Detecting Gauss-Manin and Calabi-Yau differential equations

Hossein Movasati

IMPA and BIMSA, www.impa.br/~hossein/ 24 December 2023, Sanya, China.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Abstract:

In this talk I will review few conjectures which aim to detect which linear differential equations come from Gauss-Manin connections, that is, they are satisfied by periods of families of algebraic varieties. This includes conjectures due to Katz-Grothendieck, André and Bombieri-Dwork. I will discuss another finer criterion to detect differential equations coming from families of hypergeometric Calabi-Yau varieties. Finally, I will explain a classification list in the case of Heun and Painlevé VI equations (joint works with S. Reiter).

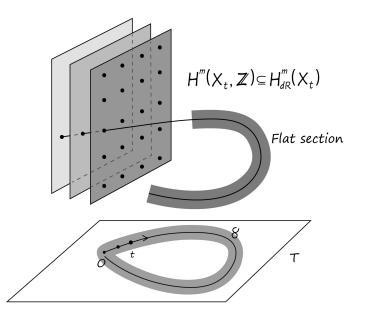
Gauss-Manin connection:

Let $X \to T$ be a family of smooth projective varieties over a field of arbitrary characteristic. We have a natural connection on the cohomology bundle:

$$abla : H^n_{\mathrm{dR}}(X/\mathsf{T}) \to \Omega^1_{\mathsf{T}} \otimes_{\mathcal{O}_{\mathsf{T}}} H^n_{\mathrm{dR}}(X/\mathsf{T}).$$

Over $\mathbb{C},$ this can be easily defined either by its flat sections or integrals.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@



▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへで

What is Gauss-Manin connection for Gauss?

Let
$$P(x) := 4(x - t_1)^3 + t_2(x - t_1) + t_3$$
. We have

$$\begin{pmatrix} d\left(\int \frac{dx}{\sqrt{P(x)}}\right) \\ d\left(\int \frac{xdx}{\sqrt{P(x)}}\right) \end{pmatrix} = \begin{pmatrix} -\frac{3}{2}t_1\frac{\alpha}{\Delta} - \frac{1}{12}\frac{d\Delta}{\Delta}, & \frac{3}{2}\frac{\alpha}{\Delta} \\ dt_1 - \frac{1}{6}t_1\frac{d\Delta}{\Delta} - (\frac{3}{2}t_1^2 + \frac{1}{8}t_2)\frac{\alpha}{\Delta}, & \frac{3}{2}t_1\frac{\alpha}{\Delta} + \frac{1}{12}\frac{d\Delta}{\Delta} \end{pmatrix} \begin{pmatrix} \int \frac{dx}{\sqrt{P(x)}} \\ \int \frac{xdx}{\sqrt{P(x)}} \end{pmatrix}$$

where

$$\Delta := 27t_3^2 - t_2^3, \ \alpha := 3t_3dt_2 - 2t_2dt_3.$$

The above data is the Gauss-Manin connection of the family of elliptic curves $y^2 = P(x)$ before the invention of cohomology theories (before 1900).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let $\mathsf{T} := \mathbb{A}^1_{\mathbb{F}_p} \setminus \{\Delta = 0\} = \operatorname{Spec}(\mathbb{F}_p[z, \frac{1}{\Delta}]).$

Theorem (P. Deligne, N. Katz 1970)

Let $X \to T$ be a family of smooth projective varieties over a field of characteristic p and

$$m+1 = \#\{(p,q)|p+q=n, h^{p,q}(X_t) \neq 0\}.$$

Then

$$abla^{p(m+1)}_{rac{\partial}{\partial z}}: H^n(X/\mathsf{T}) o H^n(X/\mathsf{T})$$

is identically zero.

Since $m \le n$, a well-known version of this theorem uses *n* in its announcement.

