Detecting Gauss-Manin and Calabi-Yau differential equations

Hossein Movasati

IMPA and BIMSA,
www.impa.br/~hossein/
24 December 2023, Sanya, China.

Abstract:

In this talk I will review few conjectures which aim to detect which linear differential equations come from Gauss-Manin connections, that is, they are satisfied by periods of families of algebraic varieties. This includes conjectures due to Katz-Grothendieck, André and Bombieri-Dwork. I will discuss another finer criterion to detect differential equations coming from families of hypergeometric Calabi-Yau varieties. Finally, I will explain a classification list in the case of Heun and Painlevé VI equations (joint works with S. Reiter).

Gauss-Manin connection:

Let $X \rightarrow \mathrm{~T}$ be a family of smooth projective varieties over a field of arbitrary characteristic. We have a natural connection on the cohomology bundle:

$$
\nabla: H_{\mathrm{dR}}^{n}(X / \mathrm{T}) \rightarrow \Omega_{\mathrm{T}}^{1} \otimes_{\mathcal{O}_{\mathrm{T}}} H_{\mathrm{dR}}^{n}(X / \mathrm{T})
$$

Over \mathbb{C}, this can be easily defined either by its flat sections or integrals.

What is Gauss-Manin connection for Gauss?

Let $P(x):=4\left(x-t_{1}\right)^{3}+t_{2}\left(x-t_{1}\right)+t_{3}$. We have

$$
\binom{d\left(\int \frac{d x}{\sqrt{P(x)}}\right)}{d\left(\int \frac{x(x)}{\sqrt{P(x)}}\right)}=\left(\begin{array}{cc}
-\frac{3}{2} t_{1} \frac{\alpha}{\Delta}-\frac{1}{12} \frac{d \Delta}{\Delta}, & \frac{3}{2} \frac{\alpha}{\Delta} \\
d t_{1}-\frac{1}{6} t_{1} \frac{\Delta \Delta}{\Delta}-\left(\frac{3}{2} t_{1}^{2}+\frac{1}{8} t_{2}\right) \frac{\alpha}{\Delta}, & \frac{3}{2} t_{1} \frac{\alpha}{\Delta}+\frac{1}{12} \frac{d \Delta}{\Delta}
\end{array}\right)\binom{\int \frac{d x}{\sqrt{P(x)}}}{\int \frac{x d x}{\sqrt{P(x)}}}
$$

where

$$
\Delta:=27 t_{3}^{2}-t_{2}^{3}, \alpha:=3 t_{3} d t_{2}-2 t_{2} d t_{3}
$$

The above data is the Gauss-Manin connection of the family of elliptic curves $y^{2}=P(x)$ before the invention of cohomology theories (before 1900).

Let $T:=\mathbb{A}_{\mathbb{F}_{p}}^{1} \backslash\{\Delta=0\}=\operatorname{Spec}\left(\mathbb{F}_{p}\left[z, \frac{1}{\Delta}\right]\right)$.
Theorem (P. Deligne, N. Katz 1970)
Let $X \rightarrow \mathrm{~T}$ be a family of smooth projective varieties over a field of characteristic p and

$$
m+1=\#\left\{(p, q) \mid p+q=n, h^{p, q}\left(X_{t}\right) \neq 0\right\}
$$

Then

$$
\nabla_{\frac{\partial}{\partial z}}^{p(m+1)}: H^{n}(X / T) \rightarrow H^{n}(X / \mathrm{T})
$$

is identically zero.
Since $m \leq n$, a well-known version of this theorem uses n in its announcement.

Let $V=\mathrm{T} \times \mathbb{A}_{\mathbb{F}_{\rho}}^{\mathrm{h}} \rightarrow \mathrm{T}$ be the trivial vector bundle over T . The data of a connection in V is equivalent to

$$
\begin{equation*}
\frac{\partial y}{\partial z}=\mathrm{B}(z) y \tag{1}
\end{equation*}
$$

It is easy to see that $y^{(n)}=\mathrm{B}_{n} y$, where B_{n} are recursively computed by

$$
\mathrm{B}_{1}=\mathrm{B}, \quad \mathrm{~B}_{n+1}=\frac{\partial \mathrm{B}_{n}}{\partial z}+\mathrm{B}_{n} \mathrm{~B} .
$$

Theorem
If (1) comes from the Gauss-Manin connection then

$$
\mathrm{B}_{p}^{m} \equiv_{p} 0
$$

Conjecture (Deligne, Katz, André)

If for a differential equation $\frac{\partial y}{\partial z}=\mathrm{B}(z) y$ defined over a finitely generated \mathbb{Z} sub algebra $\mathfrak{R} \subset \mathbb{C}$, for some $m \in \mathbb{N}$ and for almost all primes p we have $\mathrm{B}_{p}^{m} \equiv_{p} 0$ then B must come from geometry (must be a factor of Gauss-Manin connection).

