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Abstract

Since Poincaré’s fundamental work on the qualitative study of differential equations in

1881, the viewpoint of pursuing the description of the long range behavior of trajectories

for “most” systems has been somewhat present in dynamics. About eight decades later,

Smale was aiming exactly at that purpose when he introduced in the early sixties the

concept of hyperbolic systems, which turns out to correspond to a large class of robust

systems that gave rise to a basic theory of modern dynamics. Yet, hyperbolic systems are

not typical since not every system can be approximated by a hyperbolic one, as can be

seen by the famous example of the butterfly attractor provided by Lorenz, which is not

hyperbolic and still robust or totally persistent under small perturbations of the initial

flow. A string of other counter-examples were constructed in the late sixties and early

seventies, and is to be noticed that all of them are related to cycles in dynamics, introduced

by Poincaré, which will be focused here.

In the present paper, we wish to provide some perspective about this major question,

proposing in qualitative terms what could be the main characteristics of a typical system.

Indeed, we shall discuss partial successes and a possible strategy for proving a global

conjecture on the finitude of large basin attractors and their stochastic stability for non-

conservative dynamics; i.e. Cr flows, diffeomorphisms, and transformations of compact,

boundaryless manifolds or the interval, r ≥ 1. We shall also impose the union of the

attracting basins to have total probability in the ambient space (phase space). Thus,

the aim of our conjecture is a description in a rather simple conceptual way of the long

range behavior of a typical (positive) trajectory of a typical dynamical system: each

trajectory has only finitely many choices (of attractors) where to accumulate upon in
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the future. We discuss some recent related results, including homoclinic bifurcations,

dynamical robustness and persistence, as well as systems with a dominated or partially

hyperbolic decomposition.

My perspective is that we should expect, no so long in the future, substantial progress

about the main and some of the other conjectures in this paper in the C1 topology context

and for one-dimensional dynamics, as conveyed in the introduction. A key difficulty in

higher dimensions and the Cr topology, r > 1, arises from the question whether densely,

in the space of non-conservative dynamics, the systems display a dense subset of periodic

orbits in their limit or nonwandering set. The question has been positively settled only in

the C1 topology, a result due to Pugh in the sixties, and it remains open otherwise except

for dimension one or flows on orientable surfaces. Still, in my view, the C1 case is already

iluminating of the darker realm of dynamics. Above all, the idea of having most systems

with only finitely many attractors toward which almost all orbits are attracted to, seems

to me a tempting one to be considered even in special and yet relevant settings.

Une Perspective Globale pour la Dynamique Non-Conservative

Résumé

Depuis le travail fondamental de Poincaré sur l’étude qualitative des équations différen-

tielles en 1881, l’idée de chercher la description du comportement à long terme des trajec-

toires pour “la plupart” des systèmes a été présente d’une certaine façon en dynamique.

Environ huit décennies plus tard, Smale s’attelait exactement à cette tâche quand il

introduisit, au début des années soixante, le concept de systèmes hyperboliques, qui cor-

respondent finalement à une grande classe de systèmes robustes qui donnèrent naissance

à une théorie de base de la dynamique moderne. Cependant, les systèmes hyperboliques

ne sont pas typiques puisque n’importe quel système ne peut pas être approché par un

système hyperbolique, comme le montre le célèbre attracteur “papillon” découvert par

Lorenz, qui n’est pas hyperbolique mais toujours robuste ou totalement persistant par des

petites perturbations du flot initial. Une série d’autres contre-exemples furent construits

à la fin des années soixante et au début des années soixante-dix, et l’on doit remarquer

que tous sont liés à des cycles en dynamique, introduits par Poincaré, et que nous allons

considérer ici.

Dans cet article, nous souhaitons donner une vision de cette question majeure, pro-

poser en des termes qualitatifs ce que pourraient être les principales caractéristiques

d’un système typique. En effet, nous discuterons des succès partiels et d’une possible

stratégie pour prouver une conjecture globale sur la finitude des attracteurs des grands

bassins et leur stabilité stochastique pour les dynamiques non-conservatives, à savoir, les
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flots, les difféomorphismes et les transformations des variétés compactes sans bords ou de

l’intervalle de classe Cr pour r 1. Nous imposerons aussi que l’union des bassins at-

tracteurs soit de probabilité un dans l’espace ambiant (l’espace des phases). Ainsi, le but

de notre conjecture est une description, d’une manière relativement simple conceptuelle-

ment, du comportement à long terme d’une trajectoire (positive) typique d’un système

dynamique typique: chaque trajectoire n’a qu’un nombre fini de choix (d’attracteurs) où

s’accumuler dans le futur.

Nous discuterons de quelques résultats connexes récents, notamment des bifurcations ho-

mocliniques, de la robustesse dynamique et de la persistance, de même que des systèmes

avec une décomposition dominée ou partiellement hyperbolique.

Mon point de vue est que nous devrions connâıtre à moyen terme des progrès substanciels

à propos de la conjecture principale et d’autres conjectures de cet article dans le contexte

de la topologie C1 et pour la dynamique de dimension un, comme cela a été expliqué dans

l’introduction. Une difficulté majeure en dimension supérieure et en topologie Cr pour

r > 1 provient de la question de savoir si, de façon dense dans l’espace des dynamiques

non-conservatives, les systèmes possèdent un sous-ensemble dense d’orbites périodiques

dans leur ensemble limite ou leur ensemble “non-récurrent”. La question a été résolue

seulement dans le cas C1: c’est un résultat de Pugh dans les années soixante ; elle reste

ouverte dans les autres cas, sauf en dimension un ou pour le flot sur des surfaces orienta-

bles. De mon point de vue, même le cas C1 est déjà éclairant dans le domaine inconnu

de la dynamique. Avant tout, l’idée d’avoir souvent des systèmes avec un nombre fini

d’attracteurs vers lesquels presque toutes les orbites sont également attirées me semble

être une idée attrayante à considérer même dans des contextes particuliers mais pourtant

pertinents.

1 Introduction

We shall present in this paper a global scenario for dissipative or, more precisely, non-conserva-

tive dynamics, i.e. Cr flows, diffeomorphisms and transformations, r ≥ 1, on compact bound-
aryless manifolds or intervals on the real line. The main focus concerns a conjecture on the

denseness, in the Cr topology, of systems having only finitely many attractors, the attractors

being sensitive to initial conditions (chaotic) or just periodic sinks and the union of their basins

of attraction having total Lebesgue probability. The attractors should also be stochastically

stable in their basins of attraction with respect to random perturbations in a finite dimen-

sional space of parameters. The conjecture is formally presented and discussed in Section 2.

In Sections 2 and 3, other related conjectures are presented as well as a number of recent par-
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tial results. From them we have inferred a possible strategy to prove that our global scenario

may indeed be valid. Basic definitions and some known or motivating results are presented in

Section 2.

