CY modular forms

Hossein Movasati

IMPA, CMSA,
www.impa.br/~hossein/

Abstract:

In the B-model of mirror symmetry, period manipulations play an important role for computing the Gromov-Witten invariants of the A-model. This requires computing power series of periods, finding a maximal unipotent monodromy, mirror map etc. In this talk I will present a purely algebraic version of such computations for Calabi-Yau varieties of arbitrary dimension. It involves a construction of the moduli space of enhanced Calabi-Yau varieties and modular vector fields on it. This will give us an algebraic BCOV anomaly equation and will eventually lead us to the the theory of Calabi-Yau modular forms.

Figure: Published in US and China

Period manipulation in B-model:

Most of the time we do not need to know the CY3 geometry. We only need to know the Picard-Fuchs equation/system of a holomorphic (3,0)-form. For mirror quintic $X_{z}, z \in \mathbb{P}^{1}$ this is:

$$
\begin{equation*}
\theta^{4}-z\left(\theta+\frac{1}{5}\right)\left(\theta+\frac{2}{5}\right)\left(\theta+\frac{3}{5}\right)\left(\theta+\frac{4}{5}\right)=0, \quad \theta=z \frac{\partial}{\partial z} . \tag{1}
\end{equation*}
$$

A basis of the solution space of (1) is given by:

$$
\psi_{i}(z)=\frac{1}{i!} \frac{\partial^{i}}{\partial \epsilon^{i}}\left(5^{-5 \epsilon} F(\epsilon, z)\right), \quad i=0,1,2,3,
$$

where

$$
F(\epsilon, z):=\sum_{n=0}^{\infty} \frac{\left(\frac{1}{5}+\epsilon\right)_{n}\left(\frac{2}{5}+\epsilon\right)_{n}\left(\frac{3}{5}+\epsilon\right)_{n}\left(\frac{4}{5}+\epsilon\right)_{n}}{(1+\epsilon)_{n}^{4}} z^{\epsilon+n}
$$

and $(a)_{n}:=a(a+1) \cdots(a+n-1)$ for $n>0$ and $(a)_{0}:=1$.

Integration of four differential forms over four cycles

We use the base change

$$
\left(\begin{array}{l}
x_{11} \\
x_{21} \\
x_{31} \\
x_{41}
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 5 & \frac{5}{2} & -\frac{25}{12} \\
-5 & 0 & -\frac{25}{12} & 200\left(\frac{5(3)}{(2 \pi i)^{3}}\right.
\end{array}\right)\left(\begin{array}{c}
\frac{1}{54} \psi_{3} \\
\frac{2 \pi i}{54} \psi_{2} \\
\frac{(2 \pi)^{2}}{5} \psi_{1} \\
\frac{(2 \pi i)^{3}}{5^{4}} \psi_{0}
\end{array}\right) .
$$

We have $x_{i 1}=\int_{\delta_{i}} \eta, \quad i=1,2,3,4$, where η is a holomorphic three form on X_{z} and $\delta_{i} \in H_{3}\left(X_{z}, \mathbb{Z}\right), i=1,2,3,4$ is a symplectic basis.
Mirror map:

$$
\tau_{0}:=\frac{x_{11}}{x_{21}}, \quad q:=e^{2 \pi i \tau_{0}},
$$

16 periods:

$$
x_{i j}:=\theta^{j-1} x_{i 1}, \quad i, j=1,2,3,4 .
$$

Seven holomorphic quantities at MUM:

The seven functions

$$
\begin{aligned}
& t_{0}=x_{21}, \\
& t_{1}=5^{4} x_{21}\left((6 z-1) x_{21}+5(11 z-1) x_{22}+25(6 z-1) x_{23}+125(z-\right. \\
& t_{2}=5^{4} x_{21}^{2}\left((2 z-7) x_{21}+15(z-1) x_{22}+25(z-1) x_{23}\right) \\
& t_{3}=5^{4} x_{21}^{3}\left((z-6) x_{21}+5(z-1) x_{22}\right) \\
& t_{4}=z x_{21}^{5}, \\
& t_{5}=5^{5}(z-1) x_{21}^{2}\left(x_{12} x_{21}-x_{11} x_{22}\right), \\
& t_{6}=5^{5}(z-1) x_{21}\left(3\left(x_{12} x_{21}-x_{11} x_{22}\right)+5\left(x_{13} x_{21}-x_{11} x_{23}\right)\right)
\end{aligned}
$$

