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Abstract:

In the B-model of mirror symmetry, period manipulations play
an important role for computing the Gromov-Witten invariants of
the A-model. This requires computing power series of periods,
finding a maximal unipotent monodromy, mirror map etc. In this
talk I will present a purely algebraic version of such
computations for Calabi-Yau varieties of arbitrary dimension. It
involves a construction of the moduli space of enhanced
Calabi-Yau varieties and modular vector fields on it. This will
give us an algebraic BCOV anomaly equation and will
eventually lead us to the the theory of Calabi-Yau modular
forms.
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Period manipulation in B-model:

Most of the time we do not need to know the CY3 geometry.
We only need to know the Picard-Fuchs equation/system of a
holomorphic (3,0)-form. For mirror quintic Xz , z ∈ P1 this is:

θ4 − z(θ +
1
5

)(θ +
2
5
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5
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4
5

) = 0, θ = z
∂

∂z
. (1)

A basis of the solution space of (1) is given by:

ψi(z) =
1
i!
∂ i

∂εi
(5−5εF (ε, z)), i = 0,1,2,3,

where
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5 + ε)n(4

5 + ε)n
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and (a)n := a(a + 1) · · · (a + n − 1) for n > 0 and (a)0 := 1.



Integration of four differential forms over four cycles

We use the base change
x11
x21
x31
x41

 =


0 0 1 0
0 0 0 1
0 5 5

2 −25
12

−5 0 −25
12 200 ζ(3)

(2πi)3




1
54ψ3
2πi
54 ψ2

(2πi)2

54 ψ1
(2πi)3

54 ψ0

 .

We have xi1 =
∫
δi
η, i = 1,2,3,4, where η is a holomorphic

three form on Xz and δi ∈ H3(Xz ,Z), i = 1,2,3,4 is a
symplectic basis.
Mirror map:

τ0 :=
x11

x21
, q := e2πiτ0 ,

16 periods:
xij := θj−1xi1, i , j = 1,2,3,4.



Seven holomorphic quantities at MUM:
The seven functions

t0 = x21, (2)
t1 = 54x21 ((6z − 1)x21 + 5(11z − 1)x22 + 25(6z − 1)x23 + 125(z − 1)x24) ,

t2 = 54x2
21 ((2z − 7)x21 + 15(z − 1)x22 + 25(z − 1)x23) ,

t3 = 54x3
21 ((z − 6)x21 + 5(z − 1)x22) ,

t4 = zx5
21,

t5 = 55(z − 1)x2
21 (x12x21 − x11x22) ,

t6 = 55(z − 1)x21 (3(x12x21 − x11x22) + 5(x13x21 − x11x23)) .

are holomorphic at z = 0 and so there are holomorphic
functions hi defined in some neighborhood of 0 ∈ C such that

ti = (
2πi
5

)di hi(e2πiτ0), (3)

where

di := 3(i + 1), i = 0,1,2,3,4, d5 := 11, d6 := 8.



q-expansion

q0 q1 q2 q3 q4 q5 q6

1
24 t0

1
120 1 175 117625 111784375 126958105626 160715581780591

−1
750 t1

1
30 3 930 566375 526770000 592132503858 745012928951258

−1
50 t2

7
10 107 50390 29007975 26014527500 28743493632402 35790559257796542

−1
5 t3

6
5 71 188330 100324275 86097977000 93009679497426 114266677893238146

−t4 0 -1 170 41475 32183000 32678171250 38612049889554
1

125 t5 − 1
125 15 938 587805 525369650 577718296190 716515428667010

1
25 t6 - 3

5 187 28760 16677425 15028305250 16597280453022 20644227272244012
1

125 t7 − 1
5 13 2860 1855775 1750773750 1981335668498 2502724752660128

1
10 t8 − 1

50 13 6425 6744325 8719953625 12525150549888 19171976431076873
1

10 t9 − 1
10 17 11185 12261425 16166719625 23478405649152 36191848368238417



Yukawa coupling

Y =
58(t4 − t5

0 )2

t3
5

(4)

= (
2πi
5

)−3
(

5 + 2875
q

1− q
+ 609250 · 23 q2

1− q2 + · · ·+ ndd3 qd

1− qd + · · ·
)

(5)
Here, nd is the virtual number of rational curves in a generic
quintic threefold. The numbers nd are also called instanton
numbers or BPS degeneracies (Computed for the fist time in
1991 by Candelas et al. )



Modular vector field or GMCD

ti ’s satisfy the ordinary differential equation R0, with ∗̇ := ∂∗
∂τ0

.

