest” σ-algebra such that the extension
is unique.

d. If En is a sequence of elements of A such that ν(En) < ∞ and Ω :=
⋃

n≥1 En. Show that A ∈ M if π∗(En∩A)+π∗(En \A) = π∗(En) for every
n ≥ 1.
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We are using the notation of lecture 4. A is an algebra and π∗ the measure
constructed from a σ-additive ν using the Caratheodory Theorem.

Lemma 0.1. Given A ⊂ Ω an arbitrary subset. There exists B ∈ F(A) such that

A ⊂ B and π∗(A) = π∗(B).

Proof. Note that from monotonicity of π∗, A ⊂ B implies π∗(A) ≤ π∗(B). Using
the definition of π∗(A), for any n we can find a sequence (Bi,n)i≥0 such that

A ⊂
⋃

i≥1

Bi,n and

n
∑

i=1

ν(Bi,n) ≤ π∗(A) + n−1

We set
Bn :=

⋃

i≥1

Bi,n and B :=
⋂

n≥1

Bn

With our assumption A is a subset of Bn for every n and hence a subset of B.
Furthermore since B ⊂ Bn we have for any n ≥ 1

π∗(B) ≤ π∗(Bn) = π∗





⋃

i≥1

Bi,n



 ≤
∑

i≥1

π∗(Bi,n) =
∑

i≥1

ν(Bi,n) ≤ π∗(A) +
1

n
.

�

When A is a measurable subset (A ∈ M) we can improve the statement

Proposition 0.2. Consider A ∈ M, and assume that can be written in the form

A =
⋃

n≥1

An with An ∈ M, π∗(An) < ∞.

Then there exists B∗, B∗ ∈ F(A) such that

B∗ ⊂ A ⊂ B∗ and π∗(B∗ \B∗) = 0.

In particular π∗(A) = π∗(B∗) = π∗(B∗).

The assumption that A can be written as a union of events of finite measure is
satisfied whenever ν is σ-finite.

Proof. Let us start with the particular case π∗(A) < ∞. Using the lemma there
exists B∗ ∈ F with B∗ ⊂ A such that π∗(B) = π∗(A). Hence we have

π∗(B∗ \A) = π∗(B)− π∗(A) = 0.

Applying the Lemma again to B∗ \A, there exists C ∈ F such that (B∗ \ A) ⊂ C
and π∗(C) = 0. We set B∗ = B∗ \ C. It is immediate to check that B∗ ⊂ A, and
we have π∗(B∗ \B∗) ≤ π∗(C) = 0.

If π∗(A) = ∞, we apply the result to all An (let B∗
n and B∗,n denote the sets

in F which frame An). We set B∗ =
⋃

n≥1 B
∗
n and B∗ =

⋃

n≥1 B∗,n. We have

B∗, B∗ ∈ F and (the first inequality is by inclusion, the second by subadditivity)

π∗(B∗ \B∗) ≤ π∗





⋃

n≥1

(B∗
n \B∗,n)



 ≤
∑

n≥1

π∗(B∗
n \B∗,n) = 0.

�
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Lecture 5: Monotone Class Theorem

Summary. This lecture presents the proof of Theorem 1.5. [Taylor, Section 1.5]

Content and Comments.

0:00 Recall of the definition of a monotone class and simple consequences.
6:19 Main result of the lecture: The monotone class generated by an algebra is

a σ-algebra (M(A) = F(A)).
10:06 Beginning of the main technical step of the proof. Introduction of the set

G(E) for E ∈ A (the video displays E ⊆ A but this is a typo) and proof
that G(E) = M(A) for E ∈ A.

18:20 Continuation of the main technical step: Proof that G(E) = M(A) for
E ∈ M(A).

26:50 Proof that M(A) is an algebra using the work done on G(E).
30:45 Proof that M(A) is a σ-algebra (easy).The proof shows in fact that any

algebra which is a monotone class is a σ-algebra

Further Readings. A result which is sometimes used to complement or replace
the Monotone Class Theorem is the so called λ − π Theorem. Both results are
proved in [Billingsley, Chater 1 Section 3].
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Lecture 6: The Lebesgue Measure I

Summary. This lecture is based on the argument presented for the proof of The-

orem 3.7 in [Taylor, Section 3.4] in the case k = 2.

Content and Comments.

0:00 Presentation of the main objective of the lecture: Extending the notion of
the length µ, defined on the semi-algebra S of half-open intervals, using
the Carathéodory Theorem (and the easier extension result of additive set
function from semi-algebra to algebra)

3:42 Proof that µ(A) ≥
∑

j≥1 µ(Aj) if A =
∑

j≥1 µ(Aj). This part of the proof

uses the unique extension ν of µ to the algebra A(S) via additivity.
8:50 Proof that µ(A) ≤

∑

j≥1 µ(Aj) if A is of the form [a, b).

18:30 Proof of µ(A) ≤
∑

j≥1 µ(Aj) in the remaining cases (that is, the elements
of S which are of infinite length, since there is nothing the prove in the case
of the empty set).

Recommended exercises.

a. Let us consider a closed interval A := [a, b] and (Ci)
∞
i=1 be a sequence of

open intervals with Ci := (ci, di). Assume that A ⊂
⋃

i≥1 Ci. Show (using

only compactness and σ-additivity on semi-open intervals) that b − a ≤
∑∞

i=1(di− ci). The proof starting at 8:50 is slightly more difficult than this
exercise because we are dealing with semi-open intervals (which is of crucial
importance for the use of Caratheodory’s Theorem). For this reason some
surgery with epsilons is necessary to recover open and closed intervals

b. Check that the proof work also to construct Lebesgue measure on Rd for
d ≥ 2.

c. Given x ∈ R and A ⊂ R, let A+ x := {x+ y : y ∈ A}. Letting λ∗ denote
the Lebesgue exterior measure show that λ∗(A + x) = λ∗(A) for every A
and x (and thus that the same is true for Lebesgue measure if A ∈ M).

d. Given α > 0 and A ⊂ R, let αA := {αy : y ∈ A}. Show that λ∗(αA) =
αλ∗(A) for every A and α.

e. Let (xn)n≥1 be an enumeration of Q (a sequence in which each rational
number appears one and only one time). Consider the set A :=

⋃

n≥1(xn −

2−n, xn + 2−n). Prove that A is an open dense set and that A is not equal
to R.

Suggested exercises.

a. Let A ⊂ R. Let λ∗ denote the Lebesgue exterior measure. Show that
limε→0 λ

∗(A ∪ (A+ ε)) = λ∗(A).
b. Let A ⊂ [0, 1) and (ǫn)n≥0 be a sequence of positive numbers tending to zero

such that A∩(A+ǫn) = ∅ for every n (recall that A+x := {y+x : x ∈ A}).
Let λ∗ denote the Lebesgue exterior measure. Show that either λ∗(A) = 0
or A is non measurable.
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Lecture 7: The Lebesgue Measure II

Summary. This lecture is based on the proof of Theorem 3.7 presented in [Taylor,

Section 3.4] (case k = 1).

Content and Comments.

0:00 Objective of the lecture: proving that the length defined on the algebra
A(S) is continuous at ∅ and hence σ additive.

4:12 Presentation of the strategy by contradiction using compactness. Given
a sequence (Ek) such that

⋃

k≥1 Ek = ∅, but with µ(Ek) ≥ 2δ for all k,
a sequence of non-empty compact subsets Gk ⊂ Ek is constructed suing
induction. The sets Gk are of the form F k where Fk ∈ A(S).

8:05 Details of the construction of F1 for (Step 1).
13:02 Details of the construction of F2 for k = 2 (Step 2) and definition of the

induction step.
25:44 The induction step, construction of Gk+1 using Gk.
36:22 Recapitulation of the argument and conclusion.

Recommended exercises.

a. Check that the proof work also to construct Lebesgue measure on Rd for
d ≥ 2.

b. Let A ⊂ [0, 1] be the non-measurable subset considered in Lecture 1 and
let λ∗ denote the exterior Lebesgue measure. Show that λ∗(A) > 0.

Suggested exercises.

a. Let A ⊂ [0, 1] be the non-measurable subset considered in Lecture 1 and
let λ∗ denote the exterior Lebesgue measure. Show that λ∗([0, 1] \A) = 1.
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Lecture 8: Complete measure

Summary. This lecture is based on [Taylor, Section 4.2]

Content and Comments.

0:00 Definition of a complete measure, and presentation of the main aim of the
lecture: enlarging a extending the σ-algebra and extending a measure to
make the pair complete.