are holomorphic at $z=0$ and so there are holomorphic
functions h_{i} defined in some neighborhood of $0 \in \mathbb{C}$ such that

$$
\begin{equation*}
t_{i}=\left(\frac{2 \pi i}{5}\right)^{d_{i}} h_{i}\left(e^{2 \pi i \tau_{0}}\right) \tag{3}
\end{equation*}
$$

where

$$
d_{i}:=3(i+1), i=0,1,2,3,4, \quad d_{5}:=11, \quad d_{6}:=8
$$

q-expansion

	q^{0}	q^{1}	q^{2}	q^{3}	q^{4}	q^{5}	q^{6}
$\frac{1}{24} t_{0}$	$\frac{1}{120}$	1	175	117625	111784375	126958105626	160715581780591
$\frac{-1}{750} t_{1}$	$\frac{1}{30}$	3	930	566375	526770000	592132503858	745012928951258
$\frac{-1}{50} t_{2}$	$\frac{7}{10}$	107	50390	29007975	26014527500	28743493632402	35790559257796542
$\frac{-1}{5} t_{3}$	$\frac{6}{5}$	71	188330	100324275	86097977000	93009679497426	114266677893238146
$-t_{4}$	0	-1	170	41475	32183000	32678171250	38612049889554
$\frac{1}{125} t_{5}$	$-\frac{1}{125}$	15	938	587805	525369650	577718296190	716515428667010
$\frac{1}{25} t_{6}$	$-\frac{3}{5}$	187	28760	16677425	15028305250	16597280453022	20644227272244012
$\frac{1}{125} t_{7}$	$-\frac{1}{5}$	13	2860	1855775	1750773750	1981335668498	2502724752660128
$\frac{1}{10} t_{8}$	$-\frac{1}{50}$	13	6425	6744325	8719953625	12525150549888	19171976431076873
$\frac{1}{10} t_{9}$	$-\frac{1}{10}$	17	11185	12261425	16166719625	23478405649152	36191848368238417

Yukawa coupling

$$
\begin{gather*}
Y=\frac{5^{8}\left(t_{4}-t_{0}^{5}\right)^{2}}{t_{5}^{3}} \\
=\left(\frac{2 \pi i}{5}\right)^{-3}\left(5+2875 \frac{q}{1-q}+609250 \cdot 2^{3} \frac{q^{2}}{1-q^{2}}+\cdots+n_{d} d^{3} \frac{q^{d}}{1-q^{d}}\right. \tag{5}
\end{gather*}
$$

Here, n_{d} is the virtual number of rational curves in a generic quintic threefold. The numbers n_{d} are also called instanton numbers or BPS degeneracies (Computed for the fist time in 1991 by Candelas et al.)

Modular vector field or GMCD

t_{i} 's satisfy the ordinary differential equation R_{0}, with $\dot{*}:=\frac{\partial *}{\partial \tau_{0}}$.

$$
\left\{\begin{array}{l}
\dot{t}_{0}=\frac{1}{t_{5}}\left(6 \cdot 5^{4} t_{0}^{5}+t_{0} t_{3}-5^{4} t_{4}\right) \\
t_{1}=\frac{1}{t_{5}}\left(-5^{8} t_{0}^{6}+5^{4} t_{0}^{4} t_{1}+5^{8} t_{0} t_{4}+t_{1} t_{3}\right) \\
\dot{t}_{2}=\frac{1}{t_{5}}\left(-3 \cdot 5^{9} t_{0}^{7}-5^{4} t_{0}^{5} t_{1}+2 \cdot 5^{5} t_{0}^{4} t_{2}+3 \cdot 5^{9} t_{0}^{2} t_{4}+5^{4} t_{1} t_{4}+2 t_{2} t_{3}\right) \\
\dot{t}_{3}=\frac{1}{t_{5}}\left(-5^{10} t_{0}^{8}-5^{4} t_{0}^{5} t_{2}+3 \cdot 5^{5} t_{0}^{4} t_{3}+5^{10} t_{0}^{3} t_{4}+5^{4} t_{2} t_{4}+3 t_{3}^{2}\right) \\
\dot{t}_{4}=\frac{1}{t_{5}}\left(5^{6} t_{0}^{4} t_{4}+5 t_{3} t_{4}\right) \\
\grave{t}_{5}=\frac{1}{t_{5}}\left(-5^{4} t_{0}^{5} t_{6}+3 \cdot 5^{5} t_{0}^{4} t_{5}+2 t_{3} t_{5}+5^{4} t_{4} t_{6}\right) \\
\grave{t}_{6}=\frac{1}{t_{5}}\left(3 \cdot 5^{5} t_{0}^{4} t_{6}-5^{5} t_{0}^{3} t_{5}-2 t_{2} t_{5}+3 t_{3} t_{6}\right) \tag{6}
\end{array}\right.
$$

