Gauss-Manin connection in disguise: Quasi Jacobi forms of index zero

Hossein Movasati

IMPA,
www.impa.br/~hossein/

Modular and Automorphic Forms \& Beyond, Monographs in Number Theory, World Scientific, to be published November 2021.

Why do we have to generalize modular/automorphic forms?

A consequence of Ehressman's fibaration theorem

 (1947)Let $\pi: \mathrm{X} \rightarrow \mathrm{T}$ be a family of smooth projective varieties, that is, $\mathrm{X} \subset \mathbb{P}^{N} \times \mathrm{T}, \pi$ is the projection on T and π has no singular points and values.

Theorem

Algebraic de Rham cohomology and Hodge filtraton after Grothendieck (1966) and Deligne (1970)

A proposition which seemed to me trivial!

Proposition

Let $X_{t}, t \in \mathrm{~T}$ be a family of smooth projective varieties and let X, X_{0} be two regular fibers of this family. We have an isomorphism

$$
\begin{equation*}
\left(H_{\mathrm{dR}}^{*}(X), F^{*}, \cup, \theta\right) \stackrel{\alpha}{\sim}\left(H_{\mathrm{dR}}^{*}\left(X_{0}\right), F_{0}^{*}, \cup, \theta_{0}\right) \tag{1}
\end{equation*}
$$

Proof.

...... SGA3-II: "IX 3 uses cohomology to obtain infinitesimal statements. XI 4 proves representability of the functor M of subgroupschemes of multiplicative type. XI 5 puts it all together....." (P. Deligne, personal communication, August 14, 2019)

Itacuatiara(written or painted stone): Varieties enhanced with ...

Ibiporanga: The moduli T of projective varieties enhanced with ...

Wishful thinking

The moduli space T is a quasi-affine variety over \mathbb{Q} and we have a universal family over it!

Elliptic curves after [Weierstrass, Klein, Fricke, Deligne, Katz(M. 2008, 2012)]

$$
\begin{gather*}
\mathrm{X}: y^{2}-4\left(x-t_{1}\right)^{3}+t_{2}\left(x-t_{1}\right)+t_{3}=0, \alpha=\left[\frac{d x}{y}\right], \omega=\left[\frac{x d x}{y}\right] \tag{2}\\
\mathrm{T}:=\operatorname{Spec}\left(\mathbb{C}\left[t_{1}, t_{2}, t_{3}, \frac{1}{27 t_{3}^{2}-t_{2}^{3}}\right]\right) .
\end{gather*}
$$

How about mixed Hodge structures?

We consider $H^{1}(X, Y), X$ an elliptic curve and $Y=\{O, P\}$:

$$
\begin{gathered}
W_{0} H_{\mathrm{dR}}^{1}(X, Y)=\operatorname{ker}\left(H_{\mathrm{dR}}^{1}(X, Y) \rightarrow H_{\mathrm{dR}}^{1}(X)\right) \\
W_{1} H_{\mathrm{dR}}^{1}(X, Y)=H_{\mathrm{dR}}^{1}(X, Y) \\
F^{1} H_{\mathrm{dR}}^{1}(X, Y) \cong F^{1} H_{\mathrm{dR}}^{1}(X)
\end{gathered}
$$

Ibiporanga with mixed Hodge structures

Theorem

$$
\mathrm{T}=\operatorname{Spec} \mathbb{C}\left[a, b, c, t_{1}, t_{2}, \frac{1}{\Delta}\right]
$$

where $\Delta=27 t_{3}^{2}-t_{2}^{3}$ and $t_{3}=4 a^{3}-t_{2} a-b^{2}$. Moreover, T admits the universal family given by
$X=\left\{y^{2}=4 x^{3}-t_{2} x-t_{3}\right\}, \quad Y=\{O, P\}, O=(0: 1: 0), P=(a: b:$
and the frame of differential forms
$d\left(\frac{x-a}{x}\right), \frac{d x}{y},\left(c-\frac{b}{2 a}\right) d\left(\frac{x-a}{x}\right)+t_{1} \frac{d x}{y}+\frac{x d x}{y}-d\left(\frac{y}{2 x}\right)$.

