# selfok <br> Hodge conjecture 

Hossein Movasati

IMPA,
www.impa.br/~hossein/

## A Course in Hodge Theory

With Emphasis on

Multiple Integrals

Hossein Movasati IMPA, Rio de Janeiro




A poem by Jalal al-Din Muhammad Balkhi. Calligraphy: nastaliqonline.ir. If I boil in the fire of my existence for a while, that is because I want to forget you for a while, to get a new soul and put away my wisdom, and then you become the wine of my glass.

Chapters 2: Prehistory: Elliptic and abelian integrals


Chapters 2: Lefschetz's puzzle and Picard's $\rho_{0}$-formula

$$
X \subseteq \mid P^{3} \quad X: f\left(x_{1}, x_{2}, x_{3}, x_{1}\right)=0=\mathbb{C}
$$

E' Picad $1900+$ Simpor


Chapters 5,6,7: Topology and Lefschetz' theorems

$$
\begin{aligned}
& \text { Sinmimeny } X^{\rightarrow} \subseteq 1 P^{N} \Theta \\
& H_{m}(X, \mathbb{Z})^{n=0,1}, \ldots 2 n \\
& \rightarrow H^{m}(X, \mathbb{Z}) \longrightarrow n=\operatorname{dem} X
\end{aligned}
$$

$\left[x_{i} \cdot x_{1} \cdot: x_{n+1}\right] \in 1 \rho^{n+1}$
$X: \mathbb{P}\left\{x_{0}^{d}+x_{1}^{d}+x_{2}^{d}+\cdots+i_{n+1}^{d}=0\right\}$
The dimension of the $n$-th cohomology of a smooth hypersurface $X$ of degree $d$ in $\mathbb{P}^{n+1}$ is given by
$\operatorname{dim}_{n}(X, \mathbb{Q})=$
where +0 if $n$ is odd and +1 of $n$ is even.

$$
\begin{aligned}
& S^{2} \rightarrow x \longrightarrow \longrightarrow\left(g^{2}=p(x),(x, y) \in C^{2}\right) P^{2} \\
& x_{0}^{d}+x_{1}^{d}+x_{2}^{d}+x_{3}^{d}=0 \\
& C=\left\{x^{d}+x^{d} x^{d}=\right\} \in\left\{x_{0}=0\right\}
\end{aligned}
$$

De Rham cohomology for complex ¿anifolds

$$
\begin{aligned}
& H_{d R}^{m}(X):=\frac{\text { closed }^{2} m \text {-foms le }}{\text { exact } C^{\infty} m \text {-fors. } / \mathbb{C}} \\
& H_{d R}^{m}(X) \simeq H^{m}(X, \mathbb{C}), \begin{array}{c}
\text { sunfor } \\
\text { cons }
\end{array}
\end{aligned}
$$

$X$ laaly $\mathbb{C}^{n} \ni\left[2, z_{2} \ldots n_{n}\right]$

$$
d z_{1}, d z_{2} \ldots d z_{n}, d z_{1}, \ldots d z_{n} .
$$

$\omega^{t}(p, q)$-forms in $X$ : locally it is givenby $* \alpha_{i} \Lambda-\alpha_{i p} \wedge$
 $H_{0 \text { odge }}{ }_{i n \alpha_{3} .} H^{m} d R(X) \simeq H H^{m p} \oplus H^{m-1,1} \oplus . \quad \oplus H^{0, m}$.

Chapter 8: Hodge conjecture without Hodge

$$
\text { Definition: } \left.\delta \in H_{m}(X, Z)\right)^{2} \text { is called a tody cole } H \text {. }
$$

## Computational Hodge conjecture

 prove the Weil conjectures] relied on finding enough algebraic cycles on algebraic varieties, and on this question one has made essentially no progress since the 1970s.... For the proposed definition [of Grothendieck on a category of pure motives] to be viable, one needs the existence of "enough" algebraic cycles. On this question almost no progress has been made, P. Deligne 2014....la construction de cycles algébriques intéressants, les progrès ont été maigres, P. Deligne 1994.

Do you believe in Hodge conjecture?


No $\rightarrow$ explicit examples computes.

Lefschetz $(1,1)$ theorem

$$
\left(\begin{array}{ll}
H \cdot C \quad \text { for } & \frac{m}{2}=\operatorname{dim}_{C} X \\
m=2 . \\
\text { divisors and cures in } X \\
m=2 n-2 \\
m=2 \\
m
\end{array}\right)
$$

Chapter 15,16,17: Fermat varieties

$$
\longrightarrow \xrightarrow{x_{0}^{d}+x_{1}^{d}+\cdots+x_{n+1}^{d}=0}
$$

Theorem (Ran 1980, Shioda $1 \$ 83$, Aoki-Shioda 1983) Weber
Suppose that either d is a prime number ord $=4$ ord in relatively prime with $(n+1)$ !. Then $\operatorname{Hodge}_{n}\left(X_{n}^{d}\right.$, Q $)$ jos generated by the homology classes of the linear cycles $\mathbb{P}^{n}$, and in $p^{\frac{n}{2}} c X$. particular, the Hodge conjecture for $X_{n}^{d}$ is true.

$$
x_{0}^{d}+x_{1}^{d}+\cdots=\frac{\left(x_{0}+\xi x_{1}\right)(-\cdots)}{\xi^{d}+1=0}+\frac{\left(z_{2}+\xi x_{3}\right)()}{1 / 0} .
$$



Chapter 18,19: Hunting for Hodge cycles after deformations $\qquad$

$$
X \subseteq 1 p^{n+1} X: f(2)=0 \rightarrow \text { nom er }
$$

$$
f=\left[t_{\alpha} x^{\alpha} \quad x^{\alpha}=x_{0}^{\alpha} \ldots x_{n+1}^{\alpha_{n+1}}\right.
$$

$$
X_{0}: \text { ferret }
$$




## A table from Chapter 19

| $\operatorname{dim}\left(X_{0}\right)$ | $\operatorname{dim}(\mathrm{T})$ | range of codimensions | L | CS | M | QS | V | Hodge numbe |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $n$ | $\binom{n+2}{3}$ | $\binom{\frac{n}{2}+1}{3},\binom{n+2}{\min \left\{3, \frac{n}{2}-2\right\}}$ |  |  |  |  |  | $h^{n, 0}, h^{n-1,1}, \ldots, h^{1}$ |
| 4 | 20 | 1,1 | 1 | 1 | 1 | 1 | 1 | $0,1,21,1, c$ |
| 6 | 56 | 4,8 | 4 | 6 | 7 | 8 | 10 | $0,0,8,71,8, c$ |
| 8 | 120 | 10,45 | 10 | 16 | 19 | 23 | 25 | $0,0,0,45,253,45$ |
| 10 | 220 | 20,220 | 20 | 32 | 38 | 45 | 47 | $0,0,0,1,220,925,22$ |
| 12 | 364 | 35,364 | 35 | 55 | 65 | 75 | 77 | $0,0,0,0,14,1001,3432,10$ |

Table: Codimensions of the components of the Hodge/special loci for cubic hypersurfaces.

$$
(d=3 . \quad n=6)<
$$

Veronese embedding

$$
\operatorname{dem} z=\left.3 \quad \underset{\sim}{\tilde{z}} \subset \mathbb{P}^{5} \subseteq\right|^{7 \Rightarrow} \mathbb{N}_{\tilde{z}}^{p}
$$

Consider the image $\bar{Z}$ of the Veronese embedding $\mathbb{P}^{2} \hookrightarrow \mathbb{P}^{5}$ by degree 2 monomials.


## Chapter 21: Some mathematical olympiad_ problems