A new moduli space:

Let T be the moduli of pairs $\left(X,\left[\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right]\right)$, where X is a mirror quintic Calabi-Yau threefold and

$$
\begin{aligned}
& \alpha_{i} \in F^{4-i} \backslash F^{5-i}, \quad i=1,2,3,4, \\
& {\left[\left\langle\alpha_{i}, \alpha_{j}\right\rangle\right]=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right),}
\end{aligned}
$$

Here, $H_{\mathrm{dR}}^{3}(X)$ is the third algebraic de Rham cohomology of X, F^{i} is the i-th piece of the Hodge filtration of $\left.H_{\mathrm{dR}}^{3}(X),\langle\cdot\rangle,\right\rangle$ is the intersection form in $H_{\mathrm{dR}}^{3}(X)$.

Gauss-Manin connection

We construct the universal family $\mathrm{X} \rightarrow \mathrm{T}$ together with global sections $\alpha_{i}, \quad i=1,2,3,4$ of the relative algebraic de Rham cohomology $H^{3}(X / T)$. Let

$$
\nabla: H_{\mathrm{dR}}^{3}(\mathrm{X} / \mathrm{T}) \rightarrow \Omega_{\mathrm{T}}^{1} \otimes_{\mathcal{O}_{\mathrm{T}}} H_{\mathrm{dR}}^{3}(\mathrm{X} / \mathrm{T})
$$

be the algebraic Gauss-Manin connection on $H^{3}(X / T)$.

[Mov15, Mov17]

There is a unique vector field R_{0} in T such the Gauss-Manin connection of the universal family of mirror quintic Calabi-Yau threefolds over T composed with the vector field R_{0}, namely $\nabla_{\mathrm{R}_{0}}$, satisfies:

$$
\nabla_{\mathrm{R}_{0}}\left(\begin{array}{l}
\alpha_{1} \tag{7}\\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4}
\end{array}\right)=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & Y & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4}
\end{array}\right)
$$

for some regular function Y in T. In fact,

$$
\begin{equation*}
\mathrm{T}:=\operatorname{Spec}\left(\mathbb{Q}\left[t_{0}, t_{1}, \ldots, t_{6}, \frac{1}{t_{4} t_{5}\left(t_{4}-t_{0}^{5}\right)}\right]\right) \tag{8}
\end{equation*}
$$

and the vector field R_{0} and Y are given as before.

Main goal: A new theory of modular forms

These are not classical modular forms! Modular type functions?
Zagier called classical modular forms for $\operatorname{SL}(2, \mathbb{Z})$:
Elliptic modular forms.
I decided to call these new theories:
CY modular forms

A general theorem: [Mov20]

Let X / T be a universal family of enhanced smooth projective Calabi-Yau varieties of dimension n. There exist unique global vector fields $v_{j}, j=1,2, \ldots, h_{\text {prim }}^{n-1,1}$ in T and unique $\mathrm{h}_{\text {prim }}^{\mathrm{n}-i+1, i-1} \times \mathrm{h}_{\text {prim }}^{\mathrm{n}-i, i}$ matrices $Y_{j}^{i-1, i}, \quad i=1,2, \ldots, n$ with entries as regular functions in T such that

$$
\nabla_{v_{j}} \alpha=\left(\begin{array}{ccccc}
0 & Y_{j}^{01} & 0 & \cdots & 0 \\
0 & 0 & Y_{j}^{12} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & Y_{j}^{n-1, n} \\
0 & 0 & 0 & \cdots & 0
\end{array}\right) \alpha
$$

with

$$
\begin{aligned}
& Y_{j}^{01}=[0,0, \ldots, 0,1,0, \ldots, 0], \quad 1 \text { is in the } j \text {-th place } \\
& Y_{j}^{i-1, i}=(-1)^{n-1}\left(Y_{j}^{n-i, n-i+1}\right)^{\mathrm{tr}} \\
& v_{j}\left(Y_{k}^{i-1, i}\right)=v_{k}\left(Y_{j}^{i-1, i}\right), \\
& Y_{j}^{i-1, i} Y_{k}^{i, i+1}=Y_{k}^{i-1, i} Y_{j}^{i, i+1} .
\end{aligned}
$$