6:28 Definition of F and proof that it is a σ-algebra.
20:07 Definition of the extension µ̄ and proof that it does not depend on the

specific decomposition A ∪N .
27:00 Verification that µ̄ coincides with µ on F .
28:25 Proof that µ̄ is σ additive.
34:00 Proof that (µ̄,F) is complete.
39:30 Proof of the uniqueness of µ̄.
47:30 Proof that the outer measure π∗ used in Lecture 4 is complete.

Recommended exercises.

a. Show that B ∈ F if and only if there exists A,H ∈ F and N such that
B = A ∪N , N ⊂ H , µ(H) = 0 AND A ∩H = ∅.

b. Consider two σ-algebras F and G such that that F ⊂ G and a measure
µ defined on G (we also write µ for the restriction of this measure to F).
Show that if G is µ complete then we have Fµ ⊂ G.

c. The last part of the lecture proves that (π∗,M) is complete. If µ is a σ-
finite measure on F , it is also true that M is the completition of F , that
is M = F (prove it). Note that this implies that if µ is sigma finite, the
outer-measure π∗ is the unique extension of µ to the σ-algebra M.

d. Exercise 1 and 2 in [Taylor, Section 4.1] (Exercise 2 provides a counter
example to c. when σ additivity does not hold).
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Lecture 9: Approximation Theorems

Summary. This lecture is based on [Taylor, Section 4.3]

Content and Comments.

0:00 First approximation Theorem: Any measurable set with finite measure can
be approximated with a precision ǫ by an element of the algebra. The proof
is presented only for A ∈ F , but the assumption is not used.

0:07 “We have seen in previous lectures ...”: I could not find the stated claim
in previous videos. But this is a consequence of the fact proved at the end
of [Taylor, Section 4.1] ( π∗ is a regular outer measure). The statement is
also valid for non measurable A. A proof is given in this document (after
Lecture 4)

3:54 Proof of the first approximation Theorem.
13:49 Observation that the approximation theorem extends to the completed mea-

sure. σ-finite is not required here. Since from exercise b. in Lecture 8 we
have F ⊂ M, this observation is not extending the Theorem)

16:30 Definition of a regular measure on a topological space.
21:25 If a measure µ is regular then F ⊂ Bµ (the completed Borel σ-algebra.
27:10 Second approximation Theorem: The Lebesgue measure is a regular mea-

sure and its proof.
52:35 Concluding remark: exact approximation by Fσ and Gδ sets.

Further Readings.

A. [Taylor, Section 4.3] mentions that the second approximation Theorem is
valid in the larger context of metric outer measure.

Recommended exercises.

a. Check that the proof of the second approximation Theorem is valid in Rd

for d ≥ 2.
b. Prove the statement made at 13:49 in the lecture and the concluding remark

(not looking at the book) is valid in Rd for d ≥ 2.
c. Exercise 1 [Taylor, Section 4.3]

Suggested exercises.

a. Exercise 2,3,4 [Taylor, Section 4.3].
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Lecture 10: Measurable and integrable functions

Summary. This lecture is based on [Taylor, Section 5.1-5.2-5.3]

Content and Comments.

0:00 Presentation of natural property that one would expect for a notion of
integral (Note that that the third property is NOT satisfied by the Riemann
integral, cf. final remark below, which in itself is a sufficient reason to look
for a better notion, [Taylor, Section 5.1] provide a more detailed discussion)

3:00 Comparison (of the ideas behind) the construction of Lebesgue integral
with that of Riemann integral.

11:30 Definition of measurable functions taking value in R ∪ {−∞,+∞} (Note
that there is a notion of measurability for applications taking value in an
arbitrary set X equipped with a σ-algebra G, see Taylor [Taylor, Section
6.5] where these are mentioned as measurable transformation).

17:05 Presentation of a simple criterion to check measurability [Taylor, Theorem
5.1] (the proof presents in fact a more general result, a particular case of
which is the presented lemma since it can be used for an arbitrarily family of
set G that generates F . The criterion presented is in fact valid for functions
f taking values in R. If one allows for the values ±∞ one must also check
that f−1({∞}) ∈ F).

32:20 Introduction of the notion of simple function and proof that they are mea-
surable.

38:50 Definition of the integral of (non-negative) simple function (and verification
that it does not depends on the representation chosen).

51:29 Presentation of the roadmap to define integration.
57:20 Final remark: even some simple functions are not Riemann integrable.

(note that the example given is the increasing limit of Riemann integrable
functions.)

Further Readings.

A. [Taylor, Section 9.4] present an alternative approach to the construction
of integration, where integral is constructed directly, without constructing
Lebesgue measure beforehand.

Recommended exercises.

a. Show that if (Ei)
n
i=1 is a finite sequences of measurable sets (not necessarily

pairwise disjoint) and (ci)
n
i=1 are real numbers then

∑n
i=1 ci1Ei

is a simple
function.

b. Show that f is a simple function if and only if it satisfies the following
condition: f is measurable and the set {f(x) : x ∈ Ω} is finite.

c. Show that the set of simple functions forms and R-vector space.
d. [Taylor, Section 5.2] Exercises 1 and 6.
e. [Taylor, Section 5.3] Exercise 2.
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Lecture 11: Measurable Functions

Summary. This lecture is based on [Taylor, Section 5.2]

Content and Comments.

0:00 Presentation of the first objective of the class: show that measurability is
preserved by some basic operations.

1:30 of [Taylor, Theorem 5.3] is presented (stability under sum, product etc...)
and proved. The main tricks are: using [Taylor, Theorem 5.1], that is,
checking only the pre-image of semi-infinite intervals, and use the rational
numbers to write some events as countable union/intersection cf. 7:30.

20:23 Presentation of [Taylor, Theorem 5.4] about conservation of measurability
under countable sup, inf, lim sup and lim inf.

26:21 Important comments about sup and inf over uncountable sets (not neces-
sarily measurable).

30:00 Important observation: continuous function on Ω are measurable with re-
spect to the σ-algebra generated by the collection of open sets, Borel σ-
algebra.

32:25 Measurability of f : Ω → R depends on the choice of σ-algebra on Ω Note
that the σ-algebra considered on R is always B, the Borel σ-algebra.

34:42 Definition of almost sure properties. “almost surely” is used when consid-
ering probability measure, while “almost everywhere” is more common in
other contexts.

37:00 If f : R → R is Lebesgue measureable and f coincides with g a.e. then g
is Lebesgue measurable. The statement is not true for Borel measurable
functions. Here the statement extends (with the same proof) to f : Ω → R

which is F measurable: if f and g coincide µ-almost everywhere AND F
is µ-complete (this is the only assumption of the Lebesgue σ-algebra which
is used) then g is F measurable.

43:30 The composition of measurable functions is measurable. Here it is really
important that the σ-algebra considered for g is the Borel σ-algebra.

Further Readings.

A. The more general notion of measurable transformation in [Taylor, Section
6.5] allows to generalize some of the properties above, in particular that
concerning composition.

Recommended exercises.

a. Exercise 2, 7 (can assume Ω = R)[Taylor, Section 5.2]
b. Let f : R → R̄ be a Lebesgue measurable function. Show that there exists g

which is Borel measurable such that f = g almost everywhere (or show that
if f is Ω → R is F̄µ measurable (measurable with respect to the completed
σ-algebra), then there exists g which is F measurable such that f = g,
µ-almost everywhere).

Suggested exercises.

a. Exercises 8, 9 (can assume Ω = R)[Taylor, Section 5.2]
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Lecture 12: Definition of the integral

Summary. This lecture is based on [Taylor, Section 5.2] and [Taylor, Section 5.3].

Content and Comments.

0:00 Plan of the lecture: First, define the integral of positive measurable func-
tion via increasing sequences of approximation by simple function, then
define integral of a measurable function by decomposition into positive and
negative part.

8:02 Important technical Lemma: “Any positive measurable function is the in-
creasing limit of a sequence of simple functions”. This is [Taylor, Theorem
5.2]

9:30 Explicit description of a sequence fn converging to f , and proof that it is
a simple function.

15:33 Proof that fn converges to f .
23:00 Proof that fn ≤ fn+1 An alternative argument is provided in Exercise (a)

below.
38:35 Definition of integral of positive measurable function. As in Section 5.3 (2)

in [Taylor].
40:10 Proof that for positive simple functions I(f) ≤ I(g) if f ≤ g.
47:00 Checking that the definition of I(f) given at 38:35 does not depend on the

sequence.
48:45 Reduction of the problem to the inequality (Lemma) g ≤ I(f) when g ≤ f

and g is simple.
53:15 Proof of the lemma when g = c1E

1:05:50 Completition of the Lemma.
1:10:50 Definition of an integrable function and of its integral (via decomposition

into positive and negative parts).