Our conjecture corresponds to a probabilistic and subtle version of another main one proposed

by Smale in the sixties, but by the end of that decade many counter-examples to it had been

provided, including by Smale himself. This fact certainly led for quite a while to a vacuum

with respect to the possibility of formulating a global scenario for dynamics, through which

we could provide key properties of a typical dynamical system. Smale’s proposal stated that

systems with a hyperbolic structure, form an open and dense subset of all systems in the Cr

topology, r ≥ 1 (see Section 2).
Most remarkably, towards the end of the sixties Kolmogorov when visiting IMPA, Rio de

Janeiro, stated to colleagues there that the global study of dynamical systems could not go

very far without the use of new additional mathematical tools, like probabilistic ones. Of

course, the work of Sinai, Arnold and Anosov, among others, had already such a flavor at

that point. But, I interpreted Kolmogorov’s view, as expressed to me by Elon Lima sometime

afterwards, as referring to Smale’s proposal of a global scenario for dynamics, since counter-

examples to the denseness of hyperbolic systems were already known. For years to come, I kept

such a remarkable insight in my mind.

So, I take the occasion to pay Kolmogorov and Smale my tribute.

The collapse of Smale’s conjecture excluded the case of flows on disks and surfaces, as well as

for one-dimensional dynamics. Indeed, new excellent results have just been announced proving

it in the real one-dimensional case, as shall be discussed in §2.5.
On the other hand, for one-dimensional real or complex dynamics, the conjecture presented

here goes even further than indicated in the Abstract:

• For almost all parameter values, the corresponding dynamical system displays finitely

many attractors which are periodic sinks or carries an absolutely continuous invariant

probability measure.

Concerning the main conjecture, there is the following string of outstanding recent results in

the real one-dimensional case, that culminates with its full solution for unimodal maps, i.e.,

maps with only one critical point.

A first breakthrough is due to Lyubich [71], using results by Martens and Nowicki [74] and

previously Sullivan [115] and McMullen [76], among others. To state his result, we consider the
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quadratic family

fx(x) = ax(1− x), fa : [0, 1]→ [0, 1], 0 < a ≤ 4

that plays a key role in the theory of dynamics of interval maps. We then have

Lyubich [71]: For almost every a in (0, 4], fa either has a hyperbolic attractor (sink) attracting

almost all orbits or else it is chaotic, i.e., it has an absolute continuous invariant probability

measure, which is unique and ergodic (and so a SRB measure).

Following that, there was an intense activity with other authors joining in the efforts to suc-

cessfully achieve a definite picture of the typical dynamics for unimodal maps.

Avila-de Melo-Lyubich [17]: Same conclusion as above in the analytic case, assuming nega-

tive Schwarz derivative and making use of a key structure (laminations corresponding to the

topological conjugacy classes) in the space of infinitely renormalizable maps.

Avila-Moreira: The main conjecture is true for non-degenerate analytic families, in particular

the above quadratic one [20], and even just generic Ck families, k ≥ 2, of unimodal maps

[18], [21]. Moreover, surprisingly, there exists an explicit formula that gives the eigenvalues of

periodic orbits as a function of corresponding kneading sequences and of the kneading sequence

of the critical orbit, valid for almost all parameters in any generic analytic family of unimodal

maps [19]. They also announced that the main conjecture holds in the complement of a set of

positive codimension.

In my perspective these last results shall soon be fully extended to the multimodal case.

As mentioned above, we shall discuss in Section 3 other relevant conjectures and questions,

particularly concerning homoclinic bifurcations and robustness of transitive sets. Motivated by

such questions and some of the recent results presented here, we have set up a possible strategy

to prove the validity of the global scenario for non-conservative dynamics as proposed in 1995

in a meeting in honor of A. Douady [90].

I wish to thankW. de Melo, C.G. Moreira and specially to M. Viana for their precious comments

and information while I was preparing this text. I also want to mention that Viana’s book with

Bonatti and Diaz [28] has a broad account of present day dynamics, being more comprehensive

in the non-conservative case.
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2 Basic Definitions and Results: The Global Conjecture

on the Finitude of Attractors

In this section we shall discuss the basic ingredients leading to our main conjecture. We also

discuss Smale’s global conjecture in the sixties proposing the class of hyperbolic (or structurally

stable) systems as paradigm for typical dynamics.

2.1 Sinai-Ruelle-Bowen Probability Measure

This remarkable notion was introduced by Sinai [112] and proven by him to exist for Anosov

or globally hyperbolic diffeomorphisms, as defined in §2.4 below. Subsequently, it was shown
to exist by Ruelle [107] and Ruelle and Bowen [32] for hyperbolic diffeomorphisms and flows.

The definition is expressed in rather simple terms, but its content is quite meaningful in de-

scribing the dynamics of attractors when it’s possible to show that they carry SRB-measures,

which is usually a hard task.

Let A be an attractor for f , i.e. there is a set of points in the phase space with positive

Lebesgue probability whose future orbits tend to A, as the number of iterates tends to infinite.

The set of orbits attracted to A in the future is called its basin. The definition for flows is

entirely similar. Let μ be an f -invariant probability measure on A. Then μ is called a SRB

(Sinai-Ruelle-Bowen) measure for (f, A) if we have for any continuous map g, that

lim
n→∞

1

n
g(f i(x)) = gdμ

x ∈ E ⊂ B(A) basin of attraction for A, with m(E) > 0, where m denotes Lebesgue measure.

It’s common to have E with total probability in B(A) and so, in such a case, the above

convergence holds for a typical trajectory attracted to A in the future.

2.2 Stochastic Stability

For attractors carrying SRB-measures, we can investigate the question of their stability or per-

sistence when we slightly perturb the dynamics, more particularly from a probabilistic view-

point. Thus, we shall follow Kolmogorov’s perspective. Indeed, the more classical concept of

structural stability, introduced by Andronov and Pontryagin in the 30’s, remarkably turned out
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to be too close or even equivalent to hyperbolicity (see §2.5). However, there are open sets of
structurally unstable systems, and so we consider instead the concept of stochastic stability.

Let A be an attractor for f , μ be a SRB invariant probability for (f, A) and f be an element of a

finite dimensional parameter-space of Cr maps, r ≥ 1. Random Lebesgue choice of parameters
gives rise to maps fj, j = 0, 1, · · · that are ε-near f in parameter space, some ε > 0. Let

zj = fj ◦ · · · ◦ f1(z0), z0 ∈ B(A).
We call (f, A,μ) stochastically stable if given a neighborhood V of μ in the weak topology, the

weak limit of 1
n

n−1
j=0 δzj is in V for a.a. (z0, f1, f2, · · · ) if ε is small, where δzj stands for the

Dirac measure at zj.

Variants of this definition, including the case of flows, are briefly presented in [90] and references

provided; see also [28] for a comprehensive discussion.

2.3 Attractors

As defined in sub-section §2.l on SRB-measures above, attractors should be the positive limit
set for the orbits starting at a subset of the phase space (space of events) with positive Lebesgue

probability. Often, they attract the orbits of a full measure set in a neighborhood of them.