ṫ0 = 1
t5

(6 · 54t5
0 + t0t3 − 54t4)

ṫ1 = 1
t5

(−58t6
0 + 55t4

0 t1 + 58t0t4 + t1t3)

ṫ2 = 1
t5

(−3 · 59t7
0 − 54t5

0 t1 + 2 · 55t4
0 t2 + 3 · 59t2

0 t4 + 54t1t4 + 2t2t3)

ṫ3 = 1
t5

(−510t8
0 − 54t5

0 t2 + 3 · 55t4
0 t3 + 510t3

0 t4 + 54t2t4 + 3t2
3 )

ṫ4 = 1
t5

(56t4
0 t4 + 5t3t4)

ṫ5 = 1
t5

(−54t5
0 t6 + 3 · 55t4

0 t5 + 2t3t5 + 54t4t6)

ṫ6 = 1
t5

(3 · 55t4
0 t6 − 55t3

0 t5 − 2t2t5 + 3t3t6)

(6)



A new moduli space:

Let T be the moduli of pairs (X , [α1, α2, α3, α4]), where X is a
mirror quintic Calabi-Yau threefold and

αi ∈ F 4−i\F 5−i , i = 1,2,3,4,

[〈αi , αj〉] =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 ,

Here, H3
dR(X ) is the third algebraic de Rham cohomology of X ,

F i is the i-th piece of the Hodge filtration of H3
dR(X ), 〈·, ·〉 is the

intersection form in H3
dR(X ).



Gauss-Manin connection

We construct the universal family X→ T together with global
sections αi , i = 1,2,3,4 of the relative algebraic de Rham
cohomology H3(X/T). Let

∇ : H3
dR(X/T)→ Ω1

T ⊗OT H3
dR(X/T),

be the algebraic Gauss-Manin connection on H3(X/T).



[Mov15, Mov17]

There is a unique vector field R0 in T such the Gauss-Manin
connection of the universal family of mirror quintic Calabi-Yau
threefolds over T composed with the vector field R0, namely
∇R0 , satisfies:

∇R0


α1
α2
α3
α4

 =


0 1 0 0
0 0 Y 0
0 0 0 −1
0 0 0 0



α1
α2
α3
α4

 (7)

for some regular function Y in T. In fact,

T := Spec(Q[t0, t1, . . . , t6,
1

t4t5(t4 − t5
0 )

]), (8)

and the vector field R0 and Y are given as before.



Main goal: A new theory of modular forms

These are not classical modular forms! Modular type functions?
Zagier called classical modular forms for SL(2,Z):

Elliptic modular forms.

I decided to call these new theories:

CY modular forms



A general theorem: [Mov20]

Let X/T be a universal family of enhanced smooth projective
Calabi-Yau varieties of dimension n. There exist unique global
vector fields vj , j = 1,2, . . . ,hn−1,1

prim in T and unique

hn−i+1,i−1
prim × hn−i,i

prim matrices Y i−1,i
j , i = 1,2, . . . ,n with entries

as regular functions in T such that

∇vjα =


0 Y 01

j 0 · · · 0
0 0 Y 12

j · · · 0
...

...
...

. . .
...

0 0 0 · · · Y n−1,n
j

0 0 0 · · · 0

α

with



Y 01
j = [0,0, . . . ,0,1,0, . . . ,0], 1 is in the j-th place

Y i−1,i
j = (−1)n−1

(
Y n−i,n−i+1

j

)tr
,

vj(Y
i−1,i
k ) = vk (Y i−1,i

j ),

Y i−1,i
j Y i,i+1

k = Y i−1,i
k Y i,i+1

j .



Quasi affinness conjecture:

We know that the moduli of smooth Calabi-Yau varieties exists
as a quasi-projective variety (Viehweg 1995). This implies the
same statement for T. However,

Conjecture
The moduli space T is quasi-affine and moreover, the universal
family X→ T exists.



Elliptic curves: [Mov12]

T := Spec(Q[t1, t2, t3,
1

27t2
3 − t3

2
])

Universal family

y2 = 4(x − t1)3 − t2(x − t1)− t3, α1 = [
dx
y

], α2 = [
xdx
y

]

Ramanujan vector field:

R = (t2
1 −

1
12

t2)
∂

∂t1
+ (4t1t2 − 6t3)

∂

∂t2
+ (6t1t3 −

1
3

t2
2 )

∂

∂t3
.

(partially inspired by K. Saito’s work on primitive forms!)



Dwork family: M.+Nikdelan [MN16]

We consider the equivariant part of the cohomology of

Xψ ⊂ Pn+1 : xn+2
0 + xn+2

1 + . . .+ xn+2
n+1 − (n + 2)ψx0x1 . . . xn = 0,

under a finite group of automorphisims of Xψ:

dim(T) =


(n+1)(n+3)

4 + 1, if n is odd

n(n+2)
4 + 1, if n is even

, (9)

Note that dim(T) for n = 2k + 1 and n = 2k + 2 are the same.