Recommended exercises.

a. Consider the set An := {k2−n : k ∈ {1, . . . , n2n}}. Show that An ⊂ An+1

and that if fn is the sequence introduced at [9:30] above we have for every
x

fn(x) = max{y ∈ An : y ≤ f(x)}.

Deduce from this that fn(x) ≤ fn+1(x).
b. Exercises 4 and 5 in [Taylor, Section 5.2].
c. Exercises 4,5 and 6 in [Taylor, Section 5.3].

Suggested exercises.

a. Exercise 3 in [Taylor, Section 5.2]
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Lecture 13: Integral of simple functions

Summary. This lecture is based on [Taylor, Section 5.3].

Content and Comments.

0:00 The goal of this lecture is to show that the integration of simple function
is linear. It is shown that for non-negative f and g, and c ≥ 0, I(f + g) =
I(f) + I(g) and I(cg) = cI(g). This lecture can be studied before Lecture
12. Additivity of the integral gives a proof of the statement made in Lecture
12 at 40:10.

Recommended exercises.

a. Show that if f is simple then |f | is simple. Set

Lsimple(µ) := {f simple functions on Ω satisfying I(|f |) < ∞}.

Show that IS(Ω) is a vector space, that I(f) is well defined for f ∈ IS(Ω)
and that f 7→ I(f) is a linear application from IS(Ω) to R.
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Lecture 14: Property of the integral

Summary. This lecture is based on [Taylor, Section 5.4].

Content and Comments.

0:00 The aim of the lecture is to prove some of the statements in [Taylor, The-
orem 5.5].

0:50 First observation. If f and g are non-negative then f ≤ g implies I(f) ≤
I(g). As a consequence, f integrable implies that f1A integrable (proof
completed at 13:00).

7:05 Proof of “linearity” of the integral for non-negative functions (I(f + g) =
I(f) + I(g), I(cf) = cI(f) for f, g non-negative and c ≥ 0).

15:35 If µ(E) = 0 and f is measurable then I(f1E) = 0 The lecture also assume
that f is integrable but this is not necessary.

20:34 Integrability is stable via addition, multiplication and restriction to a mea-
surable set Of course here f and g integrable does not imply that f + g is
well defined because of ±∞ conflicts. Here it is implicitely assumed that
f + g is well defined. If A and B are disjoint the integral on A ∪ B is the
sum of the integrals on A and B.

31:00 If f is integrable then |f | < ∞ almost surely.
38:11 Proof of the linearity of the integral. This is perhaps the less “direct” proof

of this lecture. The trick is to reduce the statement to something about
positive integrals.

Recommended exercises.

a. Exercise 3 in [Taylor, Section 5.3].
b. Exercises 1,2, 5 and 6 in [Taylor, Section 5.4].

Suggested exercises.

a. Exercises 3 and 4 in [Taylor, Section 5.4].
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Lecture 15: Property of the integral

Summary. This lecture is based on [Taylor, Section 5.4].

Content and Comments.

0:00 The aim of the lecture is to prove the remaining the statements in [Taylor,
Theorem 5.5], starting with |

∫

fdµ| ≤
∫

|f |dµ. This inequality can be
interpreted as a continuous version of the triangle inequality ).

1:34 Proof of
∫

cfdµ = c
∫

fdµ
8:41 Monotonicity of the integral.
12:30 Non-negative functions with zero integral are equal to zero almost every-

where.
19:00 Two functions which coincide almost-everywhere have the same integral.
22:40 A measurable function whose absolute value is smaller than an integrable

function is integrable.
24:40 Special case of the previous property.

Recommended exercises.

a. Show that

L1(µ) := {f,Ω → R : f is measurable and

∫

|f |dµ < ∞}

is a vector space and that f 7→
∫

fdµ is a linear application on that vector
space.

Suggested exercises.

a. Exercise 8, 9 in [Taylor, Section 5.4]
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Lecture 16: Theorem on the convergence of integrals

Summary. This lecture is based on [Taylor, Section 5.4]

Content and Comments. The three main theorems of this lecture (Monotone

convergence, Fatou, and Dominated convergence) are amongst the most important
result in the class..

0:00 Statement and proof of the Monotone convergence Theorem [Taylor, The-
orem 5.6].

19:20 Small extension of the assumption: fn ≥ 0 can be replaced by fn ≥ g with
g integrable.

20:30 Construction of the measure µf by integrating a positive function f against
a reference measure µ.

27:45 Absolute continuity and preview of the Random-Nikodym Theorem The
function g is called the density of µ with respect to ν. Note that the
Random-Nikodym Theorem is only valid if ν is a σ-finite measure.

31:25 It is possible that for two measure we have neither ν ≪ µ nor µ ≪ ν.
36:00 Presentation of uniform integrability and proof that any integrable func-

tion is also uniformly integrable The notion of uniform integrability can be
applied to a set of integrable function see [Taylor, Section 6.4], in that case
uniform integrability is something stronger than integrability.

42:20 Fatou’s Lemma [Taylor, Theorem 5.7]: presentation, proof, remark about
the positivity assumption, (it can be replaced by fn ≥ g, with g integrable
like for monotone convergence) and corollary for negative functions.

52:07 Statement and proof of the dominated convergence Theorem [Taylor, The-
orem 5.8]. Note cf. [Taylor, Theorem 7.6] that the convergence fn → f can
be assumed to hold only in measure or a.e.

Further Readings.

A. Amongst important consequences of the dominated convergence Theorem
is the possibility (under the right assumption) to exchange the position
of derivatives and integrals (see [Bogachev, Corollary 2.8.7]). We provide
some details on the next page.

Recommended exercises.

a. Show that in the dominated convergence Theorem, on can assume that
the assumptions limn→∞ fn(x) = f(x) and |fn(x)| ≤ g(x) are valid for
µ-almost everywhere (instead of everywhere).

b. Show that the relation ≪ of absolute continuity between measure is an
order relation (that is: prove reflexivity and transitivity).

c. Exercises 6,7 and 11 [Taylor, Section 5.4]

Suggested exercises.

a. Exercises 10, 13 in [Taylor, Section 5.4]
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Consider an open interval (a, b) and (Ω,F , µ) a measured space. Let f : (a, b)×
Ω → R be a function such that for every t ∈ (a, b), the function f(t, ·) defined on
Ω is integrable. We define

J(t) :=

∫

Ω

f(t, x)µ(dx).

Corollary 0.3. The following results hold true

(i) If for µ almost every x, t 7→ f(t, x) is continuous on (a, b) there exists g1
integrable such that for every fixed t ∈ (a, b),

|f(t, x)| ≤ g1(x), µ− a.e

then J(t) is continuous on (a, b).
(ii) If for µ almost every x, t 7→ f(t, x) is differentiable on (a, b) and there

exists g2 such that ,

sup
t∈(a,b)

∣

∣

∣

∣

∂f(t, x)

∂t

∣

∣

∣

∣

≤ g2(x), µ− a.e.

then J(t) is differentiable on (a, b) and

J ′(t) =

∫

Ω

∂f(t, x)

∂t
µ(dx)

Proof. The first point is a direct consequence of the dominated convergence Theo-
rem. To prove continuity at a fixed t, it is sufficient to show that for every sequence
tn such that tn → t we have lim J(tn) = J(t). To show this result, we set

E := {x : ∀n ≥ 1, |fn(x)| ≤ g1(x)}

∩ { lim
n→∞

fn(x) exists and is equal to f(t, x)}.

We have

µ(Ec) ≤
∑

n≥1

µ ({x : |f(tn, x)| ≤ g1(x)}) + µ
(

lim
n→∞

fn(x) 6= f(t, x)}
)

= 0.

We can apply the dominated convergence Theorem (we have |fn| ≤ g1). This yields

lim
n→∞

J(tn) = lim
n→∞

∫

Ω

fndµ =

∫

Ω‘

f(t, x)dµ = J(t)

For the second point we must prove that with the same setup (assuming that
tn 6= t for every n)

lim
n→∞

∫

Ω

f(t, x)− f(tn, x)

t− tn
µ(dx) =

∫

Ω

lim
n→∞

f(t, x)− f(tn, x)

t− tn
µ(dx).

We can replace
∫

Ω by
∫

E
where

E :=

{

x : t 7→ f(t, x) is differentiable on (a, b) and sup
t∈(a,b)

∣

∣

∣

∣

∂f(t, x)

∂x

∣

∣

∣

∣

≤ g2(x)

}

since by assumption µ(Ec) = 0. Hence we try to apply the dominated convergence
Theorem to the sequence hn defined by

hn(x) :=
f(t, x)− f(tn, x)

t− tn
1E .
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Using the mean value theorem, for x ∈ E and n ≥ 1 there exists sn(x) ∈ (a, b) such
that

hn(x) =
∂f(sn(x), x)

∂t
.