We add to the definition of attractor that it must be transitive, i.e., it must display a dense

orbit, so it cannot be decomposed into strictly smaller attractors. The simplest example for a

diffeomorphism f is that of an attracting periodic orbit: the eigenvalues of dfn(p) have norm

less than one, where p is the periodic orbit and n its period. Another well known case is that of

the whole torus T 2 for the map induced by the linear one L on R2 defined by L(1, 0) = (2, 1),
L(0, 1) = (1, 1).

Attractors are of paramount importance in dynamics since they mold the future behavior of

many orbits, i.e. the ones in their basin of attraction. What we want mainly to discuss in

the present paper is our conjecture that a finite number of attractors should in fact attract

Lebesgue almost all future orbits, at least for a dense subset of dynamical systems in the Cr

topology, r ≥ 1. We can go even further when considering finite dimensional parameter families
of dynamics, by requiring that such a property holds for dynamical systems corresponding to

Lebesgue almost all parameter values. The precise statement of the conjecture is at the end of

the present section.

We want to emphasize that we shall play, in probabilistic terms, with almost all orbits in

the phase space (space of events) of dynamical systems corresponding to almost all parameter
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values, as suggested by the following figure.

So, figuratively what we wish to propose is that “small accidents” both in terms of Lebesgue

measure in the parameter space of systems as well as in the phase space are not “very relevant”

in order to provide such a global scenario for dynamics.

We now give the definition of a hyperbolic system and, in particular, of a hyperbolic attractor,

and then briefly present important examples of both hyperbolic and non-hyperbolic attractors.

They all shall have at least some degree of persistence. Formally, they shall exist for a positive

probability set of parameter values. Or, sometimes even more sharply, for an open set in the

space of parameters, in which case the attractors are called robust. The hyperbolic attractors

are robust and, historically, the only ones known to be robust until the appearance of Lorenz-like

attractors, as discussed in §2.6.

2.4 Hyperbolicity

A diffeomorphism f :M →M is called hyperbolic if on its limit set L, that is the closure of the

sets where the orbits accumulate in the future or in the past, we have a decomposition of the

tangent bundle ofM at L, TLM = Es⊕Eu, such that df |Es, df−1|Eu are uniform contractions.
In the case of a flow Xt, t ∈ R, generated by a vector field X, we require that

TLM = Es ⊕E0 ⊕Eu.

Here, E0 is one-dimensional and tangent to X, outside its singularities (a finite number) and

||dXt |Es||, ||dX−t |Eu|| ≤ Ceλt, t ∈ R

C > 0 , 0 < λ < 1
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In the cases where such bundle decompositions occur in the whole ambient manifold, we refer

to such globally hyperbolic diffeomorphisms or flows as Anosov ones. Recall that associated

to the orbits of a hyperbolic set there are stable and unstable manifolds, corresponding to the

contracting and expanding sub-bundles by the action of the derivative of the dynamical system.

Often we refer to a hyperbolic system as satisfying Axiom A or more precisely when its non-

wandering set, which may be larger than the limit set, is hyperbolic. For our discussion here,

such a difference is not very relevant. Sometimes, by abus de langage, we refer to hyperbolic

systems as having hyperbolic limit sets and all stable and unstable manifolds transversal. They

form a robust set of dynamics, i.e., an open set in every Cr topology, r ≥ 1. Also, sometimes
we refer to an Axiom A system as being hyperbolic and without cycles among the different

closed, invariant and transitive subsets, in which the (hyperbolic) limit set can be decomposed.

They, again, form a robust set of dynamics [95], [114].

A very notable result in dynamics states in a simplified form (see additional condition below

concerning invariant manifolds) that

hyperbolicity
C1∼ structural stability

We recall that a diffeomorphism f is Cr structurally stable, or just dynamically stable or just

stable, if for any Cr small perturbation g of f , there is a homeomorphism h of the phase space

such that hf(x) = gh(x), for all points x in the phase space. For flows, we require the existence

of a homeomorphism h sending trajectories of the initial flow to the trajectories of any small

Cr perturbation.

A beautiful page of dynamics is the solution, in the C1 topology, of the so called Stability

Conjecture, stating that a system is Cr structurally stable if and only if it is hyperbolic and

all the stable and unstable manifolds associated to the orbits in the limit set are in general

position, i.e., transversal. In the equivalence indicated above, we didn’t mention explicitly the

transversality condition on stable and unstable manifolds because it corresponds to the easiest

part of the conjecture.

That stability holds for hyperbolic systems has been proved, in various settings, by Anosov [10],

Palis [89], Palis-Smale [91], Robbin [103], de Melo [39], Robinson [104] in the sixties and early

seventies. The converse was completed in the eighties by Mañé [73] for diffeomorphisms and

in the nineties by Hayashi [51] for flows, after earlier contributions by Liao [66, 67], Sannami

[109] and Mañé [72].

Predecessors to such works are the the pioneering ones by Andronov-Pontryagin for flows on

disks and later on Peixoto for flows on orientable surfaces, as cited in the next subsection.
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2.5 Conjecture (Smale)

Smale’s conjecture concerning a typical dynamical system formulated in the sixties, can simply

be stated as follows: Every system can be approximated by a hyperbolic one. If the conjecture

was true, the hyperbolic systems by denseness and robustness would be typical of dynamics.

A few years afterwards counter examples abounded, due to Smale [114], Abraham-Smale [1],

Simon [111] and others. More strikingly, Newhouse [86] provided counter-examples for C2

surface diffeomorphisms using arithmetic difference of “thick” Cantor sets (thickness is a kind

of fractal dimension). He did so by unfolding homoclinic tangencies, as in §3.2, to generate open
sets of nonhyperbolic diffeomorphisms containing dense subsets of maps exhibiting homoclinic

tangencies. Newhourse’s idea does not hold in the C1 category, by Ures [119]. There were also

the beautiful Lorenz butterfly attractor that came to our attention only in the early serventies

and the Hénon attractor, both of which we shall much comment in the sequel.

In fact, Smale’s conjecture was known for flows on disks [9] and orientable surfaces [99], and

consequently for diffeomorphisms of the circle. Smale was initially inspired by these results

that correspond to pioneering works by Andronov and Pontryagin in the thirties and Peixoto

in late fifties.

More recently, it has been independently proved by Swiatek-Graczyk [49] and Lyubich [71] that

the hyperbolic maps are dense among real quadratic ones. Subsequently, Kozlovski [59, 60] ex-

tended this result to C3 unimodal mappings. A remarkable recent theorem has been announced

in two parts by Kozlovski-Shen-Van Strien [61, 62], namely the density of the hyperbolic trans-

formations among Cr maps of the interval, for r ≥ 2, the case of r = 1 being also included

by a much previous theorem of Jakobson [54]. The result of Kozlovski-Shen-Van Strien not

only answers Smale’s conjecture in one real dimension, but opens the way for proving the main

conjecture in the present paper in full generality for maps of the interval or the circle.