Let $V = T \times \mathbb{A}^h_{\mathbb{F}_p} \to T$ be the trivial vector bundle over T. The data of a connection in V is equivalent to

$$\frac{\partial y}{\partial z} = \mathsf{B}(z)y \tag{1}$$

It is easy to see that $y^{(n)} = B_n y$, where B_n are recursively computed by

$$\mathsf{B}_1 = \mathsf{B}, \ \mathsf{B}_{n+1} = \frac{\partial \mathsf{B}_n}{\partial z} + \mathsf{B}_n \mathsf{B}.$$

Theorem

٠

If (1) comes from the Gauss-Manin connection then

$$\mathsf{B}^m_p \equiv_p 0$$

Conjecture (Deligne, Katz, André)

If for a differential equation $\frac{\partial y}{\partial z} = B(z)y$ defined over a finitely generated \mathbb{Z} sub algebra $\mathfrak{R} \subset \mathbb{C}$, for some $m \in \mathbb{N}$ and for almost all primes p we have $B_p^m \equiv_p 0$ then B must come from geometry (must be a factor of Gauss-Manin connection).

Conjecture (Katz-Grothendieck)

If for a differential equation $L: \frac{\partial y}{\partial z} = B(z)y$ defined over $\mathfrak{R} \subset \mathbb{C}$ and for almost all primes p we have $B_p \equiv_p 0$ then all the solutions of L are algebraic (L has finite monodromy).

Definition

A power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is called a G-function if its coefficients are algebraic numbers and there exists a constant M such that:

- 1. We have $|a_n| \leq M^n$ for all $n \in \mathbb{N}_0$.
- 2. There exists a sequence of positive integers d_n with $d_n \leq M^n$ such that $d_n a_m$ is an algebraic integer for all $m \leq n$.
- f(z) satisfies a linear differential equation with coefficients in Q
 (z).

Conjecture (Bombieri-Dwork)

A G-function f is period, that is, there is a family of algebraic varieties $X \to T$, a section ω of $H^n_{dR}(X/T)$ (all defined over $\overline{\mathbb{Q}}$) and continuous family of cycles $\delta_z \in H_n(X_z, \mathbb{Z}) \otimes_{\mathbb{Z}} \overline{\mathbb{Q}}$ such that $f = \int_{\delta_z} \omega$.

Heun equations:

$$y'' + \left(\frac{1-\theta_1}{z-t} + \frac{1-\theta_2}{z} + \frac{1-\theta_3}{z-1}\right)y' + \left(\frac{\theta_{41}\theta_{42}z - q}{z(z-1)(z-t)}\right)y = 0$$
(2)

with

$$heta_{41} = -rac{1}{2}(heta_1+ heta_2+ heta_3-2+ heta_4), \ heta_{42} = -rac{1}{2}(heta_1+ heta_2+ heta_3-2- heta_4).$$

If it comes from geometry then the exponents θ_i , i = 1, 2, ..., 4, are rational numbers.

Problem

For which rational numbers θ_i , i = 1, ..., 4, and complex numbers $t, q \in \mathbb{C}$ does the corresponding Heun equation come from geometry?