Quasi affinness conjecture:

We know that the moduli of smooth Calabi-Yau varieties exists as a quasi-projective variety (Viehweg 1995). This implies the same statement for T. However,

Conjecture
The moduli space T is quasi-affine and moreover, the universal family $\mathrm{X} \rightarrow \mathrm{T}$ exists.

Elliptic curves: [Mov12]

$$
\mathrm{T}:=\operatorname{Spec}\left(\mathbb{Q}\left[t_{1}, t_{2}, t_{3}, \frac{1}{27 t_{3}^{2}-t_{2}^{3}}\right]\right)
$$

Universal family

$$
y^{2}=4\left(x-t_{1}\right)^{3}-t_{2}\left(x-t_{1}\right)-t_{3}, \quad \alpha_{1}=\left[\frac{d x}{y}\right], \alpha_{2}=\left[\frac{x d x}{y}\right]
$$

Ramanujan vector field:

$$
\mathrm{R}=\left(t_{1}^{2}-\frac{1}{12} t_{2}\right) \frac{\partial}{\partial t_{1}}+\left(4 t_{1} t_{2}-6 t_{3}\right) \frac{\partial}{\partial t_{2}}+\left(6 t_{1} t_{3}-\frac{1}{3} t_{2}^{2}\right) \frac{\partial}{\partial t_{3}} .
$$

(partially inspired by K. Saito's work on primitive forms!)

Dwork family: M.+Nikdelan [MN16]

We consider the equivariant part of the cohomology of
$X_{\psi} \subset \mathbb{P}^{n+1}: x_{0}^{n+2}+x_{1}^{n+2}+\ldots+x_{n+1}^{n+2}-(n+2) \psi x_{0} x_{1} \ldots x_{n}=0$,
under a finite group of automorphisims of X_{ψ} :

$$
\operatorname{dim}(T)= \begin{cases}\frac{(n+1)(n+3)}{4}+1, & \text { if } n \text { is odd } \tag{9}\\ \frac{n(n+2)}{4}+1, & \text { if } n \text { is even }\end{cases}
$$

Note that $\operatorname{dim}(\mathrm{T})$ for $n=2 k+1$ and $n=2 k+2$ are the same.

For $n=1,2$ one gets vector fields which can be solved with modular forms. For instance, for $n=2$ (family of K3 surfaces) one gets

$$
\mathrm{R}_{2}:\left\{\begin{array}{l}
\dot{t}_{1}=t_{3}-t_{1} t_{2} \tag{10}\\
\dot{t}_{2}=2 t_{1}^{2}-\frac{1}{2} t_{2}^{2} \\
\dot{t}_{3}=-2 t_{2} t_{3}+8 t_{1}^{3} \\
\dot{t}_{4}=-4 t_{2} t_{4}
\end{array}, \dot{*}=-\frac{1}{5} \cdot q \cdot \frac{\partial *}{\partial q}, t_{3}^{2}=4\left(t_{1}^{4}-t_{4}\right)\right.
$$

which is solved by

$$
\left\{\begin{array}{l}
\frac{10}{6} t_{1}\left(\frac{q}{10}\right)=\frac{1}{24}\left(\theta_{3}^{4}\left(q^{2}\right)+\theta_{2}^{4}\left(q^{2}\right)\right), \tag{11}\\
\frac{10}{4} t_{2}\left(\frac{q}{10}\right)=\frac{1}{24}\left(E_{2}\left(q^{2}\right)+2 E_{2}\left(q^{4}\right)\right), \\
10^{4} t_{4}\left(\frac{q}{10}\right)=\eta^{8}(q) \eta^{8}\left(q^{2}\right),
\end{array}\right.
$$

Conjecture

For the Dwork family, the CY modular forms for $n=2 k+2$ are in the algebraic closure of the field generated by CY modular forms for $n=2 k+2$!