As a consequence we have |hn(x)| ≤ g2(x) and hence by dominated convergence

lim
n→∞

∫

E

f(t, x)− f(tn, x)

t− tn
=

∫

E

lim
n→∞

f(t, x)− f(tn, x)

t− tn
µ(dx) (0.1)

which is the desired result. �
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Lecture 17: Product measures

Summary. This lecture is based on [Taylor, Section 6.1 and 6.2].

Content and Comments.

0:00 The main goal of the lecture is given, two measure µ1 and µ2 on two spaces
(Ω1,F1) and (Ω2,F2), construct a natural measure on the Cartesian space
Ω1 × Ω2 equipped with a natural σ-algebra. Although direct construction
exists, products can be used to define the Lebesgue measure on Rd. The
setup is introduced, and the requirement concerning the value of µ on rec-
tangle sets is introduced.

4:40 Formal definition of “rectangles” and proof that they form a semi-algebra
As mentioned in the lecture, if Ω1 = Ω2 = R, the notion does not correspond
to Euclidean rectangles.

12:40 Introduction of the σ-algebra F1 ⋆ F2. It can also be denoted by F1 ⊗ F2

and is usually called the product σ-algebra. The next step is check all the
assumptions necessary to apply Caratheodory’s Theorem.

15:32 Start by showing that if A ∈ F1 ⋆F2, then its one dimensional sections Ax

and Ay are in F2 and F1 respectively.
36:55 Proof that µ is additive (on the set of rectangles)
51:50 Small adaptation of the previous argument to show that µ is σ-additive.
53:55 Final considerations concerning uniqueness: µ is sigma finite on Ω1 × Ω2

if (and only if, unless one of the measure is uniformly zero) µ1 and µ2 are
sigma finite.

Further Readings.

A. [Taylor, Section 6.1 ] introduce the concept of product algebra (similar to
product σ-algebra but only with additivity)

B. [Taylor, Section 2.4 ] give some further introduction to product spaces.

Recommended exercises.

a. Prove the result below using two different methods:
(i) A direct adaptation of the proof above.
(ii) With an induction on k starting with k = 2.
Given (Ωi,Fi, µi), i = 1, . . . , k, a finite sequence of measured space there

exist a unique measure µ on
∏k

i=1 Ωi equipped with the σ-algebra
⊗k

i=1 Fi

generated by rectangles E1 × · · · × Ek, Ei ∈ Fi, such that

µ(E1 × · · · × Ek) =

k
∏

i=1

µi(Ei).

b. Exercise 5 and 7 in [Taylor, Section 6.1 ]
c. Exercise 1 in [Taylor, Section 6.2 ]

Suggested exercises.

a. Let (X1, d1) and (X2, d2) be two separable metric spaces and let B1 and B2

denote the corresponding Borel σ-algebras. Set X = X1 × X2 and equip
it with the distance d([x1, x2], [y1, y2]) = d1(x1, y1) + d2(x2, y2), and let B
the Borel σ-algebras associated with (X, d) (the Borel σ-algebra is that
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generated by open sets). Show that B1 ⊗ B2 ⊂ B, and that if X1 and X2

are separable then we have equality.
b. Exercise 8 and 9 in [Taylor, Section 6.2]
c. Exercise 3 in [Taylor, Section 6.2]
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Property of Lebesgue measure in Rd

Using directly Caratheodory Theorem on the semi-algebra of half-open rectan-
gles (cf. Exercises of Lecture 5/6) or product measure, one can define the Lebesgue
measure λ on Rd. We let L denote the Lebesgue σ-algebra on Rd (for both con-
struction, this is the σ-algebra M of measurable sets coming from Caratheodory
Theorem).

The solution of the following exercises can be found in [Bogachev]. More precisely
[Bogachev, Theorem 1.7.3] and [Bogachev, Corollary 3.6.4].

Recommended exercises.

a. Prove that the Lebesgue measure on Rd is invariant by translation, that is:
for every a ∈ Rd and A ∈ L, λ(A+ a) = λ(A).

b. Prove that for A ∈ L and c ∈ R, λ(cA) = |c|dλ(A).
c. Prove that if A ∈ L and g ∈ GL(Rd) is a linear endomorphism of Rd then

the image set g(A) is also Lebesgue measurable (one can treat separately
the case when g is non-invertible and when g is invertible).

d. Prove that if g ∈ O(Rd) is an orthogonal transformation of Rd, then
λ(g(A)) = λ(A).

e. Prove that if g ∈ GL(Rd) then λ(g(A)) = |det(g)|λ(A).
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Lecture 18 : Measure on a countable product of spaces

Summary. This lecture is based on [Taylor, Section 6.1 and 6.2]

Content and Comments.

0:00 Presentaton of the objective of the lecture: constructing a product mea-
sure for a countably infinite product of probability measures (the result
corresponds to [Taylor, Theorem 6.3]).

4:20 Introduction of the collection of cylinder sets C, and proof that it is a semi-
algebra (this is the last Lemma [Taylor, Section 6.1])

17:53 Introduction of the set function µ on C which is to be extended to a measure.
21:10 Proof that µ is additive on C.
29:31 Claim and proof that the extension of µ to the algebra A is continuous from

above at ∅. This is the main difficulty in the proof
1:18:00 Conclusion.

Further Readings.

A. There exists several alternative approach to countable product measure.
When Ωi = {0, 1} for every i and µ1 = 1

2δ0+
1
2δ1, the result can be obtained

using the Lebesgue measure and dyadic decomposition (see [Billingsley,
Theorem 5.4]). While very specific, this case has some importance, since
from it, the case Ωi = R and µi arbitrary can be deduced (see [Billingsley,
Theorem 20.4]).

B. The result can be achieved using Kolmogorov’s extension Theorem which
is conceptually simple but has a very technical proof. The extension The-
orem is presented in [Taylor, Section 6.6] and the way to obtain product
measures using it is explained in [Billingsley, Section 36], see in particular
[Billingsley, Example 36.2] (Kolmogorov’s Extension Theorem also allows
to define uncountably infinite product distribution although but most prac-
tical application concern the countable case anyways).

Recommended exercises.

a. Exercise 10 [Taylor, Section 6.1]
b. Exercises 2,4 [Taylor, Section 6.2].

Suggested exercises.

a. Exercise 5 [Taylor, Section 6.2]
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Lecture 19 : Fubini’s Theorem

Summary. This lecture is based on [Taylor, Section 6.3]

Content and Comments.

0:00 Presentation of Fubini’s Theorem ( the integral of f over Ω1×Ω2 under the
product measure µ1 ⊗ µ2 can be obtained by first integrating with respect
to µ1 and then w.r.t. µ2 or vice versa) and summary of the main steps to
prove it.

4:41 First step necessary to check that the iterated integral is well defined: If f
is F1 ⊗F2-measurable, then fx = f(x, ·) is F2 measurable for all x.

9:14 Second step necessary to check that the iterated integral is well defined,
prove that x 7→

∫

f(x, y)dµ2(dy) is F1 measurable, starting with indicater
function. If E ∈ F1 ⊗F2 then the functions x 7→ µ2(Ex) is F1 measurable.
First it is checked that the property is satisfied for rectangles, and then
shown, with a monotone class argument, that the class of sets satisfying the
property is a σ-algebra. The argument is first exposed for finite measures
and an extra step is needed to extend the result to the σ-finite case

35:13 Proof of Fubini’s Theorem for indicator functions combining the previous
method, with the use of the monotone convergence Theorem.

52:05 Proof of Fubini’s Theorem (including the measurability of the integral w.r.t.
µ2) in the case of positive functions. This is called Tonelli’s Theorem. It
is first proved for simple function and then extended via monotone conver-
gence.

1:07:30 The case of integrable f is discussed. The problem is that
∫

f(x, y)µ2(dy)
may not be defined on a set of negligible measure.

1:11:38 Modification of the statement so that it makes sense, and proof (it follows
from the positive case using linearity).

1:21:48 Final remark: An integrability criterion for measureable functions on Ω1 ×
Ω2. A measurable function f is µ1 ⊗ µ2 integrable if (and only if) the
iterated integral of |f | w.r.t. to first µ1 and then µ2 is finite.