$m=1$

Conjecture (Katz-Grothendieck)

If for a differential equation $L: \frac{\partial y}{\partial z}=\mathrm{B}(z) y$ defined over $\mathfrak{R} \subset \mathbb{C}$ and for almost all primes p we have $\mathrm{B}_{p} \equiv_{p} 0$ then all the solutions of L are algebraic (L has finite monodromy).

Definition

A power series $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is called a G-function if its coefficients are algebraic numbers and there exists a constant M such that:

1. We have $\left|a_{n}\right| \leq M^{n}$ for all $n \in \mathbb{N}_{0}$.
2. There exists a sequence of positive integers d_{n} with $d_{n} \leq M^{n}$ such that $d_{n} a_{m}$ is an algebraic integer for all $m \leq n$.
3. $f(z)$ satisfies a linear differential equation with coefficients in $\overline{\mathbb{Q}}(z)$.

Conjecture (Bombieri-Dwork)

A G-function f is period, that is, there is a family of algebraic varieties $X \rightarrow \mathrm{~T}$, a section ω of $H_{\mathrm{dR}}^{n}(\mathrm{X} / \mathrm{T})$ (all defined over $\overline{\mathbb{Q}}$) and continuous family of cycles $\delta_{z} \in H_{n}\left(X_{z}, \mathbb{Z}\right) \otimes_{\mathbb{Z}} \overline{\mathbb{Q}}$ such that $f=\int_{\delta_{z}} \omega$.

Heun equations:

$$
\begin{equation*}
y^{\prime \prime}+\left(\frac{1-\theta_{1}}{z-t}+\frac{1-\theta_{2}}{z}+\frac{1-\theta_{3}}{z-1}\right) y^{\prime}+\left(\frac{\theta_{41} \theta_{42} z-q}{z(z-1)(z-t)}\right) y=0 \tag{2}
\end{equation*}
$$

with

$$
\theta_{41}=-\frac{1}{2}\left(\theta_{1}+\theta_{2}+\theta_{3}-2+\theta_{4}\right), \theta_{42}=-\frac{1}{2}\left(\theta_{1}+\theta_{2}+\theta_{3}-2-\theta_{4}\right)
$$

If it comes from geometry then the exponents $\theta_{i}, i=1,2, \ldots, 4$, are rational numbers.

Problem
For which rational numbers $\theta_{i}, i=1, \ldots, 4$, and complex numbers $t, q \in \mathbb{C}$ does the corresponding Heun equation come from geometry?