For n = 1,2 one gets vector fields which can be solved with
modular forms. For instance, for n = 2 (family of K3 surfaces)
one gets

R2 :



ṫ1 = t3 − t1t2

ṫ2 = 2t2
1 −

1
2 t2

2

ṫ3 = −2t2t3 + 8t3
1

ṫ4 = −4t2t4

, ∗̇ = −1
5
·q · ∂∗

∂q
, t2

3 = 4(t4
1 − t4) (10)

which is solved by

10
6 t1( q

10) = 1
24(θ4

3(q2) + θ4
2(q2)),

10
4 t2( q

10) = 1
24(E2(q2) + 2E2(q4)),

104t4( q
10) = η8(q)η8(q2),

(11)



Conjecture
For the Dwork family, the CY modular forms for n = 2k + 2 are
in the algebraic closure of the field generated by CY modular
forms for n = 2k + 2!



Lattice polarized K3 surfaces: Alim 2014, [Mov20]

Let X/T be a universal family of enhanced K3 surfaces. There
are unique vector fields vk , k = 1,2, . . . ,h1,1

prim in T such that

Avk =

0 δj
k 0

0 0 −δi
k

0 0 0

 (12)

H0(T,OT) is going to be the algebra of automorphic forms and
their derivations for the classical mouli of lattice polarized K3
surfaces ΓZ\M.



CY3: Alim+M.+Scheidegger+Yau, [AMSY16]

There are unique vector fields Rk , k = 1,2, . . . ,h := h21 in T
and unique Yijk ∈ OT, i , j , k = 1,2, . . . ,h symmetric in i , j , k
such that

ARk =


0 δj

k 0 0
0 0 Ykij 0
0 0 0 δi

k
0 0 0 0

 , (13)

Further
Ri1Yi2i3i4 = Ri2Yi1i3i4 . (14)

dim(T) = h +
3h2 + 5h + 4

2
.



Elliptically fibered CY3 and CY4: Haghighat+M.+Yau,
[HMY17]

The computations in this article suggest that

Conjecture
There is a partial compactification T̄ = S ∪ T of T such that the
modular vector fields are tangent to S and, restricted to S they
have solutions by elliptic modular forms.



Abelian varieties: [Mov20],T. Fonseca 2017

There are unique vector fields vij , i , j = 1,2, . . . ,n, i ≤ j defined
over Q in the moduli space T of enhanced principally polarized
abelian varieties such that the Gauss-Manin connection Avij is
the constant matrix Cij , where all the entries of Cij are zero
except (i ,n + j) and (j ,n + i) entries which are −1. In other
words, the Gauss-Manin connection ∇ satisfies

∇vijαi = −αn+j , ∇αj = −αn+i , i , j = 1,2 . . . ,n

and ∇vijαk = 0 otherwise.



Action of G on T:

In all these cases there is an algebraic group G acting on T
which corresponds to base change in cohomology, and for CY3
it plays an essential role in the algebraic BCOV anomaly
equation. We have a Lie algebra homomorphisim from Lie(G)
to the set of (global) vector fields in T:

g 7→ vg.

(fundamental vector field). Therefore, we can talk about

∇vg , , g ∈ Lie(G).

It turn out that
∇vgα = gtrα.



G and Lie(G) for mirror quintic: [Mov17]

There are unique vector fields Ri , i = 0,1,2 . . . ,6 in T and a
unique regular function Y on T such that ∇Riα = ARiα, where

AR0
=


0 1 0 0
0 0 Y 0
0 0 0 −1
0 0 0 0

 , AR1
=


0 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0

 , AR2
=


−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 ,

AR3
=


0 0 0 0
−1 0 0 0
0 0 0 0
0 0 1 0

 , AR4
=


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 ,

AR5
=


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 , AR6
=


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0





AMSY Lie algebra

Lie brackets of Ri ’s.

R0 R1 R2 R3 R4 R5 R6
R0 0 R0 −R0 −R2 + R1 Y · R1 2R4 + Y · R3 R5
R1 −R0 0 0 R3 −2R4 −R5 0
R2 R0 0 0 −R3 0 −R5 −2R6
R3 R2 − R1 −R3 R3 0 −R5 −2R6 0
R4 −Y · R1 2R4 0 R5 0 0 0
R5 −2R4 − Y · R3 R5 R5 2R6 0 0 0
R6 −R5 0 2R6 0 0 0 0



BCOV anomaly for mirror quintic: [Mov17], for arbitrary
CY 3 see [AMSY16]

Apart from the Yukawa coupling, we have the generating
function of genus g Gromov-Witten invariants of the generic
quintic in P4.

Fhol
g :=

∞∑
d=0

Ng,dqd , g ≥ 2, Fhol
1 :=

25
12

ln q +
∞∑

d=1

N1,dqd

which are called genus g topological string partition function.

Falg
1 := ln(t

25
12
4 (t4 − t5

0 )
−5
12 t

1
2
5 ). (15)

RiF
alg
g = 0, i = 1,3, (16)

R2Falg
g = (2g − 2)Falg

g ,

R4Falg
g =

1
2

(R2
0Falg

g−1 +

g−1∑
r=1

R0Falg
r R0Falg

g−r ).

These collections of equations do not determine Falg
g uniquely.
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