Recommended exercises.

a. Prove the k-dimensional version of Fubini’s Theorem using two methods
(as in the first Recommended exercise of Lecture 17).

b. Let (Ω1,F1, µ1) and (Ω2,F2, µ2) two σ-finite measured space, f ∈ Ω1 ×
Ω2 → R+, F1 ⊗ F2 measurable. Let us define g on Ω2 × Ω1 by g(x, y) :=
f(y, x). Show that g is F2 ⊗F1 measurable and that

∫

Ω1×Ω2

fdµ1 ⊗ µ2 =

∫

Ω2×Ω1

gdµ2 ⊗ µ1.

c. Exercises 2,3,4,5 [Taylor, Section 6.3]
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Suggested exercises.

a. Let (Ω1,F1, µ1) and (Ω2,F2, µ2) two complete measured space. Consider
F1 ⊗F2 the µ1 ⊗ µ2-completition of the σ-algebra F1 ⊗ F2. Let f be an
F1 ⊗F2 measurable function which is such that

∫

|f |dµ1 ⊗ µ2 = 0.

Show that the following sets

E := {x ∈ Ω1 : fx is not F2 measurable },

F := {x /∈ E :

∫

|f(x, y)|µ2(dy) 6= 0},

belong to F1 and that µ1(E) = µ1(F ) = 0.
b. Keep the assumption of exercise a. and consider f an F1 ⊗F2 measurable

function which is integrable. Show that the sets

E′ := {x ∈ Ω1 : gx is not F2 measurable },

F ′ := {x /∈ E′ :

∫

|g(x, y)|µ2(dy) < ∞}.

belong to F1 and that and that µ1(E) = µ1(F ) = 0. Show that the function
h(x) defined by

h(x) :=

{

∫

g(x, y)µ2(dy) on (E′ ∪ F ′)c,

0 on E ∪ F.

is measurable and that
∫

hdµ1 =
∫

fdµ1 ⊗ µ2.
c. Exercise 1 (try to justify the existence of the set E) and 6 [Taylor, Section

6.3]
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Lecture 20: Hahn-Jordan Theorem

Summary. This lecture is based on [Taylor, Section 3.2]

Content and Comments.

0:00 Presentation of the definition σ-additive set functions with value in R. The
Hahn Jordan Theorem (appearing later in the video) states that any σ-
additive R-valued set functions (we call it signed measure) can be written
as the difference of two (positive) measure with disjoint support. (The
definition of σ-additive for µ : F → R̄ is never explicitly stated but is
the following: (i) µ(∅) = ∅, (ii) If (Ai)i≥1 is a sequence of paiwise disjoint
sets in F then either

∑

i≥1 (µ(Ai))+ < ∞ or
∑

i≥1 (µ(Ai))− < ∞ and

µ(
⋃

i≥1 Ai) =
∑

i≥1 (µ(Ai))+−
∑

i≥1 (µ(Ai))− (the assumption implies that
the case ∞−∞ never presents itself so that the sum is always well defined.

6:30 First of serveral techical lemmas concerning signed measure. This one is
about the measure of E and F when E ⊂ F .

10:33 Second technical Lemma: there cannot be two sets with +∞ and −∞
measure.

16:21 Third technical Lemma: continuity from above/below for signed measure.
(Note that the idea is essentially the same as in the positive case).

30:06 Hahn-Jordan Theorem [Taylor, Theorem 3.3]. Remarks about nonunique-
ness for P and N .

35:50 Presentation of the main steps of the proof.
41:14 Proof of step 1, the minimal measure α is larger than −∞. (Note here that

α ≤ 0 since additivity implies that µ(∅) = 0). The goal is to contain a
sequence of sets (Ak), (Bk) and much details are given about the first step.

52:33 Construction of Ak, Bk for k ≥ 2.
1:01:20 Key remark about bifurcations: Bifurcation at k and j ≥ k + 2 implies

Bk+1 ∩Bj = ∅.
1:05:50 Conclusion of step 1, splitting in two cases (finitely or infinitely many bi-

furcations).
1:10:36 Step 2: there exists a set with minimal measure.
1:16:20 Conclusion.

Recommended exercises.

a. Prove that the decomposition µ = µ+ − µ− where µ+ ⊥ µ− (this means
that there exists A ∈ F such that µ+(A) = µ−(A

c) cf. the next lecture) is
unique.

b. Using the notation of the previous exercise, one sets |µ| = µ+ + µ−. Show
that for A ⊂ F

|µ|(A) = 0 ⇔ (∀B ∈ F , B ⊂ A, µ(B) = 0) .
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Lecture 21: Radon-Nikodym Theorem

Summary. This lecture is based on [Taylor, Section 6.4]

Content and Comments.

0:00 Recalling the concept of absolute continuity and introducing that of sin-
gularity, for two measures ν and µ (see [Taylor, Equation (6.4.2)] for the
written definition in the case ν is a signed measure). (Note that for positive
measure ⊥ is a symetric relation while ≪ is not).

8:40 The Radon Nykodym Theorem [Taylor, Theorem 6.7]: Given a positive
measure µ, a signed measure ν can be decomposed into the sum of a part
which is absolutely continuous with respect to µ and a part which is singular
with respect to µ. The continuous part is of the form µf (recall the notation
in Lecture 16 [20:30], here note that f is not necessarily integrable, but we
have

∫

Ω
f−dµ < ∞, so that the integral always makes sense).

11:20 Sketch of the proof.
16:42 Step 1: Assuming that µ and ν are finite, construction of a function g that

maximizes µg(Ω) integral among all those such that µg(A) ≤ ν(A) for all
A ∈ F .

27:58 Step 2: Showing that ν2 = µ−µg is singular with respect to µ (completing
the proof when µ and ν are finite).

41:30 Extension to the σ-finite case.
50:33 Extenstion to the case where ν is a signed measured.For this case it is

quite important to notice that since θ2(Ω) < ∞,
∫

f1
2dµ < ∞. This makes

∫

A
f1
1dµ −

∫

A
f1
2dµ well defined in every case (and this can be taken as a

definition for
∫

A
f1dµ)

57:40 Uniqueness of the decomposition.
1:05:13 Last comments. Uniqueness of the function f (called the density or Radon-

Nikodym derivative) modulo modification on sets of µ-measure 0.
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Recommended exercises.

a. Let f and g be integrable functions. Show that µf = µg (these are measures
defined µf (A) :=

∫

A
fdµ) are equal if and only if f = g, µ-a.e.

b. Let µ and ν be two signed measure on R, we let |µ| and |ν| denote their
total variation (cf. Exercise b. of Lecture 20). Show that the two follow-
ing properties are equivalent (in the both statements A,B,C and D are
elements of F)

∃A, |µ|(A) = |ν|(Ac) = 0.

∃B, ∀C ⊂ B, ∀D ⊂ Bc, µ(C) = ν(D) = 0.

Either property can be taken as the definition of µ ⊥ ν in the case of two
signed measures.

c. Using the notation of the previous exercise show that the two following
properties are equivalent

∀A, |µ|(A) = 0 ⇒ |ν|(A) = 0.

∀B, (∀C ⊂ B, µ(C) = 0) ⇒ (∀D ⊂ B, ν(D) = 0) .

Either property can be taken as the definition of ν ≪ µ in the case of two
signed measures.

d. Exercises 1,5,6,7,8 and 9 in [Taylor, Section 6.4].

Suggested exercises.

a. Exercise 2,3,4,10 and 11 [Taylor, Section 6.4].



32

Lecture 22: Almost sure and almost uniform

Summary. This lecture is based on [Taylor, Section 7.1]

Content and Comments.

0:00 The objective of the lecture is the introduction of different type of conver-
gences for sequences of measurable function. 1- Almost-everywhere conver-
gence 2-Almost-everywhere uniform convergence 3-Almost uniform conver-
gence.

0:58 σ-complete here is a typo and should be µ-complete
1:12 Introduction of equivalence classes of functions which coincide a.e. This is

of fundamental importance! The corresponding quotient space is the right
framework to have uniqueness of limit.

4:43 Recalling pointwise convergence.
6:00 Almost sure convergence: definition and proof that this is a class property.
14:18 Uniqueness of the limit as an equivalence class.
17:18 Example of a function that converges a.e. but not pointwise. Note that in

fact the example given has a pointwise limit: the function that is equal to
0 on [0, 1) and equal to 1 at 1. This is not always the case (see exercise
below).

20:00 Uniform convergence and a.e. uniform convergence.
24:31 Introduction of the essential supremum and basic properties. In the video

the definition is given only for |f | but it is be the same for f .
42:17 Proof that the essential supremum of |f − g| induces a distance (it is fact

a norm) on the equivalence class of functions (which is a vector space, see
below) and that uniform convergence a.e. corresponds to the convergence
for the topology induced by this distance.

1:06:37 Observation: The set L∞ of class of functions such that ess sup|f | < ∞ is
a vector space, for which ess sup|f | is a norm (proved but not said).

1:09:00 Convergence can be a.e. without being uniform.
1:11:20 Definition of almost uniform convergence.
1:14:58 Discussing easy implications between notions of convergence.
1:20:20 Presentation of Egorov’s Theorem [Taylor, Theorem 7.1]: Almost uniform

convergence is equivalent to almost sure convergence for finite measure
(statement and proof).