+	q	Table 1: Heun equations	θ1	θ_2	θ ₃	θ_4	0 ₄₂	θ_{41}
		-2	-1	- 2	- 3		-42	
1	$\frac{1}{3}(3a-2)(6a-1)t_1$	$\frac{t_1^2}{3}$, $t_1^2 + 3t_1 + 3 = 0$	$a - \frac{1}{2}$	$a - \frac{1}{2}$	$a - \frac{1}{2}$	$9a - \frac{9}{2}$	$3a - \frac{1}{2}$	-6a + 4
2	0	-1	$b - \frac{1}{2}$	2b - 1	$b - \frac{1}{2}$	4a + 4b - 4	2a	-2a - 4b + 4
3	-2(a + 2b - 2)(6b - 5)	-8	$b - \frac{1}{2}$	$3b - \frac{3}{2}$	a + b - 1	3a + 3b - 3	a - b + 1	-2a - 4b + 4
-4	$-3(10a - 7)(3a - 2)t_1$	$-t_1^2$, $t_1^2 - 11t_1 - 1 = 0$	$a - \frac{1}{2}$	$5a - \frac{5}{2}$	$a - \frac{1}{2}$	$5a - \frac{5}{2}$	$-a + \frac{3}{2}$	-6a + 4
5		-1	a + c - 1	2a + 2b - 2	a + c - 1	2b + 2c - 2	-2a + 2	-2a - 2b - 2c + 4
6	$\frac{-1}{3}(6a - 5)(3a - 2)t_1$	$\frac{t_1^2}{3}, t_1^2 + 3t_1 + 3 = 0$	$3a - \frac{3}{2}$	$3a - \frac{3}{2}$	$3a - \frac{3}{2}$	$3a - \frac{3}{2}$	$-3a + \frac{5}{2}$	-6a + 4
7	$\frac{-2}{243}(96a - 25)(3a - 2)t_1$	$\frac{t_1^2}{9}$, $3t_1^2 - 14t_1 + 27 = 0$	$a - \frac{1}{2}$	1	$a - \frac{1}{2}$	8a - 4	$3a - \frac{2}{3}$	$-5a + \frac{10}{3}$
8	$\frac{-1}{288}(3a-2)(1029a-149)$	81 32	$a - \frac{1}{2}$	1/3	2a - 1	$7a - \frac{7}{2}$	$2a - \frac{1}{6}$	$-5a + \frac{10}{3}$
9	$\frac{-125}{6}(4a - 3)(3a - 2)$	-80	$a - \frac{1}{2}$	4a - 2	1/3	$5a - \frac{5}{2}$	ŝ	$-5a + \frac{10}{3}$
10	$\frac{-25}{18}(3a-2)(6a-5)$	$-\frac{27}{5}$	13	$3a - \frac{3}{2}$	2a - 1	$5a - \frac{5}{2}$	olo	$-5a + \frac{10}{3}$
11	$\frac{1}{1.04}(49a - 12)(3a - 2)t_1$	$\frac{t_1^2}{8}, 4t_1^2 + 13t_1 + 32 = 0$	$a - \frac{1}{2}$	1	$a - \frac{1}{2}$	$7a - \frac{7}{4}$	$\frac{5}{2}a - \frac{1}{2}$	$-\frac{9}{2}a + 3$
12	$\frac{-9}{16}a(a + 2b - 2)$	1	2b - 1	i.	$b = \frac{1}{2}$	3a + 3b - 3	$\frac{3}{2}a$	$-\frac{3}{6}a - 3b + 3$
13	$\frac{39}{500}(3a - 2)(6a - 5)$	$-\frac{3}{125}$	1/2	$3a - \frac{3}{2}$	$a - \frac{1}{2}$	$5a - \frac{5}{2}$	$\frac{1}{2}a + \frac{1}{2}$	$-\frac{9}{2}a + 3$
14	$\frac{-3}{4}(a + 2b - 2)(6b - 5)$	-3	1	$3b - \frac{3}{2}$	a + b - 1	2a + 2b - 2	$\frac{1}{2}a - b + 1$	$-\frac{3}{2}a - 3b + 3$
15	0	-1	$a - \frac{1}{2}$	3	$a - \frac{1}{2}$	6a - 3	$2a - \frac{1}{3}$	$-4a + \frac{8}{3}$
16	$-\frac{14}{3}a + \frac{28}{9}$	27	$a - \frac{1}{2}$	2	2a - 1	$5a - \frac{5}{2}$	$a + \frac{1}{6}$	$-4a + \frac{8}{3}$
17	$\frac{-2}{9}(3a-2)(6a-5)$	-1	23	$3a - \frac{3}{2}$	2a - 1	$3a - \frac{3}{2}$	$-a + \frac{7}{6}$	$-4a + \frac{8}{3}$
18	$\frac{-1}{147}(58a - 15)(3a - 2)t_1$	$\frac{t_1^2}{49}$, $t_1^2 - 13t_1 + 49 = 0$	1	$a - \frac{1}{2}$	1	$7a - \frac{7}{3}$	$3a - \frac{5}{6}$	$-4a + \frac{8}{3}$
