Research

You can find below a list of publications and preprints classified by research topic. I had the great pleasure to colaborate with
Quentin Berger, Thierry Bodineau, Pietro Caputo, Bernard Derrida, Giambattista Giacomin, Jonathan Hermon, Wolfgang König, Cyril Labbé, Rémi Leblond, Fabio Martinelli , Gregorio Moreno , Peter Mörters, Yuval Peres, Rémi Rhodes, Nadia Sidorova, François Simenhaus, Julien Sohier, Augusto Texeira, Fabio Toninelli, Johan Tykesson and Vincent Vargas .

Pinning problems for surface models

[5] H. Lacoin, Wetting and layering for Solid-on-Solid II: Layering transitions, Gibbs states, and regularity of the free energy (preprint) arXiv:1712.03736 [math-ph].

[4] H. Lacoin, Wetting and layering for Solid-on-Solid I: Identification of the wetting point and critical behavior (preprint) arXiv:1703.06162 [math-ph].

[3] G. Giacomin. H. Lacoin, Disorder and wetting transition: the pinned harmonic crystal in dimension three or larger to appear in Annals of Applied Probability arXiv:1607.03859 [math-ph].

[2] H. Lacoin, Pinning and disorder relevance for the lattice Gaussian Free Field II: the two dimensional case, (preprint) arXiv:1512.05240 [math-ph].

[1] G. Giacomin. H. Lacoin, Pinning and disorder relevance for the lattice Gaussian free field, to appear in Journal of the European Mathematical Society arXiv:1501.07909 [math-ph].

Disordered Pinning in one dimension

[15] Q. Berger, G. Giacomin and H. Lacoin Disorder and critical phenomena: the α=0 copolymer model, (preprint) arXiv:1712.02261 [math.PR].

[14] H. Lacoin, Marginal relevance for the γ-stable pinning model, (preprint) 1612.02389 [math.PR].

[13] H. Lacoin, J. Sohier Disorder relevance without Harris Criterion: the case of pinning model with γ-stable environment, Electronic Journal of Probabability 122 (2017), paper no. 50. 1610.06786 [math.PR].

[12] Q. Berger, H. Lacoin, Pinning on a defect line: characterization of marginal disorder relevance and sharp asymptotics for the critical point shift, To appear in Journal of the Institute of Mathematics of Jussieu arXiv:1503.07315 [math-ph].

[11] H. Lacoin, The rounding of the phase transition for disordered pinning with stretched exponential tails, Annals of Applied Probability 27 (2017) 917-943. arXiv:1405.6875 [math-ph]

[10] Q. Berger, H. Lacoin, Exact critical behavior for random pinning model with correlated environment, Stochastic Processes and Application, 122 (2012) 1397-1436. arXiv:1104.4969 [math-PR]

[9] Q. Berger, H. Lacoin, The effect of disorder on the free-energy for the Random Walk Pinning Model: smoothing of the phase transition and low temperature asymptotics, Journal of Statistical Physics 42 (2011) 322-341. arXiv:1007.5162v1 [math-ph]

[8]H. Lacoin, The martingale approach to disorder irrelevance for pinning models, Electronic Communications in Probability 15 (2010) 418-427. arXiv:1002.4752 [math.PR]

[7] G. Giacomin, H. Lacoin, F.L. Toninelli Disorder relevance at marginality and critical point shift, Annales de l'Institut Henri Poincaré 47 (2011) 148-175. arXiv:0906.1942 [math-ph]

[6] G. Giacomin, H. Lacoin, F.L. Toninelli Marginal relevance of disorder for pinning models, Communication on Pure and Applied Mathematics 63 (2010) 233-265. arXiv:0811.4723 [math.ph]

[5] H. Lacoin Hierarchical pinning model with site disorder: Disorder is marginally relevant, Probability Theory Related Fields 148 (2010) 159-175 . arXiv:0807.4864 [math.PR]

[4] H. Lacoin, F.L. Toninelli, A smoothing inequality for hierarchical pinning models Spin Glasses: Statics and Dynamics, A. Boutet de Monvel and A. Bovier (eds.), Progress in Probability 62 (2009) 271-178 . preprint

[3] T. Bodineau, G. Giacomin, H. Lacoin, F.L. Toninelli, Copolymers at selective interfaces: new bounds on the phase diagram, J. Statist. Phys. 132 (2008) 603-626 . arXiv:0803.1766 [math.PR]

[2] B. Derrida, G. Giacomin, H. Lacoin, F.L. Toninelli, Fractional moment bounds and disorder relevance for pinning models, Communication in Mathematical Physics 287 (2009) 867-887. arXiv:0712.2515 [math.PR]

[1] G. Giacomin, H. Lacoin, F.L. Toninelli, Hierarchical pinning models, quadratic maps and quenched disorder, Probability Theory Related Fields 147 (2010) 185-216. arXiv:0711.4649 [math.PR]

Directed polymers and related models

[9] Q. Berger, H. Lacoin, The high-temperature behavior for the directed polymer in dimension 1+2 To appear in Annales de l'Institut Henri Poincaré. 1506.09055 [math.ph].

[8] H. Lacoin, Existence of a non-averaging regime for the self-avoiding walk on a high-dimensional infinite percolation cluster Journal of Statistical Physics, 154 (2014) 1461-1482 1212.4641 [math.PR].

[7] H. Lacoin, Non-coincidence of Quenched and Annealed Connective Constants on the supercritical planar percolation cluster, To appear in Probability Theory and Related Fields 159 (2014) 777-808. arXiv:1203.6051 [math.PR].

