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The talk is based on my lecture notes [Mov12] on
quasi-modular forms. The most general context has been
worked out in [Mov21].



Elliptic integrals

In many calculus books we find tables of integrals and there we
never find a formula for elliptic integrals
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where P(x) is a degree three polynomial in one variable x and
with real coefficients, for simplicity we assume that it has real
roots, and a, b are two consecutive roots of P or +oo. Since
Abel and Gauss it was known that if we choose P randomly (in
other words for generic P) such integrals cannot be calculated
in terms of until then well-known functions.



Elliptic integrals

Problem
Compute the indefinite integral

ax
Vp(x)

where p is a polynomial of degree 1 and 2. Compute it also
when p is of degree 3 but it has double roots. These integrals
are computable because y? = p(x) is a rational curve!
Example:
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Problem

For particular examples of polynomials p of degree 3, there are
some formulas for elliptic integrals 2 in terms of the values of
the Gamma function on rational numbers. For instance, verify
the equality
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The Chowla-Selberg theorem, see for instance Gross’s articles
1978 and 1979, describes this phenomenon in a complete way.



Geometrization
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Figure: The elliptic curve y? = p(x) in the four dimensional space C2.



A one parameter family of elliptic curves
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Figure: Elliptic curves: y? — x3 +12x —4¢, ¥ = —1.9,-1,0,2,3,5,10



Picard-Fuchs equation

The elliptic integrals [, % (resp. [; "%) satisfies the differential
equation

S 2012 A) =0 (resp. oL 1+2ul +(uP-4)I" = 0)
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which is called a Picard-Fuchs equation.



Gauss-Manin connection |

The matrix

f51 L}dfx f52 %X

forms a fundamental system of the linear differential equation:
1 ;1¢ 1
Y =—5— | ¢ S Y
(Y 8 ®

that is, any solution of (5) is a linear combination of the columns
of Y.

Y — <f51 % f52(jj(>



Hypergeometric functions
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Three parameter family of elliptic curve

Er:y?=4(x—t)° —t(x —t;) — tz

1
—), A:=278 — 8.



Gauss-Manin connection Il

Problem
Let P(x) :== 4(x — ;)3 + bo(x — ty) + 1.
d(/\/%) _ g - L%
d(/ xgxx)> dy — 149 — 32+ 1%,
where
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Classical moduli space

1. Any elliptic curve can be written in the Weierstrass format
Et:y2:4X3—t2X—t3
2. We have

Ex-on k= Epgy (X, ¥)— (k2x, K3y).

. . . 3 s _
3. The j-invariant j := - classifies elliptic curves.
2 3



Ibiporanga: A new moduli space



Ibiporanga: A new moduli space



End of Lecture 1



Ramanujan’s relations between Eisenstein series

E,Z: 1-—24’( Z—\— 574-« \
Inﬁ916 RamanUJan?ver'fued the identities
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where E;’s are the Eisenstein series: 21 —\ O\
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and (b1, by, bs) = (—24, 240, —504). & (n)= ;}f



Verifying few coefficients
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Darboux-Halphen differential equation

Darboux in 1878 considered

Halphenrin 1881 found a solution in terms ofthe logarithmic

derivatives of the null theta functions:
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Vector fields and differential forms
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Gauss-Manin connection

The Gauss-Manin connection of the family /é\

b1 ,
y2:4(X—t1)3+t2(X—t1)+t3 Cé’;i\‘i%ﬂ‘

is reduced to the following linear differenti_ajﬁm (system) 4\

A
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Gauss-Manin connection

The Gauss-Manin connection of the famil
Q L-rd ‘tl)izﬂ‘Bé\E
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is reduced to t owing linear differential equation (system)
dY = AY, where
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Explaining the computation of Gauss-Manin
connection bty
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Gauss-Manin connection along vector fields
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We can gethpute explicit expressions for e, f h. /
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The Lie algebra sl

Stcg-{(22) | era=o

The C-vector space generated by h, e. f equipped with the

classical bracket of vector fields is isomorphic to the Lie
Algebra 5[2, and hence, it gives a representation of sl, in the

polynomlal rin ti, t>, &3] which is infinite dimensional.

[ﬂ; 2e, [hfl=—2f, [ef]=h




There is a unique vector field D in the parametr space of /

_¥? = (x — t1)(x — b)(x —13) such that
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and it is called the Darboux-Halphen vector field. _—



Vector field as an ODE
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Ramanujan’s ODE

The function t = (t1, b, t3) (T) a2E4(T), 33E6(7')) with
(a1, a0, a3) = (%5,12(%5)2, 12 %) satisfies the ODE’s
=12 — 5b
r = 4t t2 - 61‘3 ,
| B3 =6ht;— 12

where the derivation is with respect to 7.



Recovering Eisenstein from Ramanujan
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Halphen property
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http://w3.impa.br/~hossein/tmp/ModularFormsBeyond.pdf 