Recommended exercises.

a. Let (Ω, µ,F) be a measured space with F being µ-complete. Let L0 be the
vector space of real valued measurable functions (the values ±∞ are not
authorized).

H := {f ∈ L0 : µ({x : |f(x)| > 0}) = 0}.

Show that H ⊂ L0, and that H is a vector space. (The set of class of

functions M which are finite a.e. corresponds to the quotient vector space
L0(µ) := L0/H).

b. Exercises 1, 2 (assuming that µ is σ-finite) 3, 4, 7 in [Taylor, Section 7.1].

Suggested exercises.

a. Exercises 5, 6 and 8 in [Taylor, Section 7.1].
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Lecture 23: Convergence in measure

Summary. This lecture is based on [Taylor, Section 7.2]

Content and Comments.

0:00 The aim of the lecture is to introduce another meaningful notion of conver-
gence for (class of)-measurable functions: convergence in measure.

1:58 Example of a sequence converging in measure but not almost-surely.
13:05 Observations: We have uniqueness of the limit (in the space of equivalence

class) and convergence is a class property.
21:00 Convergence in measure implies that a.e. convergence holds along a subse-

quence. (Illustration with an example and proof).
36:35 In the case of finite µ, almost-sure convergenge implies convergence in mea-

sure. This is not true if µ(Ω) = ∞.

Further Readings.

A. In [Taylor, Theorem 7.2] it is shown that the space L0(µ) is complete for
the topology of convergence in measure.

Recommended exercises.

a. Let (Ω, µ,F) be a measured space with F being µ-complete and such that
µ(Ω) < ∞. We define d0 on L0(µ) (cf. previous Lecture) by

d0(f, g) =

∫

min(|f − g|, 1)dµ.

Show that d0 is a metric and that fn → f in measure if and only if

lim
n→∞

d0(f, fn) = 0.

b. Let (Ω, µ,F) be a measured space with F being µ-complete. We define d1
on L0(µ) (cf. previous Lecture) by

d1(f, g) = inf
δ>0

{µ(|f − g| > δ) + δ} .

That is show that d1 is a metric and that fn → f in measure if and only if

lim
n→∞

d1(f, fn) = 0.

c. Exercises 3, 4, 7 in [Taylor, Section 7.2]

Suggested exercises.

a. We say that a sequence of measurable functions (fn) converges locally in

measure to f if for every F ⊂ Ω such that µ(F ) < ∞ and every ε > 0 we
have

lim
n→∞

µ({x ∈ F : |fn(x)− f(x)| > ε}) = 0.

Show that if the measure µ is σ-finite then the two following statements
are equivalent
(i) (fn) converges locally in measure to f .
(ii) From every subsequence of (fn) we can extract a subsubsequence that

converges almost surely to f .
b. Exercises 1, 2, 5, 6,7 in [Taylor, Section 7.2].
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Lecture 24: Hölder and Minkowski inequalities

Summary. This lecture is based on [Taylor, Section 7.4]

Content and Comments.

0:00 The aim of the lecture is to prove very useful inequalites between intergral.
The first which is presented is Hölder inequality.

4:52 Proof of Hölder inequality, and discussion about convex conjugation. The
proof of Young’s inequality: xy ≤ 1

p
xp + 1

q
yq could be achieved directly

by studying the variation of the function x 7→ 1
p
xp + 1

q
yq − xy, but the

connection with Legendre Transform is an important cultural point and
gives a generalization of the inequality.

A more direct path to Hölder inequality can be to first to prove it in the
special case ‖f‖p = ‖g‖q = 1 (using Young inequality) and then to apply
it to f̄ = f/‖f‖p and ‖g‖q = g/‖g‖q to conclude (treating the case f = 0
and g = 0 separately).

29:05 Proof of the special case p = 1.
33:15 Minkowski Inequality. This is the triangle inequality in the normed vector

space Lp(µ).
44:20 Observation that ‖f‖p is a pre-norm on the vector space Lp(µ) of functions

such that |f |p is integrable. (In the definition it is important to define
f : Ω → R, because the values ±∞ are problematic to define the sum).

Further Readings.

A. For the definition of Lp spaces as quotient of vector spaces, we refer to
[Bogachev, Chapter 4] (Note that in [Bogachev], like in these comments
the quotient space is denoted by Lp and Lp is used for the corresponding
space of measurable function. This convention is the most used)

Recommended exercises.

a. Proof the Minkowski inequality for p = 1.
b. Consider Lp(µ) to be the quotient vector space Lp(µ)/H. Show that ‖ · ‖p

define a norm on Lp(µ).
c. Exercises 1,3 and 5 in [Taylor, Section 7.4]

Suggested exercises.

a. Exercises 2, 4 and 6 in [Taylor, Section 7.4].
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Lecture 25: Lp Spaces

Summary.

This lecture is based on [Taylor, Section 7.3]

Content and Comments.

0:00 Introduction of Lp as a vector space and definition of Lp convergence.
6:00 Examples of functions which go to zero almost surely, or even uniformly,

but do not converge in Lp.
10:57 Introduction of Cauchy sequence, and statement of the main theorem of

the lecture [Taylor, Theorem 7.3]: Lp is a complete space (every Cauchy
sequence converge). Since Lp it is a normed vector space, it is a Banach
space.

12:38 First step of the proof of the Theorem, extraction of a subsequence of fn
that converges almost surely to some limit f .

34:55 Second step: The limit f is in Lp.
41:58 Proof that fn → f in Lp.

Further Readings.

A. Section [Bogachev, Sections 4.2 to 4.3] present some interesting properties
of Lp spaces that are not mentioned in this course. The density of the set
of compactly supported function and separability of Lp for the Lebesgue
measure on Rd and p < ∞, and the Hilbert structure of L2.

Recommended exercises.

a. Prove that convergence in Lp implies convergence in measure.
b. Prove that fn → f in Lp implies limn→∞ ‖fn‖p = ‖f‖p
c. For f, g ∈ L2, let us define

〈f, g〉 =

∫

fg dµ.

Show that that 〈·, ·〉 is defines a scalar product on L2(µ) and that the
associated norm in ‖ · ‖2. Note that in that case, Hölder inequality simply
corresponds to the Cauchy-Schwartz inequality for 〈·, ·〉.

d. Exercise 9 [Taylor, Section 7.3]. Also: Prove that if 1 ≤ p < q < r ≤ ∞
then Lp ∩ Lr ⊂ Lq.

e. Consider f ∈ Lp(µ), p < ∞. Consider the set

Ωf := {x ∈ Ω : |f(x)| > 0}.

Show that the restruction of µ to Ωf is σ-finite, or in other words, that there
exists a sequence of sets (An)n≥0 such that

⋃

n≥0 An = Ωf and µ(An) < ∞.
Find a counter-example to the above property when p = ∞.
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Lecture 26: From convergence in measure to convergence in Lp

Summary. This lecture is based on [Taylor, Section 7.3]

Content and Comments.

0:00 The aim of the lecture is to provide a necessary additional condition so
that convergence in measure implies convergence in Lp. This start with the
definition of equicontinuity at ∅.

3:30 Second definition: Uniform absolute continuity.
5:42 Recalling previous examples to show that neither is equicontinuous at ∅.
14:00 Main result of the lecture [Taylor, Theorem 7.5]: convergence in measure,

plus equicontinuity at the empty set of the family of measures |fn|
pdµ

implies convergence in Lp (The proof presented in the video assumes σ-
finiteness of µ, but this is not actually necessary: one can consider the
restriction of µ to the union of the supports of fn, Ω

′ := {x : ∃n, |fn(x)| >
0} Exercise e. of the previous lesson shows that the restriction of µ to Ω′ is
σ-finite.

16:00 Main technical lemma: Equicontinuity at ∅ plus absolute continuity w.r.t.
µ, implies Uniform absolute continuity

25:00 First step of the proof: use of σ-finiteness to reduce oneself to a finite subset
of Ω.

27:54 Step 2: Proof that the sequence is Cauchy in Lp.
42:00 Step 3: Conclusion using completeness in Lp (the claim that Lp convergence

implies convergence in measure does not appear in previous videos from
what I could check but is given in [Taylor, Theorem 7.4]).

43:00 Final observations : Two criteria to verify equicontinuity at the emptyset.

Further comments. An alternative path to prove the result it to start with

proving that equicontinuity at ∅ and convergence in measure to f implies that f
belongs to Lp (using Fatou, it is sufficient to prove that ‖fn‖p is bounded, this
is a suggested and quite challenging exercise). Then one can prove directly that
∫

|fn − f |pdµ converges to zero instead of proving Cauchyness.