It’s important to observe that for the one-dimensional complex case, i.e., rational maps of the

Riemman sphere, the question remains wide open.

2.6 Beyond Hyperbolic Attractors

For dynamics, the most interesting examples of attractors are the ones that are robust under

small perturbations of the dynamics, as in the hyperbolic and Lorenz-like cases, or which are

at least probability persistent (i.e., the attractor exists for a positive probability in parameter

space), as in the Hénon-like case.
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As mentioned before, the simplest attractors are the ones consisting of a simple fixed or periodic

hyperbolic orbit. In the hyperbolic case, the other extreme corresponds to attractors consisting

of the whole ambient manifold, like the one induced by hyperbolic toral automorphisms. This

example turns out to be a particular case of Anosov diffeomorphisms for which we assume

(uniform) hyperbolicity at all points of the manifold [10]. In this vein, it is still an open

question whether it is true for all Anosov diffeomorphisms that the whole manifold consists of

a (transitive) attractor. This is generally not true for Anosov flows already in dimension three

[46].

The remarkable Lorenz ”butterfly” attractor, whose original equations are in the figure above,

was the first known case of a fully persistent or robust (it exists for all sufficiently small varia-

tions of the initial parameter values) and (transitive) attractor which is not hyperbolic [70]. No-

tice that its singularity (0, 0, 0) is accumulated by hyperbolic periodic orbits. Actually, Lorenz

focused on the property that the long range behaviour of the orbits in the basin of attraction

is sensitive to initial conditions, which corresponds to what presently we denote as a chaotic

attractor. And he did so not with a rigorous mathematical proof, but with rather convincing

computational arguments. Attractors with such characteristics are called Lorenz-like. It is to

be remarked that, only recently, Tucker [118] provided a computer aided proof that the original

Lorenz’s equations indeed corresponds to a sensitive, robustly transitive non-hyperbolic attrac-

tor containing the singularity (0, 0, 0). A charming account of the Lorenz attractor’s beautiful

history is in Viana [123].

Only about ten years after Lorenz’s work, a number of concrete Lorenz-like attractors were

exhibited by Afraimovich-Bykov-Shil’nikov [2] and Guckenheimer-Williams [50], for which the
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authors provided mathematical proofs that they are sensitive to initial conditions and, moreover,

robustly transitive and yet not hyperbolic. In the eighties Robinson [105] and Rychlik [108]

showed that such attractors may be obtained, again in three dimensions, through bifurcations

taking place in certain families of cubic differential equations — not quadratic, like above.

A new kind of attractor in three dimensions, the contracting Lorenz attractor or Lorenz-Rovella

attractor, which is probability persistent but not robust, was obtained by Rovella [106] upon a

previous work by Arneodo-Coullet-Tresser [11]: It contains a hyperbolic singularity with real

eigenvalues (but now the sum of any two eigenvalues is negative), it is probability persistent in

terms of Lebesgue probability or just probability persistent, but not robust.

Another remarkable example is the one named after Hénon [52]. Like Lorenz, he provided

ingenious computational arguments suggesting the existence of an attractor for a two-parameter

family of quadratic diffeomorphisms of the plane. It would display a long range sensitivity of

orbits near it with respect to their initial conditions. Hénon pointed to the existence of folds

and expansion along lines in the attractor and a fractal structure in a transversal direction.

The challenge was then to provide a formal proof of the existence of such a chaotic attractor

with some degree of persistence.

The equations and figure provided by Hénon were as follows:

fa,b(x, y) = (1− ax2 + y, bx), for a ∼= 1.4 and b ∼= .3
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I also wish to mention Kolmogorov’s pioneering and classic work on hydrodynamical attractors

as presented by Arnold [14], as well as the charming paper of May on nonlinear dynamics and

some applications [75].

By the last part of the seventies and going into the eighties, there appeared a string of very

creative results giving rise to new insights on how dynamics could develop in the future. First,

there was the work by Hénon mentioned above, proposing a new kind of attractor now named

after him. Following that, there was the work by Feigenbaum [45] and in parallel Coullet-Tresser

[38], concerning period doubling bifurcations for quadratic families of interval maps and the

notable fact that the limiting ratio of approach of bifurcating parameter values converging to

a limit point is a universal constant (independently of the specific quadratic family).

These works contributed to sparkle a much more robust development than before particularly

of one real dimensional dynamics.

Then, there was the result of Jakobson [55], exhibiting attractors of parametrized families of

unimodal maps of the interval, including the quadratic family. They are probability persistent

(but not robust) under small perturbations of the parameter. It was a key predecessor to the

remarkable work by Benedicks-Carleson [23] showing the existence of a probability persistent

Hénon-like attractor, which was obtained for the above coefficients (parameters) a near 2 and b

small. Subsequently, Mora-Viana [79] showed that Hénon-like attractors occur in the unfolding

of quadratic homoclinic tangencies associated to dissipative fixed or periodic hyperbolic points.

As a consequence, the attractor appears near the values originally suggested by Hénon whose

figure is displayed above, i.e. a ≈ l.4 and b ≈ .3. This result was extended to higher dimensions,
when the unstable manifold of the associated fixed or periodic point has dimension one [121],

in the sectionally dissipative case as in §3.2. Also, Viana [122] exhibited new non-hyperbolic
examples in higher dimensions which are, in fact, robust.

13



2.7 Global Conjecture on the Finitude of Attractors and Their

Metric Stability

With the basic definitions, facts and examples presented above, we are now ready to formally

state our main global conjecture, introduced in 1995 in a meeting in Paris in honor of A. Douady

[90]. As mentioned in the abstract, we are considering the set of all Cr(r ≥ 1) dynamics, i.e.
flows diffeomorphisms or transformations of a compact, smooth, boundaryless manifold or

closed interval on the real line.

Global Conjecture:

• There is a dense setD of dynamics such that any element ofD has finitely many attractors
whose union of basins of attraction has total probability;

• The attractors of the elements in D support a physical (SRB) measure;

• For any element in D and any of its attractors, for almost all small perturbations in

generic k-parameter families of dynamics, k ∈ N, there are finitely many attractors whose
union of basins is nearly (Lebesgue) equal to the basin of the initial attractor; each such

perturbed attractor supports a physical measure;

• Stochastic stability of attractors — the attractors of elements in D are stochastically stable
in their basins of attraction;

• For generic families of one-dimensional dynamics, with total probability in parameter
space, the attractors are either periodic sinks or carry an absolutely continuous invariant

measure.

One can also ask whether the first two items above are valid with total probability in parameter

space.