19	0	-1	13	2a - 1	13	6a - 3	$2a - \frac{1}{3}$	$-4a + \frac{8}{3}$
20	$\frac{-4}{3}(4a - 3)(3a - 2)t_1$	$-\frac{t_1^2}{2}, t_1^2 - 10t_1 - 2$	4a - 2	13	4a - 2	13	-4a + 3	$-4a + \frac{8}{3}$
21	$\left(\frac{-27}{2}\zeta - \frac{29}{4}\right)\left(a - \frac{10}{9589}\zeta - \frac{7442}{28767}\right)\left(a - \frac{2}{3}\right)$	$-\frac{2}{7}(3\zeta + 1), \zeta^{2} + 3 = 0$	$a - \frac{1}{2}$	1/2	1/3	6a - 3	$\frac{5}{2}a - \frac{2}{3}$	$-\frac{7}{2}a + \frac{7}{3}$
22	$\frac{-14}{1125}(3a-2)(147a-22)$	189 125	12	ł	2a - 1	$5a - \frac{5}{2}$	$\frac{3}{2}a - \frac{1}{6}$	$-\frac{7}{2}a + \frac{7}{3}$
23	$\frac{17}{972}(3a-2)(6a-5)$	$-\frac{1}{27}$	12	$3a - \frac{3}{2}$	100	4a - 2	2a + 3	$-\frac{7}{2}a + \frac{7}{3}$
24	$-\frac{1}{6}a + \frac{1}{9}$	$-\frac{16}{9}$	$a - \frac{1}{2}$	- 63	13	$5a - \frac{3}{2}$	$2a - \frac{1}{2}$	-3a + 2
25	-3a + 2	9		263	2a - 1	4a - 2	a	-3a + 2
26	$\frac{-1}{105}(3a-2)(38a-9)t_1$	$\frac{4t_1^2}{125}$, $t_1^2 - 11t_1 + 125/4 = 0$	1-	$a - \frac{1}{2}$	1-	$5a - \frac{5}{2}$	$2a - \frac{1}{2}$	-3a + 2
27	0	-1	1/2	2b - 1	1/2	2a + 2b - 2	a	-a - 2b + 2
28	$\frac{-1}{6}(6a - 5)(3a - 2)t_1$	$-\frac{t_1^2}{3}$, $t_1^2 - 6t_1 - 3 = 0$	$3a - \frac{3}{2}$	1/2	$3a - \frac{3}{2}$	1/2	$-3a + \frac{5}{2}$	-3a + 2
29	$\frac{5}{162}a - \frac{5}{243}$ $-\frac{5}{3}a + \frac{10}{9}$	$-\frac{5}{27}$	1/2	23	$a - \frac{1}{2}$	4a - 2	$\frac{3}{2}a - \frac{1}{3}$	$-\frac{5}{2}a + \frac{5}{3}$
30	$-\frac{5}{3}a + \frac{10}{9}$	5	12	3	2a - 1	$3a - \frac{3}{2}$	$\frac{1}{2}a + \frac{1}{6}$	$-\frac{5}{2}a + \frac{5}{3}$
31	0	-1	83	2a - 1	203	2a - 1	13	$-2a + \frac{4}{3}$
32	0	-1	1/2	ŝ	1/2	2a - 1	$a - \frac{1}{3}$	$-a + \frac{2}{3}$
33	$\frac{1}{12}(3a-1)(3a-2)t_1$	$\frac{t_1^2}{3}$, $t_1^2 + 3t_1 + 3 = 0$	12	12	12	$3a - \frac{3}{2}$	$\frac{3}{2}a - \frac{1}{2}$	$-\frac{3}{2}a + 1$
34	0	- 1/3	12	2	13	$3a - \frac{3}{2}$	$\frac{3}{2}a - \frac{1}{2}$	$-\frac{3}{2}a + 1$
35	0	-1	1 3	23	1 3	4a - 2	$2a - \frac{2}{3}$	$-2a + \frac{4}{3}$
36	$\frac{-16}{243}(3a-1)(3a-2)t_1$	$\frac{t_1^2}{2t_1^2}$, $t_1^2 - 10t_1 + 27 = 0$	1 2	1 3	1 2	4a - 2	$2a - \frac{2}{3}$	$-2a + \frac{4}{3}$
37	$\frac{25}{768}(3a-2)(3a-1)t_1$	$\frac{t_1^2}{64}, t_1^2 + 11t_1 + 64 = 0$	13	1/2	1 3	$5a - \frac{5}{2}$	$\frac{5}{2}a - \frac{5}{6}$	$-\frac{5}{2}a + \frac{5}{3}$
38	$\frac{1}{3}(3a-2)(3a-1)t_1$	$\frac{t_1^2}{3}$, $t_1^2 + 3t_1 + 3 = 0$	1/3	1 3	1/3	6a - 3	3a - 1	-3a + 2