Gauss-Manin connection

Theorem
There are unique global vector fields R_{τ} and R_{z} on T such that

$$
\nabla_{\mathrm{R}_{\tau}}\left(\begin{array}{l}
\alpha_{1} \tag{3}\\
\alpha_{2} \\
\alpha_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right)
$$

and

$$
\nabla_{\mathrm{R}_{z}}\left(\begin{array}{l}
\alpha_{1} \tag{4}\\
\alpha_{2} \\
\alpha_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right)
$$

where ∇ is the Gauss-Manin connection of T .

More precisely, we let $t_{3}=4 a^{3}-t_{2} a-b^{2}$ and then

$$
\begin{gather*}
\mathrm{R}_{\tau}=\left(-2 a^{2}+2 a t_{1}+b c+\frac{t_{2}}{3}\right) \frac{\partial}{\partial a}+\left(6 a^{2} c-\frac{c t_{2}}{2}-3 a b+3 b t_{1}\right) \frac{\partial}{\partial b} \\
+\left(a c+c t_{1}-\frac{b}{2}\right) \frac{\partial}{\partial c}+\left(t_{1}^{2}-\frac{t_{2}}{12}\right) \frac{\partial}{\partial t_{1}}+\left(4 t_{1} t_{2}-6 t_{3}\right) \frac{\partial}{\partial t_{2}} \tag{5}\\
\mathrm{R}_{z}=b \frac{\partial}{\partial a}+\left(6 a^{2}-\frac{t_{2}}{2}\right) \frac{\partial}{\partial b}+\left(a+t_{1}\right) \frac{\partial}{\partial c} . \tag{6}
\end{gather*}
$$

The t-map

$$
\begin{gathered}
t: \mathbb{H} \times \mathbb{C} \rightarrow \mathrm{T} \\
\left(\begin{array}{ccc}
\int_{\delta_{1}} \alpha_{1} & \int_{\delta_{1}} \alpha_{2} & \int_{\delta_{1}} \alpha_{3} \\
\int_{\delta_{2}} \alpha_{1} & \int_{\delta_{2}} \alpha_{2} & \int_{\delta_{2}} \alpha_{3} \\
\int_{\delta_{3}} \alpha_{1} & \int_{\delta_{3}} \alpha_{2} & \int_{\delta_{3}} \alpha_{3}
\end{array}\right)=\left(\begin{array}{ccc}
-1 & z & 0 \\
0 & \tau & -1 \\
0 & 1 & 0
\end{array}\right)
\end{gathered}
$$

Theorem
The pullback of $a, b, c, t_{1}, t_{2}, t_{3}$ under the t-map are are

$$
\begin{gathered}
(2 \pi i)_{\wp(\tau, z),}(2 \pi i)^{\frac{3}{2}} \wp^{\prime}(\tau, z),-(2 \pi i)^{\frac{1}{2}} J_{1}(\tau, z), \\
-\frac{2 \pi i}{12} E_{2}(\tau), 12\left(\frac{2 \pi i}{12}\right)^{2} E_{4}(\tau),-8\left(\frac{2 \pi i}{12}\right)^{3} E_{6}(\tau),
\end{gathered}
$$

respectively, where

$$
\begin{gather*}
J_{1}(\tau, z)=y \frac{d}{d y} \log F(y, q) \tag{7}\\
y=-e^{2 \pi i z}, \quad q=e^{2 \pi i \tau} \\
F(\tau, z)=\frac{\theta_{1}(\tau, z)}{\eta^{3}(\tau)}=\left(y^{1 / 2}+y^{-1 / 2}\right) \prod_{m \geq 1} \frac{\left(1+y q^{m}\right)\left(1+y^{-1} q^{m}\right)}{\left(1-q^{m}\right)^{2}} \tag{8}\\
\theta(z, \tau)=\sum_{n=-\infty}^{+\infty} e^{2 \pi i n z+\pi i n^{2} \tau}, \quad z \in \mathbb{C}, \tau \in \mathbb{H}
\end{gather*}
$$