Recommended exercises.

a. Find a direct (and short) proof of each of the corollaries presented at the
end of the section.

b. Prove that if (fn)n≥0 converges in Lp then (|fn|p)n≥0 is uniformly inte-
grable.

c. Prove that if fn → f in measure and ‖fn‖p → ‖f‖p, then fn → f in Lp.
Tip: Use Fatou’s Lemma for the positive function

gn = 2(|fn|
p + |f |p)− |f − fn|

p.

While the above result might look like much more powerful tool than
[Taylor, Theorem 7.5] to check convergence in Lp. This is not the case:
In practice, it can happen that fn is shown to converge in measure by some
abstract argument and that nothing is known about the limit, so that ‖f‖p
cannot be computed.

d. Show that if the family of measures {νi, i ∈ I} is uniformly absolute
continuous w.r.t. µ, then for all i, νi ≪ µ.
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e. Show that if ν(Ω) < ∞ and ν ≪ µ, then {ν} is is uniformly absolute
continuous w.r.t. µ. Find a counter example when ν(Ω) = ∞.

e. Show that in the first example mentioned at [5.42] |fn|pdµ is not uniformly
absolutely continuous w.r.t. Lebesgue, while the second one is.

f. Exercises 1, 2, 3, 4, 5 in [Taylor, Section 7.3]

Suggested exercises.

a. Using Exercise (d) of the previous lesson, show that [Taylor, Theorem 7.5]
is valid even when µ is not σ-finite. (It seems that neither Taylor nor the
video mentions this assumption in the theorem but both use it in the proof)

b. Exercises 6, 7, 8 and 10 in [Taylor, Section 7.3]
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Lecture 27: Dual of Lp

Summary. This lecture is based on [Taylor, Section 8.5]

Content and Comments.

0:00 The aim of this lecture is to prove that when 1 ≤ p < ∞ and µ is σ-finite
the dual space associated with Lp is isometric to Lq where q ∈ (1,∞] is
the conjugate of p when. (The result also true for p ∈ (1,∞) without the
σ-finiteness assumption). It starts by introducing the notion of bounded
linear operator (see exercise below).

11:37 Proof that for p ∈ (1,∞) any function in Lq corresponds to a linear form
on Lp with the same norm. (This is also true when p = 1 if µ is semi-finite,
see exercise below)

32:54 Statement of the main result: the dual space of Lp is isometric to Lq for
p ∈ [1,∞) when µ is σ-finite.

36:20 Starting with the case µ(Ω) < ∞. Step 1: Using indicator functions,
show that an element T of the dual space corresponds to measure which is
absolutely continuous w.r.t. µ, and hence (Step 2) to a function g.

58:35 Step 3 : Proof that T (f) =
∫

fgdµ for every f ∈ Lp.
1:16:13 Step 4: g ∈ Lq.
1:28:00 Step 5: Extension to the σ-finite case.

Further Readings.

A. [Bogachev, Section 4.4] contains a developed discussion concerning the cases
not covered by the main Theorem in this lecture: the case of p = ∞ (the
construction of linear forms on L∞ which are not in L1 requires the axiom of
choice via the use of Hahn-Banach Theorem), extension to the non σ-finite
case for p ∈ (1,∞).

B. The case of p = 1 and µ non σ-finite is extremely delicate. Necessary and
sufficient condition to have L1(µ)⋆ = L∞(µ) or L1(µ)⋆ ⊂ L∞(µ) are given
in [Fremlin, Theorem 243G].

Recommended exercises.

a. Let (V, ‖·‖) be a normed vector space let T : V → R be a linear application.
Show that T is continuous if and only if

‖T ‖ := sup
u∈V
‖u‖≤1

|T (u)| = sup
u∈V
‖u‖=1

|T (u)| < ∞.

Show that the set of continuous linear application forms a vector space,
and that ‖T ‖ defined above is a norm on that vector space. Continuous
linear application are commonly referred to linear forms. The set of linear
forms on V , equipped with the norm above, is called the topological dual of
V (often denoted as V ⋆).

b. Exercises 1 and 2 in [Taylor, Section 8.5].
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Suggested exercises.

a. We say that a measure µ on (Ω,F) is semifinite if for every A ∈ F such
that µ(A) = ∞ there exists B ∈ F , B ⊂ A which satisfies µ(B) ∈ (0,∞).
Show that if µ is semi-finite and f ∈ L∞(µ), then the linear form Tf on
L1(µ) defined by Tf(g) =

∫

fg dµ satisfies ‖Tf‖ = ‖f‖∞.
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Lecture 28: Vitali’s covering lemma

Summary. This lecture is based on [Taylor, Section 9.1]

Content and Comments.

0:00 The main objective of the lecture is to present a technical lemma [Taylor,
Theorem 9.1] which allows to extract from the covering of a set E by in-
tervals of arbitrarily small size, a family by disjoint intervals which almost
covers E (in the sense that only a set of zero measure is left uncovered.
This result will be then used for practical application in the next lecture.

6:10 Preliminary to the proof: reduction to the case where E is a bounded set,
considering the intersection with (k, k + 1) , k ∈ Z and showing that the
covering of E contains a covering of E ∩ (k, k+1) by intervals contained in
(k, k + 1) satisfying the same main property.

19:20 Construction of the covering by disjoint intervals (In)n≥0 by induction.
34:50 Proof that the sequence of disjoint interval previously constructed covers

almost all the set E. The main argument is that E \
⋃N

j=1 IN has to be

covered by
⋃N

j≥N+1 Kj where Kn is an interval which is 5 times the length
if In.

51:22 First remark: Relaxation of the assumption that the invervals in the cov-
ering must be closed.

55:55 Second remark: Considering E bounded, we can cover most of it (that is
leave a piece of exterior measure smaller than ε) with a finite number of
disjoint intervals.

Recommended exercises.

a. Exercises 8 and 9 in [Taylor, Section 9.1]
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Lecture 29: Differentiability of functions of bounded variations

Summary. This lecture is based on on [Taylor, Section 9.1]

Content and Comments.

0:00 The aim of the lecture is to show that every function with bounded variation
is differentiable almost everywhere. It starts with the case of monotone
increasing function. First the definition of differentiability is recalled using
four notions of upper/lower derivative on the left/right. And the main
statement of the lecture (which is [Taylor, Theorem 9.2]). (Here is would
be natural to include in the definition the fact that the limit is finite! see
exercise a.).

7:00 Step 1: decomposition of the set Ec into a countable union of sets Es,t.
12:21 Step 2: Construction of an approximate covering of Es,t by a finite number

of intervals (Ij)
M
j=1. on which the growth rate of f is smaller than s (using

Vitali’s Covering Theorem). (at [16:08] when defining the covering, hk

should simply be h, the same is true for rk at [31:20])
25:00 Step 3: Construction of an approximate covering of Es,t ∩ (Ij)

M
j=1 by inter-

vals (Jk)
M
k=1 on which the growth rate of f is larger than t.

41:15 Final step: Using the property of the two covering, one obtains a contra-
diction concerning the sum of the increments of F along the interval Jk,
unless λ(E) ≤ 2ε.

51:30 Remaining part of [Taylor, Theorem 9.2]: the increment of a non-decreasing
function over an interval is smaller than the integral of its derivative.

59:30 Introduction of the notation of total variation (and of bounded variation
function).

1:08:00 The increment of f(b) − f(a) is the difference between the positive and
negative total variation on this interval.

1:16:31 As a consequence of the previous item, bounded variation function on an
interval can be written as the difference of two non-increasing functions and
are thus differentiable almost-everywhere.

Further Readings. The lecture provides a condition for function to be differ-
entiable almost everywhere but does not provide examples of functions that are
almost nowhere differentiable. Of course, it is quite easy to find non-continuous
examples such that 1Q, but continuous examples also exists the first of which was
discovered by Weierstrass. We refer to [Falconer, Example 11.3] for a short proof
that the Weierstrass function is nowhere differentiable.

Recommended exercises.

a. Using Vitali’s Lemma show that if f is increasing the set

E :=

{

x : lim sup
h→0+

f(x+ h)− f(x)

h
= ∞

}

has measure zero. Note that alternatively, this fact can be deduced from

the inequality
∫ b

a
f ′(x)dx = f(b)− f(a).

b. Show that Monotone functions have bounded variation and that the set of
functions with bounded variations on [a, b] form a vector space (in particular
the difference of two monotone function has bounded variation).
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c. Exercise 2 in [Taylor, Section 9.2]
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Lecture 30: Absolutely continuous functions

Summary. This lecture is based on [Taylor, Section 9.2].

Content and Comments.

