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The talk is based on my lecture notes [Mov12] on
quasi-modular forms. The most general context has been
worked out in [Mov21].



Elliptic integrals

In many calculus books we find tables of integrals and there we
never find a formula for elliptic integrals∫ b

a

Q(x)dx√
P(x)

, (1)

where P(x) is a degree three polynomial in one variable x and
with real coefficients, for simplicity we assume that it has real
roots, and a,b are two consecutive roots of P or ±∞. Since
Abel and Gauss it was known that if we choose P randomly (in
other words for generic P) such integrals cannot be calculated
in terms of until then well-known functions.



Elliptic integrals

Problem
Compute the indefinite integral∫

dx√
p(x)

, (2)

where p is a polynomial of degree 1 and 2. Compute it also
when p is of degree 3 but it has double roots. These integrals
are computable because y2 = p(x) is a rational curve!
Example:
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Problem
For particular examples of polynomials p of degree 3, there are
some formulas for elliptic integrals 2 in terms of the values of
the Gamma function on rational numbers. For instance, verify
the equality∫ +∞
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The Chowla-Selberg theorem, see for instance Gross’s articles
1978 and 1979, describes this phenomenon in a complete way.



Geometrization

Figure: The elliptic curve y2 = p(x) in the four dimensional space C2.



A one parameter family of elliptic curves
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Figure: Elliptic curves: y2− x3 + 12x − 4ψ, ψ = −1.9,−1,0,2,3,5,10



Picard-Fuchs equation

The elliptic integrals
∫
δ

dx
y (resp.

∫
δ

xdx
y ) satisfies the differential

equation

5
36

I+2ψI′+(ψ2−4)I′′ = 0 ( resp.
−7
36

I+2ψI′+(ψ2−4)I′′ = 0)

(4)
which is called a Picard-Fuchs equation.



Gauss-Manin connection I

The matrix

Y =

(∫
δ1

dx
y

∫
δ2

dx
y∫

δ1

xdx
y

∫
δ2

xdx
y

)
forms a fundamental system of the linear differential equation:
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1

ψ2 − 4

(−1
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)
Y , (5)

that is, any solution of (5) is a linear combination of the columns
of Y .



Hypergeometric functions
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zn, c 6∈ {0,−1,−2,−3, . . .}, (6)



Three parameter family of elliptic curve

Et : y2 = 4(x − t1)3 − t2(x − t1)− t3

t ∈ Spec(C[t1, t2, t3,
1
∆

]), ∆ := 27t2
3 − t3

2 .



Gauss-Manin connection II

Problem
Let P(x) := 4(x − t1)3 + t2(x − t1) + t3. We have

d
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where
∆ := 27t2

3 − t3
2 , α := 3t3dt2 − 2t2dt3.



Classical moduli space

1. Any elliptic curve can be written in the Weierstrass format
Et : y2 = 4x3 − t2x − t3

2. We have

Ek−6t2,k−4 ∼= Et2,t3 , (x , y) 7→ (k2x , k3y).

3. The j-invariant j :=
t3
2

t3
2−27t2

3
classifies elliptic curves.



Ibiporanga: A new moduli space



Ibiporanga: A new moduli space



End of Lecture 1



Ramanujan’s relations between Eisenstein series

In 1916 Ramanujan verified the identities
q ∂E2
∂q = 1

12(E2
2 − E4)

q ∂E4
∂q = 1

3(E2E4 − E6)

q ∂E6
∂q = 1

2(E2E6 − E2
4 )

, (7)

where Ei ’s are the Eisenstein series:

E2i(q) := 1 + bi

∞∑
n=1

∑
d |n

d2i−1

qn, i = 1,2,3 (8)

and (b1,b2,b3) = (−24,240,−504).



Verifying few coefficients



Darboux-Halphen differential equation

Darboux in 1878 considered

H :


ṫ1 = t1(t2 + t3)− t2t3
ṫ2 = t2(t1 + t3)− t1t3
ṫ3 = t3(t1 + t2)− t1t2

(9)

Halphen in 1881 found a solution in terms of the logarithmic
derivatives of the null theta functions:

t1 = 2(ln θ4(0|τ))′, t2 = 2(ln θ2(0|τ))′, t3 = 2(ln θ3(0|τ))′

where
θ2(0|τ) :=

∑∞
n=−∞ q

1
2 (n+ 1

2 )2

θ3(0|τ) :=
∑∞

n=−∞ q
1
2 n2

θ4(0|τ) :=
∑∞

n=−∞(−1)nq
1
2 n2

, q = e2πiτ , τ ∈ H, ′ =
∂

∂τ



Vector fields and differential forms



Gauss-Manin connection

The Gauss-Manin connection of the family

y2 = 4(x − t1)3 + t2(x − t1) + t3

is reduced to the following linear differential equation (system)

dY =

(
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where
∆ := 27t2

3 − t3
2 , α := 3t3dt2 − 2t2dt3.



Gauss-Manin connection

The Gauss-Manin connection of the family

y2 = 4(x − t1)(x − t2)(x − t3)

is reduced to the following linear differential equation (system)
dY = AY , where

A =
dt1

2(t1 − t2)(t1 − t3)

(
−t1 1

t2t3 − t1(t2 + t3) t1

)
+

dt2
2(t2 − t1)(t2 − t3)

(
−t2 1

t1t3 − t2(t1 + t3) t2

)
+

dt3
2(t3 − t1)(t3 − t2)

(
−t3 1

t1t2 − t3(t1 + t2) t3

)
.



Explaining the computation of Gauss-Manin
connection



Gauss-Manin connection along vector fields

There are unique vector fields e,h, f in the parameter space of
y2 = 4(x − t1)3 + t2(x − t1) + t3 such that

Ah =

[
1 0
0 −1

]
, Af =

[
0 1
0 0

]
, Ae =

[
0 0
1 0

]
.

We can compute explicit expressions for e, f ,h.

f = −(t2
1 −

1
12

t2)
∂

∂t1
− (4t1t2− 6t3)

∂

∂t2
− (6t1t3−

1
3

t2
2 )

∂

∂t3
, (10)

h = −6t3
∂

∂t3
− 4t2

∂

∂t2
− 2t1

∂

∂t1
, e =

∂

∂t1
.



The Lie algebra sl2

The C-vector space generated by h,e, f equipped with the
classical bracket of vector fields is isomorphic to the Lie
Algebra sl2, and hence, it gives a representation of sl2 in the
polynomial ring Q[t1, t2, t3] which is infinite dimensional.

[h,e] = 2e, [h, f ] = −2f , [e, f ] = h. (11)



There is a unique vector field D in the parametr space of
y2 = (x − t1)(x − t2)(x − t3) such that

AD =

[
0 −1
0 0

]
.

This is

D = (t1(t2+t3)−t2t3)
∂

∂t1
+(t2(t1+t3)−t1t3)

∂

∂t2
+(t3(t1+t2)−t1t2)

∂

∂t3
.

and it is called the Darboux-Halphen vector field.



Vector field as an ODE



Ramanujan’s ODE

The function t = (t1, t2, t3) = (a1E2(τ),a2E4(τ),a3E6(τ)) with
(a1,a2,a3) =

(2πi
12 ,12(2πi

12 )2,8(2πi
12 )3) satisfies the ODE’s

ṫ1 = t2
1 −

1
12 t2

ṫ2 = 4t1t2 − 6t3
ṫ3 = 6t1t3 − 1

3 t2
2

,

where the derivation is with respect to τ .



Recovering Eisenstein from Ramanujan



Halphen property
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