2.8 More on the Existence of SRB Probabilities — Stochastic Sta-

bility

All the attractors that have been presented so far carry physical or SRB probability mea-

sures. Before we discuss some new results concerning other classes of dynamical systems whose

attractors enjoy the same property, we introduce the notion of dominated decomposition.
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Dominated Decomposition — Definition

Let f be a Cr map on M and Λ an invariant set for f . We say that Λ has a dominated

decomposition, see figure below, if there exist C > 0 and 0 < λ < 1 such that TΛM = E1⊕E2,
E1 and E2 being df -invariant and

||dfn(x)ν1||
||dfn(x)ν2|| ≤ Cλ

n ||ν1||
||ν2|| , ∀ν = (ν1, ν2), ν2 W= 0, ∀n ≥ 1

In the figure, domination means that the angle between dfn(x)ν and E2 decreases exponentially

fast when n→∞. We say that E2 dominates E1 and that f |Λ has i-dominated decomposition,
where 1 ≤ i < dimM , if i = dimE2.
In particular, we call f partially hyperbolic when we have a decomposition TΛM = Es⊕Ec⊕Eu,
where Es is uniformly contracting, Eu is uniformly expanding, Eu dominates Ecs = Es ⊕ Ec
and Ecu = Ec ⊕ Eu dominates Es. The definition can be adapted when Eu = 0, Es W= 0 or

Es = 0, Eu W= 0.
Concerning SRB measures, recall that they were introduced by Sinai, Ruelle, and Bowen for

hyperbolic systems, see §2.1. Such measures were shown to exist for probability persistent
non-hyperbolic attractors: first, for interval maps by Jakobson in his pioneering work [55] and

much more recently for Hénon-like attractors by Benedicks-Young [26]. In the latter case,

subsequently, Benedicks-Viana [25] showed the remarkable fact that the SRB measure has full

Lebesgue probability in a neighboorhood of the attractor and it is unique.

On the other hand, SRB measures were constructed for Lorenz-like attractors by Bunimovich-

Sinai [33] and Kifer [58], for Lorenz-Rovella attractors by Metzger [77], who also announced the

same result for higher dimensional Lorenz attractors such as the ones constructed by Bonatti-

Pumariño-Viana [31].
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More recently, there were important developments on SRB measures for partially hyperbolic

attractors, notably the following theorem due to Alves-Bonatti-Viana [5]:

Theorem: Let K ⊂ M be a compact forward invariant set for a C2 diffeomorphism on M .

Supose the sub-bundle Ecs is uniformly contracting on K, and Ecu is non-uniformly expanding

on a positive Lebesgue measure set H ⊂ K. Then H is covered mod 0, i.e., with total Lebesgue

probability, by the basins of finitely many SRB measures.

The authors also introduced the notion of cu-Gibbs states for an attractor Λ with dominated

decomposition TΛM = Ecs⊕Ecu, after the pioneering work of Pesin-Sinai [100] on the existence
of u-Gibbs states for an attractor Λ with dominated decomposition TΛM = Ecs ⊕ Eu. Notice
that SRB measures are u-Gibbs states and, as a partial converse, ergodic u-Gibbs states with

k = dimEcs negative Lyapunov exponents are in fact SRB measures. Vasquez [120] extended

considerably the theory of cu-Gibbs states and obtained results on their continuity with respect

to the diffeomorphism, which he called statistical stability, as well as on the existence and fini-

tude of SRB measures for diffeomorphisms with dominated decomposition. Before that, for

certain parametrized families of diffeomorphisms, Dolgopyat [44] has even proved the differen-

tiability of SRB measures, from which he inferred not only uniqueness but also good statistical

properties for them.

It is also much worthwhile mentioning a recent important result by Tsujii [117]: partially hyper-

bolic surface endomorphisms of class Cr with one-dimensional uniformly expanding subbundle

and r large enough, say r ≥ 19, generically (residually) carry finitely many ergodic SRB mea-
sures whose union of basins of attraction has total Lebesgue probability. So, in this setting the

first part of the main conjecture in the present paper is confirmed.

Actually, we believe that Tsujii’s results can be generalized to higher dimensions for partially

hyperbolic diffeomorphisms (maps) with one-dimensional central direction.

Problem: Show that generic partially hyperbolic maps as in Tsujii’s work are stochastically

stable in their basins of attraction.

Finally, there is the following relevant conjecture on SRB measures formulated by Viana in

1997:

Conjecture 1. Generically, non uniformly hyperbolic diffeomorphisms with a uniformly ex-

panding subbundle carry finitely many SRB measures whose union of basins of attraction has

total Lebesgue probability.
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Concerning stability, let us emphasize, although not so surprisingly in view of §2.4, that none
of the previous attractors are structurally stable, except for the hyperbolic ones. However, all

of them are stochastically stable. For the hyperbolic case we refer to Kifer [57] and also Young

[126]. For Hénon-like attractors the result is due to Benedicks-Viana [24]. For Lorenz and

Lorenz-Rovella attractors it is due to Kifer [58] and Metzger [78], respectively.

3 A Strategy for Proving the Global Conjecture on the

Finitude of Attractors: To Focus on Homoclinic Tan-

gencies

I believe that it might be possible to prove the main conjecture in this paper when there are

no homoclinic tangencies in a robust way. At this point, a famous sentence by Poincaré in his

classic treatise ”Méthods Nouvelles de la Mécanique Céleste” comes to mind: “Rien n’est plus

propre à nous donner une idée de la complication du problème des trois corps et en général de

tous les problèmes de Dynamique...”, referring to homoclinic orbits and the geometry of the

corresponding stable and unstable manifolds. More concretely, we shall mention in the sequel

that a robust absence of homoclinic tangencies implies, at least in the C1 topology, a certain

amount of hyperbolicity, namely a dominated decomposition. Since hyperbolic systems satisfy

the main conjecture, this may also be the case here. And, if so, we could concentrate our

efforts in the fundamental and very difficult problem of understanding the dynamics arrising

from unfolding homoclinic or heteroclinic cycles, as much as the attractors and their basins are

concerned.

This will be discussed in the sequel. Let us first see what is known in terms of a weak form of hy-

perbolicity, in the present case dominated decomposition, when robustly we have no homoclinic

tangencies.

Theorem. Let f be a diffeomorphism and let Λ be a compact, maximal invariant set with a

dense subset of hyperbolic periodic orbits of unstable index i > 0. Suppose that there are no

homoclinic tangencies associated to periodic hyperbolic orbits with unstable index i in any C1

small continuation of Λ. Then, there is an i-dominated decomposition of f |Λ.
Let us recall the meaning of continuation of a maximal invariant set in the statement of the

theorem. Let Λ = ∩
n∈Z
fn(U), where U is a neighborhood of Λ and let U be a C1 neighborhood

of f . For g ∈ U , we call Λg = ∩
n∈Z
gn(U) the g-continuation of Λ.
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This theorem is due to Pujals-Sambarino [102] in dimension two and to Wen [124] in higher

dimensions. It is certainly relevant to pursue a proof of the main conjecture in such a setting:

Conjecture 2. There is a residual (or at least dense) subset R of Cr diffeomorphisms, r ≥ 1,
such that: If f ∈ R and Λ is a maximal invariant set as in the theorem above, with no homoclinic
tangencies associated to periodic points in a robust way, then f exhibits only finitely many

attractors inside Λ. Such attractors are stochastically stable.