Table 1: Heun equations coming from geometry. $a, b, c \in \mathbb{O}$

*	q.	t	θ_{1}	θ_{2}	θ_{3}	${ }^{0} 4$	θ_{42}	0_{41}
1	$\frac{1}{3}(3 a-2)(6 a-1) t_{1}$	$\frac{t_{1}^{2}}{3}, t_{1}^{2}+3 t_{1}+3=0$	a $-\frac{1}{2}$	a $-\frac{1}{2}$	a $-\frac{1}{2}$	$9 a-\frac{9}{2}$	$3 a-\frac{1}{2}$	$-6 a+4$
2	0	-1	$b-\frac{1}{2}$	$2 b-1$	$b-\frac{1}{2}$	$4 a+4 b-4$	$2 n$	$-2 a-4 b+4$
3	$-2(a+2 b-2)(6 b-5)$	-8	$b-\frac{1}{2}$	$3 b-\frac{3}{7}$	$a+b-1$	$3 a+3 b-3$	$a-b+1$	$-2 a-4 b+4$
4	$-3(10 a-7)(3 a-2) t_{1}$	$-t_{1}^{2}, t_{1}^{2}-11 t_{1}-1=0$	$a-\frac{1}{2}$	$5 a-\frac{5}{2}$	a $-\frac{1}{2}$	$5 a-\frac{5}{2}$	$-a+\frac{3}{2}$	$-6 a+4$
5	0	-1	$a+c-1$	$2 a+2 b-2$	$a+c-1$	$2 b+2 c-2$	$-2 a+2$	$-2 a-2 b-2 c+4$
6	$\frac{-1}{3}(6 a-5)(3 a-2) t_{1}$	$\frac{t_{1}^{2}}{3}, t_{1}^{2}+3 t_{1}+3=0$	$3 a-\frac{3}{2}$	$3 a-\frac{3}{2}$	$3 a-\frac{3}{2}$	$3 a-\frac{3}{2}$	$-3 a+\frac{5}{2}$	$-6 a+4$
7	$\frac{-2}{24^{3}}(96 a-25)(3 a-2) t_{1}$	$\frac{t_{1}^{2}}{2}, 3 t_{1}^{2}-14 t_{1}+27=0$	$a-\frac{1}{2}$	$\frac{1}{3}$	$a-\frac{1}{2}$	$8 a-4$	$3 a-\frac{2}{3}$	$-5 a+\frac{10}{3}$
8	$\frac{-1}{288}(3 a-2)(1029 a-149)$	$\frac{81}{32}$	a $-\frac{1}{2}$	$\frac{1}{3}$	$2 a-1$	$7 a-\frac{1}{3}$	$2 a-\frac{1}{6}$	$-5 a+\frac{10}{3}$
9	$\frac{-125}{6}(4 a-3)(3 a-2)$	-80	$a-\frac{1}{2}$	$4 a-2$	$\frac{1}{3}$	$5 a-\frac{5}{2}$	$\frac{5}{6}$	$-5 a+\frac{10}{3}$
10	$\frac{-25}{18}(3 a-2)(6 a-5)$	$-\frac{27}{5}$	$\frac{1}{3}$	$3 a-\frac{3}{2}$	$2 a-1$	$5 a-\frac{5}{2}$	$\frac{5}{6}$	$-5 n+\frac{10}{3}$
11	$\frac{1}{128}(49 a-12)(3 a-2) t_{1}$	$\frac{t_{1}^{2}}{8}, 4 t_{1}^{2}+13 t_{1}+32=0$	$a-\frac{1}{2}$	$\frac{1}{2}$	a $-\frac{1}{2}$	$7 a-\frac{7}{2}$	$\frac{5}{2} a-\frac{1}{2}$	$-\frac{9}{2} a+3$
12	$\frac{-9}{16} a(a+2 b-2)$	$\frac{1}{4}$	$2 b-1$	$\frac{1}{2}$	$b-\frac{1}{2}$	$3 a+3 b-3$	$\frac{3}{2} a$	$-\frac{3}{2} a-3 b+3$
13	$\frac{39}{3011}(3 a-2)(6 a-5)$	$-\frac{3}{125}$	$\frac{1}{2}$	$3 a-\frac{3}{2}$	$a-\frac{1}{2}$	$5 a-\frac{5}{2}$	$\frac{1}{2} a+\frac{1}{2}$	$-\frac{9}{2} a+3$
14	$\frac{-3}{4}(a+2 b-2)(6 b-5)$	-3	$\frac{1}{2}$	$3 b-\frac{3}{2}$	$a+b-1$	$2 a+2 b-2$	$\frac{1}{2} a-b+1$	$-\frac{3}{2} a-3 b+3$
15	0	-1	$a-\frac{1}{2}$	$\frac{2}{3}$	$a-\frac{1}{2}$	$6 a-3$	$2 a-\frac{1}{3}$	$-4 a+\frac{8}{3}$
16	$-\frac{14}{3} a+\frac{28}{9}$	$\frac{27}{2}$	a $-\frac{1}{2}$	$\frac{2}{3}$	$2 a-1$	$5 a-\frac{5}{2}$	$a+\frac{1}{6}$	$-4 a+\frac{8}{3}$
17	$\frac{-2}{9}(3 a-2)(6 a-5)$	-1	$\frac{2}{3}$	$3 a-\frac{3}{2}$	$2 a-1$	$3 a-\frac{3}{2}$	$-a+\frac{7}{6}$	$-4 a+\frac{8}{3}$
18	$\frac{-1}{147}(58 a-15)(3 a-2) t_{1}$	$\frac{t_{1}^{2}}{49}, t_{1}^{2}-13 t_{1}+49=0$	$\frac{1}{3}$	a $-\frac{1}{2}$	$\frac{1}{3}$	$7 a-\frac{7}{2}$	$3 \mathrm{a}-\frac{5}{6}$	$-4 a+\frac{8}{3}$
19	0	-1	$\frac{1}{3}$	$2 a-1$	$\frac{1}{3}$	$6 a-3$	$2 a-\frac{1}{3}$	$-4 a+\frac{8}{3}$
20	$\frac{-4}{3}(4 a-3)(3 a-2) t_{1}$	$-\frac{t_{1}^{2}}{2}, t_{1}^{2}-10 t_{1}-2$	$4 a-2$	$\frac{1}{3}$	$4 a-2$	$\frac{1}{3}$	$-4 a+3$	$-4 a+\frac{8}{3}$