Table 1: Heun equations coming from geometry, $a, b, c \in O$

Example 7:

$$q = \frac{-2}{243}(96a - 25)(3a - 2)t_1, \quad t = \frac{t_1^2}{9}, 3t_1^2 - 14t_1 + 27 = 0$$
$$\theta = (a - \frac{1}{2}, \frac{1}{3}, a - \frac{1}{2}, 8a - 4)$$

The geometry:

$$y = (4x^3 - g_2x - g_3)^a,$$

 $g_2(z) = 12z(z^3 - 6z^2 + 15z - 12),$
 $g_3(z) = 4z(2z^5 - 18z^4 + 72z^3 - 144z^2 + 135z - 27).$

くりょう 小田 マイビット 日 うくの

Conjecture

A linear differential equation is a factor of Gauss-Manin connection of families of Calabi-Yau n-folds if the mirror map has integral coefficients.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Let a_i , i = 1, 2, ..., n be rational numbers, $0 < a_i < 1$,

$$F(a|z) := {}_{n}F_{n-1}(a_{1},\ldots,a_{n};1,1,\ldots,1|z) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k}\ldots(a_{n})_{k}}{k!^{n}} z^{k},$$

be the holomorphic solution of the generalized hypergeometric differential equation

$$\theta^n - z(\theta + a_1)(\theta + a_2) \cdots (\theta + a_n) = 0$$

where $(a_i)_k = a_i(a_i + 1)(a_i + 2)...(a_i + k - 1), (a_i)_0 = 1$, is the Pochhammer symbol and $\theta = z \frac{d}{dz}$. The logarithmic solution around z = 0 has the form $G(a|z) + F(a|z) \log z$, where

$$G(a|z) = \sum_{k=1}^{\infty} \frac{(a_1)_k \cdots (a_n)_k}{(k!)^n} \Big[\sum_{j=1}^n \sum_{i=0}^{k-1} (\frac{1}{a_j+i} - \frac{1}{1+i}) \Big] z^k.$$
 (3)

The mirror map

$$q(a|z) =: z \exp(\frac{G(a|z)}{F(a|z)}).$$

For a rational number *x* such that *p* does not divide the denominator of *x*, we define

$$\delta_{p}(x):=\frac{x+x_{0}}{p},$$

where $0 \le x_0 \le p - 1$ is the unique integer such that *p* does not divide the denominator of $\delta_p(x)$. We call δ_p the Dwork operator.