A particularly interesting case in this direction is when f , Λ are as before, but now it is assumed

that the periodic points with biggest unstable index in Λ are dense in it. These conjectures can

in particular also be posed for partially hyperbolic pairs f , Λ; see Conjecture 1 in Section 2.8.

3.1 Bifurcation Theory

We now turn to bifurcation theory, a classic and central area in dynamics, as set forth by

Poincaré. The list of contributions is very notable and we shall highlight some of them:

• Birkhoff [27] in the 30’s has shown that transversal homoclinic orbits for surface diffeo-
morphisms are accumulated by periodic orbits (so, infinitely many of them). About three

decades later, Smale [113, 114] went much further by showing that they are part of what

he called a horseshoe in any dimension. Before, in the 20’s, there was the remarkable work

by Van der Pol on relaxation oscillations [40] to model radio transmissions and electric

circuits, among other applications. Following up this pioneer work, there were a series of

papers by Cartwright-Littlewood [35, 36], Littlewood [68, 69] and Levinson [65], in the

40’s and 50’s in which Van der Pol’s equations with parameters were considered and new

kind of solutions were found, going through dynamic bifurcations when varying parame-

ters. In his autobiography, Littlewood called his work in this topic “the monster”, since

he seemed to continuously work hard but without a clue of at which port he would arrive

if any... Then, in the late 70’s and early 80’s, Levi revisited the problem disposing of new

developments that were not at the time available to Littlewood, such as the horseshoe,

sometimes with small and sometimes large Hausdorff dimensions, Newhouse’s infinitely

many simultaneous sinks and other intricate phenomena that are created when unfolding

(bifurcating) quadratic homoclinic tangencies; see Section 2.5. He showed [64] that all

such phenomena were present in cross-sections to 3-dimensional flows generated by van

der Pol’s equations. Such equations which were motivated by applications, clearly led to

the development of deep mathematics.
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• Closely following Poincaré’s fundamental work, Andronov and school [6, 7, 8] set the
ground for bifurcation theory in dynamics, influencing generations to come, noteworthily

his work with Pontrjagin on structural stability that has been already mentioned.

• In the 60’s and 70’s, Arnold and school were a source of fine questions and results, in
particular much extending the previous work on bifurcations, as can be seen in [12] and

[13]. I wish to add here the work of Il’Yashenko and co-authors, as in [53].

• Much relevant has also been the work of Shil’nikov and school, mostly devoted to bifurca-
tion theory and more particularly to the unfolding of homoclinic tangencies and creation

of horseshoes [3], [4] and [110].

• An extensive study of bifurcations and (structural) stability of parametrized families of
dynamics were performed in the seventies and going through the next two decades by

Newhouse, Palis, Takens [87, 88, 92, 93] and Dias Carneiro [34] and Viana, Yoccoz,

Moreira [83, 84, 96, 97], whom are also referred to in the sequel on topics discussing

homoclinic bifurcations.

See also [15], [28], [53], [95] for more results and further references.

We have generally been baffled by the creation of cycles in dynamics, in particular 1-cycles,

which correspond to homoclinic tangencies; a 3-cycle is in the figure below. Actually, the

creation of cycles is often unavoidable when we consider parametrized families of systems and

vary the parameters. In most cases, the unfolding of cycles gives rise to a very complicated,

chaotic evolution of the dynamics in terms of parameters. In particular, they are a source

of counter-examples to the denseness of hyperbolicity in the space of all dynamical systems

endowed with any Cr topology, r ≥ 1 (the only unknown case being that of C1 diffeomorphisms
on surfaces, see Ures [119]).
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Still, we expect for a dense set of parameters to have only finitely many attractors for the

corresponding dynamical systems. In fact, the same may be true with total Lebesgue probability

in the space of parameters.

3.2 Unfolding Homoclinic Tangencies

In the sentence at the beginning of §3, Poincaré was referring to transversal homoclinic orbits of
surface diffeomorphisms. One can imagine that he would possibly be as enthusiastic with respect

to Birkhoff and Smale’s results, mentioned in §3.1. They highlight even more so the richness
of the dynamics implied, in all dimensions, by the presence of a transversal homoclinic orbit.

Indeed, Smale’s horseshoe corresponded to a new prototype dynamical model: its maximal

invariant set is like the product of Cantor sets in which the periodic orbits are dense.

Similarly striking is the following list of complex phenomena discovered in the last three and half

decades. It concerns the unfolding of a homoclinic tangency q0 associated to a fixed (periodic)

orbit p0 with positive speed at μ = 0, for a C
2 family fμ of surface diffeomorphisms:

• There are infinitely many simultaneous sinks residually in some open subsets of parameter
values, as shown by Newhouse [85, 86]. This renowned result was extended to higher

dimensions by Palis-Viana [96], when W u(p0) = 1 and p0 is sectionally dissipative, i.e.,

the product of any two different eigenvalues of df0 has norm smaller than one.

• There are Hénon-like attractors for some parameter values, due to Mora-Viana [79], ex-
tending Benedicks-Carleson [23], and to Viana [121] in general in the codimension-one

and sectionally dissipative case.

• There are infinitely many simultaneous Hénon-like attractors for dense subsets of open
sets of parameter values, as shown by Colli [37].

• A fast growth of the number of periodic points occurs residually in an open Newhouse
set as above, due to Kaloshin-Hunt [56], based on Shil’nikov-Gonchenko-Turaev [47].
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In view of these dynamical phenomena, one is lead to consider the question of whether the

coexistence of infinitely many sinks or Hénon-like attractors or just attractors are probability

persistent, i.e., they can occur with positive Lebesgue probability in parameter space:

Conjecture 3. In the unfolding of a homoclinic tangency, the coexistence of infinitely many

sinks or, more generally, attractors is not a probability persistent phenomenon. In other words,

with total probability in the parameter line, the corresponding maps exhibit only finitely many

attractors, in particular sinks, in a neighborhood of the orbit of q0 and p0 (see figure below).

A very nice recent result concerning this conjecture for surface diffeomorphisms is due to

Gorodetski and Kaloshin [48], much extending Tedeschini-Lalli and Yorke [116]. It says that,

for any positive integer N , infinitely many coexisting localized sinks with cyclicity bounded by

N or with period relatively large with respect to N is not probability persistent. To understand

this result, we need to introduce the definition of a localized sink and its cyclicity.

Consider the next figure, where q0 is a homoclinic tangency, say quadratic, associated to the

fixed (periodic) hyperbolic point p0 and let V and U be fixed small disjoint neighborhoods of the

segments [f(q0), p0], [p0, f
−1(q0)] in the stable and unstable manifolds and of p0, respectively.

Let Λ = ∩
n∈Z
fn(V ∪ U). Consider the following figure:

We can now define a periodic sink as being localized if it belongs to Λ. In such a case, it’s

called (Λ, s)-localized if it visits U exactly s times during its minimal period. Then, we call s

its cyclicity.