21	$\left(\frac{-27}{2} \zeta-\frac{29}{4}\right)\left(a-\frac{10}{9589} \zeta-\frac{7442}{28767}\right)\left(a-\frac{2}{3}\right)$	$-\frac{2}{7}(3 \zeta+1), \zeta^{2}+3=0$	a $-\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{3}$	$6 a-3$	$\frac{5}{2} a-\frac{2}{3}$	$-\frac{7}{2} a+\frac{7}{3}$
22	$\frac{-14}{1125}(3 a-2)(147 a-22)$	$\frac{189}{125}$	$\frac{1}{2}$	$\frac{1}{3}$	$2 a-1$	$5 a-\frac{5}{2}$	$\frac{3}{2} a-\frac{1}{6}$	$-\frac{7}{2} a+\frac{7}{3}$
23	$\frac{77}{972}(3 a-2)(6 a-5)$	$-\frac{1}{27}$	$\frac{1}{2}$	$3 a-\frac{3}{2}$	$\frac{1}{4}$	$4 a-2$	$\frac{1}{2} a+\frac{1}{5}$	$-\frac{7}{2} a+\frac{7}{3}$
24	$-\frac{1}{6} a+\frac{1}{9}$	$-\frac{16}{9}$	$a-\frac{1}{2}$	$\frac{2}{3}$	$\frac{1}{3}$	$5 a-\frac{5}{2}$	$2 a-\frac{1}{2}$	$-3 a+2$
25	$-3 a+2$	9	$\frac{1}{3}$	$\frac{2}{3}$	$2 a-1$	$4 a-2$	a	$-3 a+2$
26	$\frac{-1}{1250}(3 a-2)(38 a-9) t_{1}$	$\frac{4 t_{1}^{2}}{120}, t_{1}^{2}-11 t_{1}+125 / 4=0$	$\frac{1}{2}$	a $-\frac{1}{2}$	$\frac{1}{2}$	$5 a-\frac{5}{2}$	$2 a-\frac{1}{2}$	$-3 a+2$
27	0	-1	$\frac{1}{2}$	$2 b-1$	$\frac{1}{2}$	$2 a+2 b-2$	a	$-a-2 b+2$
28	$\frac{-1}{6}(6 a-5)(3 a-2) t_{1}$	$-\frac{t_{1}^{2}}{3}, t_{1}^{2}-6 t_{1}-3=0$	$3 a-\frac{3}{2}$	$\frac{1}{2}$	$3 a-\frac{3}{2}$	$\frac{1}{2}$	$-3 a+\frac{5}{2}$	$-3 a+2$
29	$\frac{5}{16^{3}} a-\frac{5}{193}$	$-\frac{5}{27}$	$\frac{1}{2}$	$\frac{2}{3}$	$a-\frac{1}{n}$	$4 a-2$	$\frac{3}{1} a-\frac{1}{1}$	$-\frac{5}{5} a+\frac{5}{3}$
30	$-\frac{5}{3} a+\frac{10}{9}$	5	$\frac{1}{2}$	$\frac{2}{3}$	$2 a-1$	$3 a-\frac{3}{2}$	$\frac{1}{2} a+\frac{1}{6}$	$-\frac{5}{2} a+\frac{5}{3}$
31	0	-1	$\frac{2}{3}$	$2 a-1$	$\frac{2}{3}$	$2 a-1$	$\frac{1}{3}$	$-2 a+\frac{4}{3}$
32	0	-1	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{1}{2}$	$2 a-1$	$a-\frac{1}{3}$	$-a+\frac{2}{3}$
33	$\frac{1}{12}(3 a-1)(3 a-2) t_{1}$	$\frac{t_{1}^{2}}{3}, t_{1}^{2}+3 t_{1}+3=0$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$3 a-\frac{3}{4}$	$\frac{3}{2} a-\frac{1}{2}$	$-\frac{3}{2} a+1$
34	0	$-\frac{1}{3}$	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{1}{3}$	$3 a-\frac{1}{2}$	$\frac{3}{2} a-\frac{1}{1}$	$-\frac{3}{2} a+1$
35	0	-1	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{3}$	$4 a-2$	$2 a-\frac{2}{3}$	$-2 a+\frac{4}{3}$
36	$\frac{-16}{243}(3 a-1)(3 a-2) t_{1}$	$\frac{t_{1}^{2}}{27}, t_{1}^{2}-10 t_{1}+27=0$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{2}$	$4 a-2$	$2 a-\frac{2}{3}$	$-2 a+\frac{4}{3}$
37	$\frac{25}{768}(3 a-2)(3 a-1) t_{1}$	$\frac{t_{1}^{2}}{64,}, t_{1}^{2}+11 t_{1}+64=0$	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{1}{3}$	$5 a-\frac{5}{2}$	$\frac{5}{2} a-\frac{5}{6}$	$-\frac{5}{2} a+\frac{5}{3}$
38	$\frac{1}{3}(3 a-2)(3 a-1) t_{1}$	$\frac{t_{1}^{2}}{3}, t_{1}^{2}+3 t_{1}+3=0$	$\frac{1}{3}$	$\frac{1}{5}$	$\frac{1}{3}$	$6 a-3$	$3 a-1$	$-3 a+2$

