Hodge Cycles for Cubic Hypersurfaces

Hossein Movasati

IMPA,
www.impa.br/~hossein/

A course in Hodge Theory: Periods of algebraic cycles

A Course in Hodge Theory

With Emphasis on
Multiple Integrals

Hossein Movasati
IMPA, Rio de Janeiro

20 Colóquio Brasileiro de Matemática

A poem by Jalal al-Din Muhammad Balkhi. Calligraphy: nastaliqonline.ir. If I boil in the fire of my existence for a while, that is because I want to forget you for a while, to get a new soul and put away my wisdom, and then you become the wine of my glass.

27 lines of a smooth cubic surface
Any smooth cubic surface in $\mathbb{P}_{\mathbb{C}}^{3}$ has 27 lines.

Figure: Clebsch surface ${ }^{1}$

27 lines of the Fermat cubic surface

Higher dimensional Fermat

$$
n=\text { even }
$$

ale brace cycle.
$\xi_{2 d}^{2 d}=1$.
$x_{0} \subset \mathbb{P}^{n+1}: T\left\{x_{0}^{d}+x_{1}^{d}+x_{2}^{d}+\cdots+x_{n+1}^{d}=0\right\}$
$\left(\mathbb{P}^{\frac{n}{2}}\right): x_{0}-\zeta_{2 d} x_{1}=x_{2}-\zeta_{2 d} x_{3}=x_{4}-\zeta_{2 d} x_{5}=\cdots=x_{n}-\zeta_{2 d} x_{n+1}=0$.
We have

$$
(n+1) \cdot(n-2) \cdots 3 \cdot 1 d^{\frac{n}{2}+1}
$$

such algebraic cycles (for $(n, d)]=(2,3)$ this is 27).

Middle cohomology of a smooth hypersurface
Lefschetz this: $H_{m \neq n}(X, \mathbb{Z})=\left\{\begin{array}{l}0 \text { od } \\ \mathbb{Z} \text { mo ven }\end{array}\right.$
The dimension of the n-th cohomology of a smooth hypersurface X of degree d in \mathbb{P}^{n+1} is given by

$$
\underset{\operatorname{dim} H_{n}(X, \mathbb{Q})=}{ }
$$

$(d-1)^{n+1}-(d-1)^{n}+(d-1)^{n-1}-\cdots+(-1)^{n}(d-1)+(0$ or 1$\left.)\right]$
where +0 if n is odd and +1 of n is even (for $(n, d)=(2,3)$ this is 7).

In cohomology

$$
\left[\mathbb{P}^{\frac{n}{2}}\right] \in H_{n}\left(X_{0}, \mathbb{Z}\right)
$$

$$
1 P^{\frac{n}{2}} \text { complex }^{n}
$$

These are our first examples of a Hodge class/cycle.

$$
H^{n}(x, \circlearrowright)=H^{n, 0} \oplus H^{n-1,1} \oplus \cdots \oplus H^{\frac{n}{2}, \frac{n}{2}} \oplus \cdots \oplus H^{0, n}
$$

Hypersurface containing $\mathbb{P}^{\frac{n}{2}}$

$$
\begin{array}{ll}
I \quad & 1 P^{\frac{n}{2}} \subseteq X^{K} \\
x_{0} & / \\
\left.X_{t} \quad t \in T \subseteq\left[x_{0}, \cdots x_{n+1}\right]\right]
\end{array}
$$

The space of smooth hypersurfaces containing $\frac{\mathbb{P}^{\frac{n}{2}} \text { is of }}{}$ codimension

$$
\binom{\frac{n}{2}+d}{d}-\left(\frac{n}{2}+1\right)^{2}
$$

For $(n, d)=(2,3)$ this is zero.

A consequence of Ehressman's fibaration theorem
(1947)

Theorem
For any two smooth hypersurfaces X_{1}, X_{2} of degree d and dimension n we have

$$
x_{1} \stackrel{c^{\infty}}{\cong} X_{2} \quad f: X_{1} \stackrel{\left(X_{2}\right.}{\simeq}
$$

Let us consider the hypersurface X_{t} nn the projective space \mathbb{P}^{n+1} given by the homogeneous polynomial:
$X_{t}:=x_{0}^{d}+x_{1}^{d}+\cdots+x_{n+1}^{d}-\sum_{\alpha} t_{\alpha} x^{\alpha}=0$,

$$
\begin{equation*}
t=\left(t_{\alpha}\right)_{\alpha \in I} \in(\mathrm{~T}, 0), \longrightarrow \text { usnal } \tag{1}
\end{equation*}
$$

where x^{α} runs through all monomials of degree d in
$x_{0}, x_{1}, \cdots, x_{n+1}$. For $\delta_{0} \in H_{n}\left(X_{0}, \mathbb{Z}\right)$ we have also a unique

$$
\underbrace{\delta_{t} \in H_{n}\left(X_{t}, \mathbb{Z}\right)} . \quad t \in(T, 0)
$$

(monodromy, parallel transport, flat section,....)