[6] H. Lacoin, Existence of an intermediate phase for oriented percolation, Electronic Journal of Probability 17 (2012) 41, 1-17 arXiv:1201.4552 [math.PR].

[5] H. Lacoin, Volume exponent for Brownian Motion in a Poissonian Potential with long range correlation II: The Upper Bound, Annales de l'Institut Henri Poincaré. 48 (2012) 1029-1048. arXiv:1107.1106 [math-PR]

[4] H. Lacoin, Volume exponent for Brownian Motion in a Poissonian Potential with long range correlation I: The Lower bound, Annales de l'Institut Henri Poincaré 48 (2012) 1010-1028. arXiv:1104.1944 [math-PR]

[3] H. Lacoin, Influence of spatial correlation for directed polymers, Annals of probability 39 (2011) 139-175. arXiv:0912.3732 [math.ph]

[2] H. Lacoin, G. Moreno Directed Polymers on Hierarchical Lattices with site disorder, Stochastic Processes and Application 120 (2010) 467-493. arXiv:0906.0992 [math.PR]

[1] H. Lacoin, New bounds for the free energy of directed polymer in dimension 1+1 and 1+2, Communications in Mathematical Physics 294 (2010) 471-503. arXiv:0901.0699 [math.ph]

Markov chain mixing time

[7] C.Labbé, H. Lacoin, Cutoff phenomenon for the asymmetric simple exclusion process and the biased card shuffling, (preprint) arXiv:1610.07383 [math.PR].

[6] J. Hermon, H. Lacoin, Y. Peres, Total Variation and Separation Cutoffs are not equivalent and neither one implies the other, Electronic Journal of Probability 21 (2016) paper no 44. arXiv:1508.03913 [math.PR]

[5] H. Lacoin,, The Cutoff profile for the Simple-Exclusion process on the circle, Annals of Probability 21 (2016) 3399-3430. arXiv:1502.00952 [math.PR]

[4] H. Lacoin,, A product chain without cutoff, Electronic Communication in Probability 20 (2015) paper no 19. arXiv:1407.1754 [math.PR]

[3] H. Lacoin,, The Simple Exclusion Process on the Circle has a diffusive Cutoff Window, Annales de l'Institut Henri Poincaré 53 (2017) 1402-1437. arXiv:1401.7296 [math.PR]

[2] H. Lacoin, Mixing time and Cutoff for the Adjacent Transposition shuffle and the simple exclusion, 44 (2016) 1426-1487. Annals of Probability arXiv:1309.3873 [math.PR]


[1] H. Lacoin, R. Leblond, The cutoff phenomenon for the simple exclusion process on the complete graph, ALEA, Latin American Journal of Probability and Statistics, 8 285-301 (2011). arXiv:1010.4866 [math-PR]

Multiplicative chaos

[2] H. Lacoin, R. Rhodes, V. Vargas , Large deviations for random surfaces: the hyperbolic nature of Liouville Field Theory, (preprint) arXiv:1401.6001 [math.PR]

[1] H. Lacoin, R. Rhodes, V. Vargas , Complex Gaussian Multiplicative Chaos, Communications in Mathematical Physics 337 (2015) 569–632 arXiv:1307.6117 [math.PR]

Out of equilibrium dynamics

[7] H. Lacoin, A. Teixeira, A mathematical perspective on metastable wetting, Electronic Journal of Probability 20 (2015) paper no 17. arXiv:1312.7732 [math.PR]

[6] H. Lacoin, F. Simenhaus, F.L. Toninelli, The heat equation shrinks Ising droplets to points, Communication on Pure and Applied Mathematics 68 (2015) 1640–1681. 1306.4507 [math-ph]

[5] H. Lacoin, The scaling limit for zero temperature planar Ising droplets: with and without magnetic fields, Topics in percolative and disordered systems, Springer Proceedings in Mathematics & Statistics 69 (2014) 85-120. 1210.2597 [math-PR]

[4] H. Lacoin, The scaling limit of polymer pinning dynamics and a one dimensional Stefan freezing problem, Communication in Mathematical Physics 331 (2014) 21-66. arXiv:1204.1253 [math-ph]

[3] H. Lacoin, F. Simenhaus, F.L. Toninelli, Zero-temperature stochastic Ising model in two Dimension and anisotropic curve-shortening flow, Journal of The European Mathematical Society 16 (2014) 2557-2615. arXiv:1112.3160 [math-ph]

[2] H. Lacoin, Approximate Lifshitz law for zero-temperature Ising model in any dimension, Communication in Mathematical Physics 318 (2013) 291-305. arXiv:1102.3466 [math-ph]

[1] P. Caputo, H. Lacoin, F. Martinelli, F. Simenhaus ,F.L. Toninelli, Polymer dynamics in the depinned phase: metastability with logarithmic barriers, Probability Theory and Related Fields 153 (2012) 587-641. arXiv:1007.4470 [math.PR]

Parabolic Anderson Model

[2] H. Lacoin, P. Mörters, A scaling limit theorem for the parabolic Anderson model with exponential potential, Probability in Complex Physical Systems, Springer Proceedings in Mathematics 11 (2011) 247-272 arXiv:1009.4862v1 [math-PR]

[1] W. Koenig, H. Lacoin, P. Moerters, N. Sidorova A Two city theorem for the parabolic Anderson model, Annals of Probability 37 (2009) 347-392. PDF

Random Interlacements

[1] H. Lacoin, J. Tykesson , On the easiest way to link k points in the random interlacement process, ALEA, Latin American Journal of Probability and Statistics 10 (2013) 505-524. arXiv:1206.4216 [math.PR]