Example 7:

$$
\begin{gathered}
q=\frac{-2}{243}(96 a-25)(3 a-2) t_{1}, \quad t=\frac{t_{1}^{2}}{9}, 3 t_{1}^{2}-14 t_{1}+27=0 \\
\theta=\left(a-\frac{1}{2}, \frac{1}{3}, a-\frac{1}{2}, 8 a-4\right)
\end{gathered}
$$

The geometry:

$$
\begin{gathered}
y=\left(4 x^{3}-g_{2} x-g_{3}\right)^{a} \\
g_{2}(z)=12 z\left(z^{3}-6 z^{2}+15 z-12\right) \\
g_{3}(z)=4 z\left(2 z^{5}-18 z^{4}+72 z^{3}-144 z^{2}+135 z-27\right) .
\end{gathered}
$$

Conjecture
A linear differential equation is a factor of Gauss-Manin connection of families of Calabi-Yau n-folds if the mirror map has integral coefficients.

Let $a_{i}, i=1,2, \ldots, n$ be rational numbers, $0<a_{i}<1$,
$F(a \mid z):={ }_{n} F_{n-1}\left(a_{1}, \ldots, a_{n} ; 1,1, \ldots, 1 \mid z\right)=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \ldots\left(a_{n}\right)_{k}}{k!^{n}} z^{k}$,
be the holomorphic solution of the generalized hypergeometric differential equation

$$
\theta^{n}-z\left(\theta+a_{1}\right)\left(\theta+a_{2}\right) \cdots\left(\theta+a_{n}\right)=0
$$

where $\left(a_{i}\right)_{k}=a_{i}\left(a_{i}+1\right)\left(a_{i}+2\right) \ldots\left(a_{i}+k-1\right),\left(a_{i}\right)_{0}=1$, is the Pochhammer symbol and $\theta=z \frac{d}{d z}$. The logarithmic solution around $z=0$ has the form $G(a \mid z)+F(a \mid z) \log z$, where

$$
\begin{equation*}
G(a \mid z)=\sum_{k=1}^{\infty} \frac{\left(a_{1}\right)_{k} \cdots\left(a_{n}\right)_{k}}{(k!)^{n}}\left[\sum_{j=1}^{n} \sum_{i=0}^{k-1}\left(\frac{1}{a_{j}+i}-\frac{1}{1+i}\right)\right] z^{k} \tag{3}
\end{equation*}
$$

The mirror map

$$
q(a \mid z)=: z \exp \left(\frac{G(a \mid z)}{F(a \mid z)}\right)
$$

For a rational number x such that p does not divide the denominator of x, we define

$$
\delta_{p}(x):=\frac{x+x_{0}}{p}
$$

where $0 \leq x_{0} \leq p-1$ is the unique integer such that p does not divide the denominator of $\delta_{p}(x)$. We call δ_{p} the Dwork operator.