0:00 The main goal of this lecture is to provide a characterization of the bounded
total variation functions which coincide a.s. with the integral of their de-
rivative. The introduction of the lecture outline of property that function
of the type F (x) = C +

∫ x

a
f(u)du have.

9:10 Definition of an absolutely continuous function (which is the property pre-
viously outlined).

11:55 Statements of the two main results presented in the lecture (which together
form [Taylor, Theorem 9.3 and 9.4]): For F (x) defined above F ′ = f , and
reciprocally any function which is absolutely continuous can be written as
C +

∫ x

a
f(u)du for some F .

14:49 First step of the proof of Theorem 1: reduce to the case where f is non-
negative using linearity.

18:04 Second step: Proof that
∫ x

a
F ′dλ = F (x) − F (a) =

∫ x

a
fdλ.

40:29 Step 3: Proof that
∫

A
F ′dλ = F (x) − F (a) =

∫

A
fdλ for every Borel set A

using a monotone class argument.
48:25 First step of the proof of Theorem 2: Proof that any absolutely continuous

function has bounded variation.
1:02:54 Second step: Considering the function f(x)−G(x) = f(x)−f(a)−

∫ x

a
f ′dλ,

one reduces the proof to the case of function with zero derivative.
1:09:45 Proof that an absolutely continuous function with zero derivative is con-

stant.

Further Readings.

A. The notion of “set density” discussed at the end of [Taylor, Section 9.2]
and brings

Recommended exercises.

a. Let F a function which is almost everywhere differentiable and such that
F ′ is integrable on [a, b]. Show that if F (x)− F (a) =

∫ x

a
F ′(u)du for every

x ∈ [a, b], then F is absolutely continuous on [a, b]. This shows that being
absolutely countinuous is equivalent to satisfying the fundamental theorem
of calculus.

b. Exercises 1 and 6 [Taylor, Section 9.2].

Suggested exercises.

a. Exercises 3 and 4 [Taylor, Section 9.2].



44

Lecture 31: Decomposition of distribution functions

Summary. This lecture is based on [Taylor, Section 9.3]

Content and Comments.

0:00 The main objective of this lecture is to prove that any right-continuous
increasing function F can be decomposed into the sum of three parts (which
are unique up to an additive constant) a jump function F1, a continuous
function with zero derivative a.e. F2 and an absolutely continuous function
F3. This is [Taylor, Theorem 9.5]

1:50 Introduction of the notion distribution function Fµ for a Borel measure µ
on R and main properties of Fµ. (Here the correct assumption to take on µ
is not σ-finiteness but local finiteness! Indeed there is absolutely no reason
for µ((0, x]) to be finite if one only assumes σ-finiteness (see comments
below and exercise c.). The assumption in M is µ((−∞, x]) < ∞ for every
x ∈ R, or equivalently µ is locally finite AND µ((−∞, 0])) < ∞.

15:02 Description of the inverse transformation, which, to a right-continuous func-
tion, associates a measure.

20:06 Introduction of the notion of atom for a measure and proof that the set of
atoms for a locally finite measure µ is countable (Here the proof is given
for locally finite measures on R but deep down the argument does not
use anything beyond σ-finiteness and is valid for a σ finite measure on an
arbitrary space Ω.) .

31:45 Introduction of the notion of jump function and proof that they correspond
(with the previous transformation) to discrete or purely atomic measures.

44:33 Proof that any measure can be decomposed into a discrete part and a part
with no atoms.

51:35 Remark: Measures with no atoms corresponds to continuous (increasing)
functions.

57:45 Measure which are absolutely continuous w.r.t. Lebesgue corresponds to
functions which are absolutely continuous.

1:03:16 Definition of singular functions (continuous functions whose derivative is
equal to zero a.e.) and proof that they correspond to non-atomic measures
which are singular w.r.t. Lebesgue.

1:08:50 Here ν ≤ µF is a shorthand notation to say that ν(A) ≤ µF (A) for every
Borel set A.

1:21:43 Every increasing continuous function can be decomposed into a sum of an
absolutely continuous function and that of singular function.

1:24:15 Conclusion: Statement of the main Theorem (which follows from the com-
bination of the Lemmas proved in the lecture).

Further Comments.

Given Ω a topological space equipped with its Borel σ-algebra, a measure µ on
Ω is said to be locally finite if for every x ∈ Ω there exists an open neighborhood of
x, Nx such that µ(Nx) < ∞. Local finiteness implies in particular that the measure
of every compact set is finite. In the case where Ω = R a Borel measure µ on R is
finite if and only if the measure µ([a, b]) < ∞ for every a < b.
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Further Readings.

A. The notions surveyed in this lecture are very much related to that of
Lebesgue-Stieljes integral introduced in [Taylor, Section 4.5]

Recommended exercises.

a. Prove the claim that for a general topological space Ω, µ locally finite
implies that µ(K) < ∞ for any compact K.

b. Prove that a measure µ on R which is locally finite is σ-finite.
c. Let µ be the Borel measure defined by µ(A) :=

∫

A
1
|x|dx. Show that µ is

σ-finite but not locally finite. Prove that the same is true for ν defined by
ν(A) = #{A ∩Q}

d. Prove that for F ∈ F the functional defined by µF ((a, b]) = F (b) − F (a)
on the semi-algebra of half-open intervals is σ-additive (one can use the
method of Lecture 6 or that of Lecture 7 but in both cases some adaptation
is required).

e. Prove that the decomposition is unique if (using the notation introduced
in the video) one assumes F , F1, F2, F3 ∈ F .

f. Prove that main theorem remains valid if one does not assume that F (−∞) =
0, and that we have unicity of the decomposition if one assumes that
F1(0) = 0 and F2(0) = 0.

g. Exercises 1 and 2 [Taylor, Section 9.3] (An easier version of exercise 2 is
given in the next lecture)

Suggested exercises.

a. Exercise 3 [Taylor, Section 9.3].
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Lecture 32: Cantor ternary set and function

Summary. This lecture is based on [Taylor, Sections 2.7 and 4.4]

Content and Comments.

0:00 The aim of the lecture is to present the construction of: (1) a set which is
infinite uncountable (and furthermore: of the same cardinality as R with
zero measure (2) a function which is continuous and increases from 0 to
1 while having zero derivative almost everywhere. These are respectively
the Cantor ternary set and the Cantor function (or Cantor staircase). The
lecture start with the definition of the Cantor set as well as a proof that it
has zero measure.

24:40 Informal presentation of the Cantor staircase function.
29:10 Definition of the Cantor staircase function based on the development in

base 3 of x and proof that the expression does not depend on the choice
of the development (there are two choices for the development of numbers
that are multiples of 3−k).

40:00 Proof that the Cantor function is monotone increasing (in reality non-
decreasing).

49:36 Proof that the Cantor function is Hölder continuous with exponent (log 2)/(log 3).
1:22:40 Proof that the Cantor function is piecewise constant on each of the intervals

of the complement of the Cantor set (The claim that f is constant on EN

made at [1:26:08] is clearly a slip of the tongue).

Further Readings.

A. Both Cantor set and the Cantor function present a degree of self-similarity,
in the sense that a zooming on a small part of the set (or of the graph of
the function), an observer recover a structure similar to the whole set one
started with. Such object have called fractals. An introduction to the topic
which is accessible to master’s student is provided in [Falconer].
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Recommended exercises.

a. Let g1 be the function defined on [0, 1] as

g1(u) :=











3u/2 if u ∈ [0, 1/3],

1/2 if u ∈ (1/2, 2/3),

(3u− 1)/2 if u ∈ [2/3, 1].

(0.2)

Set for n ≥ 1

gn+1(u) :=











1
2gn(3u) if u ∈ [0, 1/3],

1/2 if u ∈ (1/2, 2/3),
1
2 (1 + gn(3u− 2)) if u ∈ [2/3, 1].

(0.3)

(1) Show by induction that gn is continuous.
(2) Show that ‖gn − gn+1‖∞ ≤ 1

2‖gn − gn−1‖∞.

(3) Deduce from the previous result that ‖gn − gn+1‖∞ ≤ 2−n+1.
(4) Prove that gn converges to a limit g which is continuous.
(5) Prove that the limit g(0) = 0, g(1) = 1, and that has zero derivative

on the complement of the Cantor set.
(6) Prove that g is the Cantor staircase function.

b. Let ḡ denote the Cantor staircase function extended to R

ḡ(u) :=











0 if u ≤ 0

g(u) if u ∈ [0, 1],

1 if u ≥ 1,

(0.4)

where g is the Cantor function. Let (qn)n≥1 be an enumeration of Q (a
sequence in which each rational number appears only once). We define

h(u) :=
∑

n≥1

2−nḡ(u− qn).

Show that h is continuous, strictly increasing and that h′(u) = 0 a.e.
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