Differential Equations and Algebraic Geometry

Hossein Movasati

IMPA,
www.impa.br/~hossein/

The talk is based on my lecture notes [Mov12] on quasi-modular forms. The most general context has been worked out in [Mov21].

Elliptic integrals

In many calculus books we find tables of integrals and there we never find a formula for elliptic integrals

$$
\begin{equation*}
\int_{a}^{b} \frac{Q(x) d x}{\sqrt{P(x)}} \tag{1}
\end{equation*}
$$

where $P(x)$ is a degree three polynomial in one variable x and with real coefficients, for simplicity we assume that it has real roots, and a, b are two consecutive roots of P or $\pm \infty$. Since Abel and Gauss it was known that if we choose P randomly (in other words for generic P) such integrals cannot be calculated in terms of until then well-known functions.

Elliptic integrals

Problem

Compute the indefinite integral

$$
\begin{equation*}
\int \frac{d x}{\sqrt{p(x)}} \tag{2}
\end{equation*}
$$

where p is a polynomial of degree 1 and 2. Compute it also when p is of degree 3 but it has double roots. These integrals are computable because $y^{2}=p(x)$ is a rational curve! Example:

$$
\int_{2}^{\infty} \frac{d x}{2(x+1) \sqrt{x-2}}=\left.\frac{\operatorname{tang}^{-1}\left(\frac{\sqrt{x-2}}{\sqrt{3}}\right)}{\sqrt{3}}\right|_{2} ^{\infty}=\frac{\pi}{2 \sqrt{3}}
$$

Problem

For particular examples of polynomials p of degree 3, there are some formulas for elliptic integrals 2 in terms of the values of the Gamma function on rational numbers. For instance, verify the equality

$$
\begin{aligned}
\int_{7}^{+\infty} \frac{d x}{\sqrt{x^{3}-35 x-98}} & =\frac{\Gamma\left(\frac{1}{7}\right) \Gamma\left(\frac{2}{7}\right) \Gamma\left(\frac{4}{7}\right)}{2 \pi i \sqrt{-7}} . \\
\int_{0}^{1} \frac{d x}{\sqrt{1-x^{3}}} & =\frac{\Gamma\left(\frac{1}{3}\right)^{2}}{2^{\frac{4}{3} 3^{\frac{1}{2}}} \pi} \\
\int_{0}^{1} \frac{d x}{\sqrt{x-x^{3}}} & =\frac{\Gamma\left(\frac{1}{4}\right)^{2}}{2^{\frac{3}{2}} \pi^{\frac{1}{2}}} .
\end{aligned}
$$

The Chowla-Selberg theorem, see for instance Gross's articles 1978 and 1979, describes this phenomenon in a complete way.

Geometrization

Figure: The elliptic curve $y^{2}=p(x)$ in the four dimensional space \mathbb{C}^{2}.

A one parameter family of elliptic curves

Figure: Elliptic curves: $y^{2}-x^{3}+12 x-4 \psi, \psi=-1.9,-1,0,2,3,5,10$

Picard-Fuchs equation

The elliptic integrals $\int_{\delta} \frac{d x}{y}$ (resp. $\int_{\delta} \frac{x d x}{y}$) satisfies the differential equation
$\frac{5}{36} I+2 \psi I^{\prime}+\left(\psi^{2}-4\right) I^{\prime \prime}=0 \quad\left(\right.$ resp. $\left.\frac{-7}{36} I+2 \psi I^{\prime}+\left(\psi^{2}-4\right) I^{\prime \prime}=0\right)$
which is called a Picard-Fuchs equation.