We close for the moment the discussion on the unfolding of homoclinic tangencies. We shall

return to it in §3.4, but from a somewhat different point of view. We shall consider homoclinic
tangencies associated to fixed or periodic orbits, that may or not be part of a larger hyperbolic

set, say K, at the initial parameter value for the unfolding. We shall see that the Hausdorff
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dimension of K is a crucial ingredient in establishing some prevalence of hyperbolicity or non-

uniform hyperbolicity for the dynamics, in terms of the parameter near its initial value.

3.3 More on the Dichotomy Hyperbolicity - Homoclinic Bifurca-

tions

Along the lines discussed at the introduction to the present section, we have set up the following

conjecture, which we consider by itself relevant:

Conjecture 4. In any dimension, every diffeomorphism can be Cr approximated, r ≥ 1, by a
hyperbolic one or one exhibiting either a homoclinic tangency or a (finite) cycle of hyperbolic

periodic orbits with different stable dimensions - called a heterodimensional cycle [28], [87].

In other words, hyperbolic diffeomorphisms are not dense (except for the circle and unknown

for r = 1 on two-dimensional surfaces). What the conjecture states is that it’s enough to

complement them with diffeomorphisms exhibiting just two different dynamical structures,

which are relatively simple to formulate. Yet, such diffeomorphisms display an array of varying

intricate dynamics when subject to bifurcations, say in parametrized form. They may be in

fact at a door of the difficult realm of dynamics needed to be better understood. Let me point

out that there is a number of impressive results concerning heterodimensional cycles due to

Bonatti, Diaz, Pujals and Rocha, like the ones in [30], [41], [43], also presented in [28].

We have a version of Conjecture 4 for flows. To state it, we have to consider the notion of a

singular cycle, introduced in [63] and [22]. Here, a singular cycle for a flow just means a cycle

involving singularities, at least one of them, and periodic orbits. Similar to the diffeomorphism

case, a heterodimensional cycle for a flow is a cycle involving finitely many hyperbolic periodic

orbits with different stable dimensions (indices).
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Conjecture 5. In any dimension, every flow (vector field) can be Cr approximated by a hyper-

bolic one or by one displaying a homoclinic tangency or a singular cycle or a heterodimensional

cycle.

The latter can only occur in dimensions greater than three. In dimension three, we can demand

even more:

Conjecture 6. Every three-dimensional flow can be Cr approximated by a hyperbolic one or

by one displaying a singular cycle or a Lorenz-like attractor or repellor.

In this spirit, Conjecture 5 may be formulated in a somewhat stronger form, substituting

singular cycle by singular hyperbolic set in the sense of [80], [81] and [82].

These conjectures have been the subject of much interest and some remarkable results have

been obtained in the C1 context. First of all, a breakthrough was due to Pujals and Sam-

barino [102] when proving Conjecture 4 for C1 surface diffeomorphisms. Just now, Pujals is

presenting in a long pre-publication [101] a similar fact for three-dimensional diffeomorphisms

restricted to contracting regions. Partial advancements were provided by Wen [124, 125] and

an announcement has been made by Hayashi.

Concerning the conjectures for flows, Arroyo and Rodriguez-Hertz [16] provided a proof of

Conjecture 5 in dimension three. In particular, they made an ingenious use of the work of

Pujals-Sambarino mentioned above. Conjecture 6 relative to flows in dimension three remains

open.

We conclude this part by very briefly mentioning some outstanding results relative to an im-

portant topic, certainly most relevant to our discussion at the beginning of this section. We

shall do that first in the context of diffeomorphisms and then flows.

Let Λ be a maximal (in some neighborhood of it) invariant, transitive set for a diffeomorphism

f on a closed (as usual here) manifoldM . We say that Λ is robustly transitive if Λg is transitive,

where Λg is the continuation of Λ and g is any map C
1 close to f . Similarly for flows.

Assume Λ is robustly transitive. Then:

• For C1 diffeomorphisms, first, Mañé [72] has shown that if dim M = 2, then Λ is a

hyperbolic set. Then, in the three-dimensional case, Λ has to be partially hyperbolic, a

result due to Diaz-Pujals-Ures [42], and in higher dimensions, Λ has at least to display a

dominated decomposition, as proved by Bonatti-Diaz-Pujals [29].
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• For C1 flows, Morales-Pacifico-Pujals [82] proved the striking fact that on 3-manifolds a
robustly transitive set is a Lorenz-like attractor or reppeler.

3.4 Homoclinic bifurcations and Hausdorff dimension

We have now a somewhat better understanding of the (complicated) dynamics that arises when

we unfold homoclinic tangencies, say associated to a hyperbolic set Λ. Still, we have to go much

further to be able, for instance, to respond to the challenge represented by Conjecture 3 in §3.2.
Already a major question is whether densely in the parameter line the corresponding maps have

only finitely many localized attractors, i.e., in a neighborhood of p0 and of the orbit of q0, as

in figure in §3.2.
So, let us again consider the unfolding with positive speed at μ = 0 of a quadratic homoclinic

tangency q0 for a C
2 family fμ of diffeomorphisms, associated to a fixed (periodic) point p0 of a

hyperbolic set Λ = Λ0. We take μ small and let Λμ be the continuation of Λ. Also, let Ks, Ku

be Cantor sets obtained by intersecting (for the first time from points in Λ) the leaves of the

stable and unstable foliations of Λ with L, where L is a line transversal to the stable manifold

of p0. One may consider L as the unfolding parameter line. See figure below. Finally, let ds

and du be the Hausdorff dimensions of Ks and Ku, respectively. Notice that HD(Λ) = ds+ du,

where HD(Λ) is the Hausdorff dimension of Λ.

We have:

• If HD(Λ) < 1, then hyperbolicity is fully prevalent at μ = 0. That is, the set of para-
meter values corresponding to which fμ is hyperbolic has Lebesgue density one at μ = 0,

Newhouse-Palis [87] and Palis-Takens [93, 94].
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• If HD(Λ) > 1, then hyperbolicity is not fully prevalent at μ = 0, Palis-Yoccoz [97].

• If HD(Λ) > 1, then the arithmetic difference Ks − Ku robustly contains non-trivial

intervals and from that one infers that homoclinic tangencies for fμ have positive density

at μ = 0, implying the previous result in a strong form, Moreira-Yoccoz [84].

Notice that when HD(Λ) < 1, then Ks −Ku has Lebesgue measure equals to zero.

From this string of facts, one can state the following dichotomy principle concerning the un-

folding on surfaces of a homoclinic tangency associated to a hyperbolic set Λ:

The hyperbolic maps in the parametric family are prevalent if and only if HD(Λ) < 1.

Such a dichotomy was suggested by the author about two decades ago.

The most recent result in this direction is the following one, going quite deeply into the dy-

namical structure of fμ after the unfolding of the homoclinic tangency:

• If (ds + du)2 + (max(ds, du))2 < ds + du + max(ds, du), then non-uniform hyperbolicity

is fully prevalent at μ = 0. In particular, the set of parameter values corresponding to

which the maps fμ have localized attractors is of density zero at μ = 0, Palis-Yoccoz [98].