Conjecture

The mirror map q(a|z) is N-integral if and only if for any good prime

$$\{\delta_p(a_1), \delta_p(a_2)\} = \{a_1, a_2\}, \text{ or } \{1 - a_1, 1 - a_2\} \text{ for } n = 2$$
 (4)

and

$$\{\delta_{p}(a_{1}), \delta_{p}(a_{2}), \delta_{p}(a_{3}), \dots, \delta_{p}(a_{n})\} = \{a_{1}, a_{2}, a_{3}, \dots, a_{n}\}, \text{ for } n \neq 2.$$
(5)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

n = 2						
==						
(1/2, 1/2), (2/3, 1/3), (3/4, 1/4), (5/6, 1/6),						
(1/6, 1/6), (1/3, 1/6), (1/2, 1/6), (1/3, 1/3), (2/3, 2/3),						
(1/4, 1/4), (1/2, 1/4), (3/4, 1/2), (3/4, 3/4), (1/2, 1/3),						
(2/3, 1/6), (2/3, 1/2), (5/6, 1/3), (5/6, 1/2), (5/6, 2/3),						
(5/6, 5/6), (3/8, 1/8), (5/8, 1/8), (7/8, 3/8), (7/8, 5/8),						
(5/12, 1/12), (7/12, 1/12), (11/12, 5/12), (11/12, 7/12)						
n = 4						
(1/2, 1/2), (1/3, 2/3), (1/4, 1/2), (1/4, 1/4), (2/5, 1/5),						
(3/8, 1/8), (3/10, 1/10), (1/2, 1/6), (1/2, 1/3), (1/3, 1/6),						
(1/6, 1/6), (1/3, 1/4), (1/4, 1/6), (5/12, 1/12)						
<i>n</i> = 6						
(1/2, 1/2, 1/2), (1/3, 1/3, 1/3), (1/2, 1/2, 1/4), (1/2, 1/4, 1/4),						
(1/4, 1/4, 1/4), (1/2, 1/2, 1/3), (1/2, 1/3, 1/3), (1/2, 1/2, 1/6),						
(1/2, 1/3, 1/6), (1/3, 1/3, 1/6), (1/2, 1/6, 1/6), (1/3, 1/6, 1/6),						
(1/6, 1/6, 1/6), (3/7, 2/7, 1/7), (1/2, 3/8, 1/8), (3/8, 1/4, 1/8),						
(4/9, 2/9, 1/9), (1/2, 2/5, 1/5), (1/2, 3/10, 1/10)(1/2, 1/3, 1/4),						
(1/3, 1/3, 1/4), (1/3, 1/4, 1/4), (1/2, 1/4, 1/6), (1/3, 1/4, 1/6),						
(1/4, 1/4, 1/6), (1/4, 1/6, 1/6), (1/2, 5/12, 1/12), (5/12, 1/3, 1/12),						
(5/12, 1/4, 1/12), (5/12, 1/6, 1/12), (5/14, 3/14, 1/14), (2/5, 1/3, 1/5),						
(7/18, 5/18, 1/18), (2/5, 1/4, 1/5), (3/10, 1/4, 1/10), (3/8, 1/3, 1/8),						
(3/8, 1/6, 1/8), (2/5, 1/5, 1/6), (1/3, 3/10, 1/10), (3/10, 1/6, 1/10)						

Table 1: N-integral hypergeometric mirror maps.

Theorem (Lian-Yau, Zudilin, Krattenthaler-Rivoal, ..., Movasati-Shokri)

We have

1. For an arbitrary n the only if part of the conjecture is true.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

2. It is true for n = 1, 2, 3, 4.

References

- 1. H. Movasati, S. Reiter, Heun equations coming from geometry. Bull. Braz. Math. Soc. 43(3), 423-442, 2012.
- 2. Appendix A with Khosro Shokri in the book: Gauss-Manin connection in disguise: Calabi-Yau modular forms, Surveys in Modern Mathematics, Vol 13, International Press, Boston.

(ロ) (同) (三) (三) (三) (○) (○)