Gauss-Manin connection I

The matrix

$$
Y=\left(\begin{array}{ll}
\int_{\delta_{1}} \frac{d x}{y} & \int_{\delta_{2}} \frac{d x}{y} \\
\int_{\delta_{1}} \frac{x x d x}{y} & \int_{\delta_{2}} \frac{x d x}{y}
\end{array}\right)
$$

forms a fundamental system of the linear differential equation:

$$
Y^{\prime}=\frac{1}{\psi^{2}-4}\left(\begin{array}{cc}
\frac{-1}{6} \psi & \frac{1}{3} \tag{5}\\
\frac{-1}{3} & \frac{1}{6} \psi
\end{array}\right) Y
$$

that is, any solution of (5) is a linear combination of the columns of Y.

Hypergeometric functions

$$
Y=\left(\begin{array}{cc}
\frac{\pi i}{\sqrt{3}} F\left(\frac{1}{6}, \frac{5}{6}, 1 \left\lvert\, \frac{-\psi+2}{4}\right.\right) & \frac{\pi}{\sqrt{3}} F\left(\frac{1}{6}, \frac{5}{6}, 1 \left\lvert\, \frac{\psi+2}{4}\right.\right) \\
\frac{\pi i}{\sqrt{3}} F\left(\frac{-1}{6}, \frac{7}{6}, 1 \left\lvert\, \frac{-\psi+2}{4}\right.\right) & -\frac{\pi}{\sqrt{3}} F\left(\frac{-1}{6}, \frac{7}{6}, 1 \left\lvert\, \frac{\psi+2}{4}\right.\right)
\end{array}\right)
$$

where

$$
\begin{equation*}
F(a, b, c \mid z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n} n!} z^{n}, c \notin\{0,-1,-2,-3, \ldots\} \tag{6}
\end{equation*}
$$

Three parameter family of elliptic curve

$$
\begin{gathered}
E_{t}: y^{2}=4\left(x-t_{1}\right)^{3}-t_{2}\left(x-t_{1}\right)-t_{3} \\
t \in \operatorname{Spec}\left(\mathbb{C}\left[t_{1}, t_{2}, t_{3}, \frac{1}{\Delta}\right]\right), \Delta:=27 t_{3}^{2}-t_{2}^{3} .
\end{gathered}
$$

Gauss-Manin connection II

Problem
Let $P(x):=4\left(x-t_{1}\right)^{3}+t_{2}\left(x-t_{1}\right)+t_{3}$. We have
where

$$
\Delta:=27 t_{3}^{2}-t_{2}^{3}, \alpha:=3 t_{3} d t_{2}-2 t_{2} d t_{3}
$$

Classical moduli space

1. Any elliptic curve can be written in the Weierstrass format

$$
E_{t}: y^{2}=4 x^{3}-t_{2} x-t_{3}
$$

2. We have

$$
E_{k^{-6} t_{2}, k^{-4}} \cong E_{t_{2}, t_{3}}, \quad(x, y) \mapsto\left(k^{2} x, k^{3} y\right)
$$

3. The j-invariant $j:=\frac{t_{2}^{3}}{t_{2}^{3}-27 t_{3}^{2}}$ classifies elliptic curves.

Ibiporanga: A new moduli space

Ibiporanga: A new moduli space

End of Lecture 1

Ramanujan's relations between Eisenstein series

In 1916 Ramanujan verified the identities

$$
\left\{\begin{array}{l}
q \frac{\partial E_{2}}{\partial q}=\frac{1}{12}\left(E_{2}^{2}-E_{4}\right) \\
q \frac{\partial E_{4}}{\partial q}=\frac{1}{3}\left(E_{2} E_{4}-E_{6}\right) \tag{7}\\
q \frac{\partial E_{6}}{\partial q}=\frac{1}{2}\left(E_{2} E_{6}-E_{4}^{2}\right)
\end{array}\right.
$$

where E_{i} 's are the Eisenstein series:

$$
\begin{equation*}
E_{2 i}(q):=1+b_{i} \sum_{n=1}^{\infty}\left(\sum_{d \mid n} d^{2 i-1}\right) q^{n}, \quad i=1,2,3 \tag{8}
\end{equation*}
$$

and $\left(b_{1}, b_{2}, b_{3}\right)=(-24,240,-504)$.