Localized here has the same meaning as in Gorodetski and Kaloshin’s result in §3.2, but
now V is a neighborhood the whole hyperbolic set Λ and U is as before.

In our present proof of the last result, outlined in [98] and the full proof soon to appear, we treat

the unfolding of a quadratic tangency between stable and unstable manifolds of two different

periodic orbits in the hyperbolic set Λ. But, certainly the same should be true in the homoclinic

case. We observe, from such a proof, that for many parameter values (total density at μ = 0),

the continuation of the forward maximal invariant set in a neighborhood U ∪ V as above has

Hausdorff dimension smaller than two. Similarly, for the continuation of the backward maximal

invariant set. Notice that, for such parameter values, there may be tangencies between stable

and unstable manifolds for the corresponding maps, but no attractors (nor repellors).

Let us add a few words about the proof. It goes by showing that, for most parameters, the

limit set is hyperbolic, in a delicate, non-uniform sense. Essentially, although the limit set

may contain tangencies, these correspond to very special points: at “most” points there are

transversal directions which are (asymptotically) contracted by forward and backward iterates,

respectively. The proof of this fact requires a very careful analysis of how trajectories return
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close to the tangencies and, even, the very definition of what a “tangency” is. To ensure

hyperbolic behavior, such returns should not be too frequent nor too close. This is achieved by

parameter exclusions, which turns out to be less and less significant near the original tangency

parameter (Lebesgue density zero). The rate of formation of tangencies is a crucial ingredient,

and it is closely related to the Hausdorff dimension of the original horseshoe. The assumption

that this dimension is not far from one ensures that the number of tangencies that must be

considered at each stage grows fairly slowly. This implies that a fairly small amount (in measure)

of parameter exclusions is needed. Returns close to the tangencies yield quadratic type folds.

The condition on the frequency and depth of returns is used to ensure that folds always are

“ironed-out” before a new return occurs. In this way, one never has to deal with contacts of

order bigger than two.

One can certainly expect to have a similar general result without imposing any restriction on

the Hausdorff dimension of the original horseshoe, at the price of having to deal with higher

order contacts.

On the horizon lies the case of area preserving maps. An example is the famous family of

standard maps on the torus, for which the limit set is the whole ambient space and, thus, has

Hausdorff dimension two:

fμ(x, y) = (−y + 2x+ μ sin(2πx), x)

In this case, one has to study contacts of all order simultaneously. The main open question

concerning this family is whether there exists a positive Lebesgue measure set of parameter

values μ, for which the corresponding maps are ergodic and non-uniformly hyperbolic.

3.5 Unfolding Homoclinic Tangencies in Higher Dimensions

To have a grasp of typical dynamics in all dimensions, we certainly must pursue a deep study

of the unfolding of homoclinic tangencies in such a generality.

In doing so, we shall face some new and serious difficulties in comparison with the two-

dimensional case. One of them is that in general the stable and unstable foliations of hyperbolic

sets, when having codimension bigger than one, are not differentiable or even Lipshitz, inde-

pendenty of the smoothness of the dynamics. As a consequence, the invariance along leaves of

such foliations of some key instruments of nowadays dynamics, like Hausdorff dimension, are

simply no longer available in higher dimensions. This is because at least one of the foliations

must have codimension bigger than one.

26



Still, it’s a promising fact that the obstacles, such as the one just mentioned, have been in some

cases successfully surpassed. It was so in several of the results in this paper, particularly in the

extension of Newhouse’s infinitely many sinks phenomenon to higher dimensions in §3.2. Here,
we comment on a recent result that goes much in the direction we are conveying.

As before, we consider one-parameter families of diffeomorphisms fμ of class C
2, μ ∈ (−1, 1),

that generically (positive speed in μ at μ = 0) unfold a quadratic homoclinic tangency q0

associated to a hyperbolic horseshoe Λ = Λ0.

A reasonable hypothesis, as done on surfaces, see §3.4, is to assume that fμ is hyperbolic
(Axiom A) for μ < 0. So, we are creating a cycle, a homoclinic tangency, at μ = 0. This

hypothesis implies that the weak stable and unstable eigenvalues of df0 at p0 are well defined

and that they are real numbers. Moreira, Viana and myself then showed (see a résumé in [83])

that the dichotomy

hyperbolicity is prevalent ⇐⇒ Hausdorff dimension < 1

is true in all dimensions.

Prevalence of hyperbolicity means: the set of μ’s for which hyperbolicity holds for the maximal

invariant set of fμ in a neighborhood of Λ and q0 as in §3.4, has total density at μ = 0. And
by Hausdorff dimension smaller than one, we mean HDs(Λ) +HDu(Λ) < 1 where

HDs(Λ) = HD(Λ ∩W s(p0)), HDu(Λ) = HD(Λ ∩W u(p0)).

Formally, we state the result as follows:

There are open sets R1 and R2 of one-parameter families of C
k diffeomorphisms, k ≥ 2, un-

folding a homoclinic tangency as set above, such that

(a) R1 ∪R2 is dense;
(b) for families in R1, we have

HDs(Λ) +HDu(Λ) < 1 and lim
δ→0

m(H ∩ [0, δ])
δ

= 1

where H = {μ | fμ is hyperbolic} and m stands for Lebesgue measure;

(c) for families in R2, we have for δ > 0

HDs(Λ) +HDu(Λ) > 1 and lim inf
δ→0

m(Ts ∩ [0, δ])
δ

> 0

where Ts = {μ | fμ presents a persistent homoclinic tangency associated to Λμ} and Λμ is
the continuation of Λ, μ small.
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We briefly comment the proof of this result:

Part (b) is reminiscent of the Palis-Takens’ result on surfaces [94]. The proof here goes by

ensuring that, up to small perturbation, the horseshoe avoids the strong stable and unstable

directions. This is possible because its Hausdorff dimension is small. It implies that Λ∩W s(p) is

contained in a cuspidal region around the weak stable direction of p0. Similarly for Λ ∩W u(p)

with respect to the weak unstable direction of p0. See figure below. It has the geometric

consequence that the horseshoe is roughly two-dimensional. This permits to mimic the two-

dimensional arguments to obtain uniform transversality of stable and unstable foliations of the

continuation of the original horseshoe for most parameters.

W   (p )�
 0�

ss�

W  (p  )�
0�

s�

W  (p  )�
 0�

u�

p�
0�

Σ�

q�
0�

Part (c) is considerably more delicate. The main ingredient is the construction, after pertur-

bation of f , of strong-stable and strong-unstable foliations of codimension-one for hyperbolic

subsets of Λ with almost the same Hausdorff dimensions.

These foliations are used to reduce the study of the geometries of the stable and unstable

foliations near the initial homoclinic tangency to the two-dimensional case. Another key step is

to obtain stable tangencies, in terms of parameters, of stable and unstable manifolds of periodic

orbits as in Moreira-Yoccoz [84].
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