Finding Hodge cycles by deformation

'In searching for possible counterexamples to the "Hodge conjecture", one has to look for varieties whose Hodge ring is not generated by its elements of degree 2' (A. Weil). The description of such elements for CM abelian varieties is fairly understood and it is due to D. Mumford (1966) and A. Weil (1977) himself. Other examples are Y. Andre's (1996) motivated Hodge cycles. None of these methods can be applied to hypersurfaces. By Lefschetz hyperplane section theorem, for hypersurfaces of even dimension $n \geq 4$ we have only a one dimensional subspace of $H^{\frac{n}{2}, \frac{n}{2}}$ generated by elements of degree 2 (the class of a hyperplane section), and producing interesting Hodge cycles in this case, for which the Hodge conjecture is not known, is extremely difficult, and hence, they might be a better candidate for a counterexample to the Hodge conjecture.

Hodge loci
Abri

$$
\frac{1 \downarrow}{((d,(n+1)!)=1)} \delta_{0} \in H_{n}\left(X_{0}, \mathbb{Z}\right) \cdot \delta_{t} \in H_{n}\left(X_{t}, \mathbb{Z}\right)
$$

Take δ_{0} a linear combination of $\mathbb{P}^{\frac{n}{2}}$ with \mathbb{Z} coefficients.

Range of codimensions

if $d<\frac{2(n+1)}{n-2}$
if $d=\frac{2(n+1)}{n-2}$
if $d>\frac{2(n+1)}{n-2}$

Higher dimensional cubic scroll

$$
\begin{align*}
& g_{1,} g_{2} \cdot g_{\frac{n}{2}-1}, f_{i}: \sum_{i=0}^{n+1} a_{i} x_{i} \\
& \leqslant \theta: g_{\text {, }}^{g_{1}=g_{2}=\cdots=g_{\frac{n}{2}-1}}=0, \text { rank } \begin{array}{ll}
f_{11} & f_{12} \\
z_{21} & f_{22} \\
f_{31} & f_{32}
\end{array} \leq 1, \tag{2}
\end{align*}
$$

A table from Chapter 19

Table: Codimensions of the components of the Hodge/special loci for cubic hypersurfaces.
cone the

$$
\operatorname{codem}\left(V_{r}\left[1 p^{\frac{n}{2}}\right]+\tilde{r}\left[\tilde{1}^{\frac{n}{2}}\right]\right) \quad r_{1} \tilde{r}^{\prime} \in \mathbb{Z}
$$

$$
\neq 0
$$

much bigger them the deformation $(r, r)=1$.
space of $X, P^{\frac{n}{2}}$, ip n

I started to compute codimension of Hodge loci with a computer with processor Intel Core i7-7700, 16 GB Memory plus 16 GB swap memory and the operating system Ubuntu 16.04. It turned out that for many cases we get the 'Memory Full' error. Therefore, we had to increase the swap memory up to 170 GB. Despite the low speed of the swap which slowed down the computation, the computer was able to use the data and give us the desired output. The computation for this example took more than 21 days. We only know that at least 18 GB of the swap were used.

Computational Hodge conjecture

But the whole program [Grothendieck's program on how to prove the Weil conjectures] relied on finding enough algebraic cycles on algebraic varieties, and on this question one has made essentially no progress since the 1970s.... For the proposed definition [of Grothendieck on a category of pure motives] to be viable, one needs the existence of "enough" algebraic cycles. On this question almost no progress has been made, P. Deligne 2014....la construction de cycles algébriques intéressants, les progrès ont été maigres, P. Deligne 1994.

Veronese embedding

$$
\widetilde{T}=\text { space of } \omega \text { bic } 6 \text {-folds }
$$

$1=$ contain Z
$\widetilde{T} \subseteq T \quad \operatorname{codim} \tilde{T}=10$.

$$
\text { codim (Hodxloai) } \leqslant 8
$$

Consider the image of the Veronese embedding $\mathbb{P}^{2} \hookrightarrow \mathbb{P}^{5}$ by
degree 2 monomials.
Z is hamolagas to another algebraic cyril $C=\sum_{i=1}^{s} r_{i} i_{i}$, such that \subseteq has bigger de form.