Verifying few coefficients

Darboux-Halphen differential equation

Darboux in 1878 considered

$$
\mathrm{H}:\left\{\begin{array}{l}
\dot{t}_{1}=t_{1}\left(t_{2}+t_{3}\right)-t_{2} t_{3} \tag{9}\\
\dot{t}_{2}=t_{2}\left(t_{1}+t_{3}\right)-t_{1} t_{3} \\
\dot{t}_{3}=t_{3}\left(t_{1}+t_{2}\right)-t_{1} t_{2}
\end{array}\right.
$$

Halphen in 1881 found a solution in terms of the logarithmic derivatives of the null theta functions:

$$
t_{1}=2\left(\ln \theta_{4}(0 \mid \tau)\right)^{\prime}, t_{2}=2\left(\ln \theta_{2}(0 \mid \tau)\right)^{\prime}, t_{3}=2\left(\ln \theta_{3}(0 \mid \tau)\right)^{\prime}
$$

where

$$
\left\{\begin{array}{l}
\theta_{2}(0 \mid \tau):=\sum_{n=-\infty}^{\infty} q^{\frac{1}{2}\left(n+\frac{1}{2}\right)^{2}} \\
\theta_{3}(0 \mid \tau):=\sum_{n=-\infty}^{\infty} q^{\frac{1}{2} n^{2}} \\
\theta_{4}(0 \mid \tau):=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{\frac{1}{2} n^{2}}
\end{array}, q=e^{2 \pi i \tau}, \tau \in \mathbb{H},{ }^{\prime}=\frac{\partial}{\partial \tau}\right.
$$

Vector fields and differential forms

Gauss-Manin connection

The Gauss-Manin connection of the family

$$
y^{2}=4\left(x-t_{1}\right)^{3}+t_{2}\left(x-t_{1}\right)+t_{3}
$$

is reduced to the following linear differential equation (system)

$$
d Y=\left(\begin{array}{cc}
-\frac{3}{2} t_{1} \frac{\alpha}{\Delta}-\frac{1}{12} \frac{d \Delta}{\Delta}, & \frac{3}{2} \frac{\alpha}{\Delta} \\
d t_{1}-\frac{1}{6} t_{1} \frac{d \Delta}{\Delta}-\left(\frac{3}{2} t_{1}^{2}+\frac{1}{8} t_{2}\right) \frac{\alpha}{\Delta}, & \frac{3}{2} t_{1} \frac{\alpha}{\Delta}+\frac{1}{12} \frac{d \Delta}{\Delta}
\end{array}\right) Y
$$

where

$$
\Delta:=27 t_{3}^{2}-t_{2}^{3}, \alpha:=3 t_{3} d t_{2}-2 t_{2} d t_{3}
$$

Gauss-Manin connection

The Gauss-Manin connection of the family

$$
y^{2}=4\left(x-t_{1}\right)\left(x-t_{2}\right)\left(x-t_{3}\right)
$$

is reduced to the following linear differential equation (system) $d Y=A Y$, where

$$
\begin{gathered}
A=\frac{d t_{1}}{2\left(t_{1}-t_{2}\right)\left(t_{1}-t_{3}\right)}\left(\begin{array}{cc}
-t_{1} & 1 \\
t_{2} t_{3}-t_{1}\left(t_{2}+t_{3}\right) & t_{1}
\end{array}\right)+ \\
\frac{d t_{2}}{2\left(t_{2}-t_{1}\right)\left(t_{2}-t_{3}\right)}\left(\begin{array}{cc}
-t_{2} & 1 \\
t_{1} t_{3}-t_{2}\left(t_{1}+t_{3}\right) & t_{2}
\end{array}\right)+ \\
\frac{d t_{3}}{2\left(t_{3}-t_{1}\right)\left(t_{3}-t_{2}\right)}\left(\begin{array}{cc}
-t_{3} & 1 \\
t_{1} t_{2}-t_{3}\left(t_{1}+t_{2}\right) & t_{3}
\end{array}\right) .
\end{gathered}
$$