Conjecture

The mirror map $q(a \mid z)$ is N-integral if and only if for any good prime

$$
\begin{equation*}
\left\{\delta_{p}\left(a_{1}\right), \delta_{p}\left(a_{2}\right)\right\}=\left\{a_{1}, a_{2}\right\}, \text { or }\left\{1-a_{1}, 1-a_{2}\right\} \text { for } n=2 \tag{4}
\end{equation*}
$$

and
$\left\{\delta_{p}\left(a_{1}\right), \delta_{p}\left(a_{2}\right), \delta_{p}\left(a_{3}\right), \ldots, \delta_{p}\left(a_{n}\right)\right\}=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}, \quad$ for $n \neq 2$.
(5)

$n=2$
$(1 / 2,1 / 2),(2 / 3,1 / 3),(3 / 4,1 / 4),(5 / 6,1 / 6)$,
$(1 / 6,1 / 6),(1 / 3,1 / 6),(1 / 2,1 / 6),(1 / 3,1 / 3),(2 / 3,2 / 3)$,
$(1 / 4,1 / 4),(1 / 2,1 / 4),(3 / 4,1 / 2),(3 / 4,3 / 4),(1 / 2,1 / 3)$,
$(2 / 3,1 / 6),(2 / 3,1 / 2),(5 / 6,1 / 3),(5 / 6,1 / 2),(5 / 6,2 / 3)$,
$(5 / 6,5 / 6),(3 / 8,1 / 8),(5 / 8,1 / 8),(7 / 8,3 / 8),(7 / 8,5 / 8)$,
$(5 / 12,1 / 12),(7 / 12,1 / 12),(11 / 12,5 / 12),(11 / 12,7 / 12)$
$n=4$
$(1 / 2,1 / 2),(1 / 3,2 / 3),(1 / 4,1 / 2),(1 / 4,1 / 4),(2 / 5,1 / 5)$,
$(3 / 8,1 / 8),(3 / 10,1 / 10),(1 / 2,1 / 6),(1 / 2,1 / 3),(1 / 3,1 / 6)$,
$(1 / 6,1 / 6),(1 / 3,1 / 4),(1 / 4,1 / 6),(5 / 12,1 / 12)$
$n=6$
$(1 / 2,1 / 2,1 / 2),(1 / 3,1 / 3,1 / 3),(1 / 2,1 / 2,1 / 4),(1 / 2,1 / 4,1 / 4)$,
$(1 / 4,1 / 4,1 / 4),(1 / 2,1 / 2,1 / 3),(1 / 2,1 / 3,1 / 3),(1 / 2,1 / 2,1 / 6)$,
$(1 / 2,1 / 3,1 / 6),(1 / 3,1 / 3,1 / 6),(1 / 2,1 / 6,1 / 6),(1 / 3,1 / 6,1 / 6)$,
$(1 / 6,1 / 6,1 / 6),(3 / 7,2 / 7,1 / 7),(1 / 2,3 / 8,1 / 8),(3 / 8,1 / 4,1 / 8)$,
$(4 / 9,2 / 9,1 / 9),(1 / 2,2 / 5,1 / 5),(1 / 2,3 / 10,1 / 10)(1 / 2,1 / 3,1 / 4)$,
$(1 / 3,1 / 3,1 / 4),(1 / 3,1 / 4,1 / 4),(1 / 2,1 / 4,1 / 6),(1 / 3,1 / 4,1 / 6)$,
$(1 / 4,1 / 4,1 / 6),(1 / 4,1 / 6,1 / 6),(1 / 2,5 / 12,1 / 12),(5 / 12,1 / 3,1 / 12)$,
$(5 / 12,1 / 4,1 / 12),(5 / 12,1 / 6,1 / 12),(5 / 14,3 / 14,1 / 14),(2 / 5,1 / 3,1 / 5)$,
$(7 / 18,5 / 18,1 / 18),(2 / 5,1 / 4,1 / 5),(3 / 10,1 / 4,1 / 10),(3 / 8,1 / 3,1 / 8)$,
$(3 / 8,1 / 6,1 / 8),(2 / 5,1 / 5,1 / 6),(1 / 3,3 / 10,1 / 10),(3 / 10,1 / 6,1 / 10)$

Table 1: N-integral hypergeometric mirror maps.

Theorem (Lian-Yau, Zudilin, Krattenthaler-Rivoal, ..., Movasati-Shokri)
We have

1. For an arbitrary n the only if part of the conjecture is true.
2. It is true for $n=1,2,3,4$.

References

1. H. Movasati, S. Reiter, Heun equations coming from geometry. Bull. Braz. Math. Soc. 43(3), 423-442, 2012.
2. Appendix A with Khosro Shokri in the book: Gauss-Manin connection in disguise: Calabi-Yau modular forms, Surveys in Modern Mathematics, Vol 13, International Press, Boston.