Explaining the computation of Gauss-Manin connection

Gauss-Manin connection along vector fields

There are unique vector fields e, h, f in the parameter space of $y^{2}=4\left(x-t_{1}\right)^{3}+t_{2}\left(x-t_{1}\right)+t_{3}$ such that

$$
A_{h}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad A_{f}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad A_{e}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

We can compute explicit expressions for e, f, h.

$$
\begin{gather*}
f=-\left(t_{1}^{2}-\frac{1}{12} t_{2}\right) \frac{\partial}{\partial t_{1}}-\left(4 t_{1} t_{2}-6 t_{3}\right) \frac{\partial}{\partial t_{2}}-\left(6 t_{1} t_{3}-\frac{1}{3} t_{2}^{2}\right) \frac{\partial}{\partial t_{3}}, \tag{10}\\
h=-6 t_{3} \frac{\partial}{\partial t_{3}}-4 t_{2} \frac{\partial}{\partial t_{2}}-2 t_{1} \frac{\partial}{\partial t_{1}}, e=\frac{\partial}{\partial t_{1}} .
\end{gather*}
$$

The Lie algebra $\mathfrak{s l}_{2}$

The \mathbb{C}-vector space generated by h, e, f equipped with the classical bracket of vector fields is isomorphic to the Lie Algebra $\mathfrak{s l}_{2}$, and hence, it gives a representation of $\mathfrak{s l}_{2}$ in the polynomial ring $\mathbb{Q}\left[t_{1}, t_{2}, t_{3}\right]$ which is infinite dimensional.

$$
\begin{equation*}
[h, e]=2 e, \quad[h, f]=-2 f, \quad[e, f]=h . \tag{11}
\end{equation*}
$$

There is a unique vector field D in the parametr space of $y^{2}=\left(x-t_{1}\right)\left(x-t_{2}\right)\left(x-t_{3}\right)$ such that

$$
A_{D}=\left[\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right]
$$

This is
$D=\left(t_{1}\left(t_{2}+t_{3}\right)-t_{2} t_{3}\right) \frac{\partial}{\partial t_{1}}+\left(t_{2}\left(t_{1}+t_{3}\right)-t_{1} t_{3}\right) \frac{\partial}{\partial t_{2}}+\left(t_{3}\left(t_{1}+t_{2}\right)-t_{1} t_{2}\right) \frac{\partial}{\partial t_{3}}$. and it is called the Darboux-Halphen vector field.

Vector field as an ODE

Ramanujan's ODE

The function $t=\left(t_{1}, t_{2}, t_{3}\right)=\left(a_{1} E_{2}(\tau), a_{2} E_{4}(\tau), a_{3} E_{6}(\tau)\right)$ with $\left(a_{1}, a_{2}, a_{3}\right)=\left(\frac{2 \pi i}{12}, 12\left(\frac{2 \pi i}{12}\right)^{2}, 8\left(\frac{2 \pi i}{12}\right)^{3}\right)$ satisfies the ODE's

$$
\left\{\begin{array}{l}
\dot{t}_{1}=t_{1}^{2}-\frac{1}{12} t_{2} \\
\dot{t}_{2}=4 t_{1} t_{2}-6 t_{3} \\
\dot{t}_{3}=6 t_{1} t_{3}-\frac{1}{3} t_{2}^{2}
\end{array}\right.
$$

where the derivation is with respect to τ.

Recovering Eisenstein from Ramanujan

Halphen property

H. Movasati.

Quasi-modular forms attached to elliptic curves, I.
Ann. Math. Blaise Pascal, 19(2):307-377, 2012.
國 H. Movasati.
Modular and Automorphic Forms \& Beyond.
Monographs in Number Theory, World Scientific, To be published November 2021, see author's webpage. 2021.