Lattice polarized K3 surfaces: Alim 2014, [Mov20]

Let X / T be a universal family of enhanced K3 surfaces. There are unique vector fields $v_{k}, k=1,2, \ldots, h_{\text {prim }}^{1,1}$ in T such that

$$
\mathrm{A}_{v_{k}}=\left(\begin{array}{ccc}
0 & \delta_{k}^{j} & 0 \tag{12}\\
0 & 0 & -\delta_{k}^{i} \\
0 & 0 & 0
\end{array}\right)
$$

$H^{0}\left(\mathrm{~T}, \mathcal{O}_{\mathrm{T}}\right)$ is going to be the algebra of automorphic forms and their derivations for the classical mouli of lattice polarized K3 surfaces $\Gamma_{\mathbb{Z}} \backslash M$.

CY3: Alim+M.+Scheidegger+Yau, [AMSY16]

There are unique vector fields $\mathrm{R}_{k}, k=1,2, \ldots, \mathrm{~h}:=\mathrm{h}^{21}$ in T and unique $Y_{i j k} \in \mathcal{O}_{\mathrm{T}}, \quad i, j, k=1,2, \ldots$, h symmetric in i, j, k such that

$$
A_{R_{k}}=\left(\begin{array}{cccc}
0 & \delta_{k}^{j} & 0 & 0 \tag{13}\\
0 & 0 & Y_{k i j} & 0 \\
0 & 0 & 0 & \delta_{k}^{i} \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Further

$$
\begin{gather*}
\mathrm{R}_{i_{1}} Y_{i_{2} i_{3} i_{4}}=\mathrm{R}_{i_{2}} Y_{i_{1} i_{3} i_{4}} \tag{14}\\
\operatorname{dim}(\mathrm{~T})=\mathrm{h}+\frac{3 \mathrm{~h}^{2}+5 \mathrm{~h}+4}{2}
\end{gather*}
$$

Elliptically fibered CY3 and CY4: Haghighat+M.+Yau, [HMY17]

The computations in this article suggest that
Conjecture
There is a partial compactification $\overline{\mathrm{T}}=S \cup \mathrm{~T}$ of T such that the modular vector fields are tangent to S and, restricted to S they have solutions by elliptic modular forms.

Abelian varieties: [Mov20],T. Fonseca 2017

There are unique vector fields $v_{i j}, i, j=1,2, \ldots, n, i \leq j$ defined over \mathbb{Q} in the moduli space T of enhanced principally polarized abelian varieties such that the Gauss-Manin connection $A_{v_{i j}}$ is the constant matrix $C_{i j}$, where all the entries of $C_{i j}$ are zero except $(i, \mathrm{n}+j)$ and $(j, \mathrm{n}+i)$ entries which are -1 . In other words, the Gauss-Manin connection ∇ satisfies

$$
\nabla_{v_{i j}} \alpha_{i}=-\alpha_{\mathrm{n}+j}, \quad \nabla \alpha_{j}=-\alpha_{\mathrm{n}+i}, \quad i, j=1,2 \ldots, \mathrm{n}
$$

and $\nabla_{v_{i j}} \alpha_{k}=0$ otherwise.

Action of G on T :

In all these cases there is an algebraic group G acting on T which corresponds to base change in cohomology, and for CY3 it plays an essential role in the algebraic BCOV anomaly equation. We have a Lie algebra homomorphisim from $\operatorname{Lie}(\mathrm{G})$ to the set of (global) vector fields in T :

$$
\mathfrak{g} \mapsto v_{\mathfrak{g}} .
$$

(fundamental vector field). Therefore, we can talk about

$$
\nabla_{v_{\mathfrak{g}}}, \quad, \mathfrak{g} \in \operatorname{Lie}(\mathrm{G})
$$

It turn out that

$$
\nabla_{v_{\mathfrak{g}}} \alpha=\mathfrak{g}^{\operatorname{tr}} \alpha
$$

G and $\operatorname{Lie}(\mathrm{G})$ for mirror quintic: [Mov17]

There are unique vector fields $\mathrm{R}_{i}, i=0,1,2 \ldots, 6$ in T and a unique regular function Y on T such that $\nabla_{\mathrm{R}_{i}} \alpha=\mathrm{A}_{\mathrm{R}_{i}} \alpha$, where

$$
\begin{gathered}
\mathrm{A}_{\mathrm{R}_{0}}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & Y & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0
\end{array}\right), \mathrm{A}_{\mathrm{R}_{1}}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \mathrm{A}_{\mathrm{R}_{2}}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
1
\end{array}\right), \\
\mathrm{A}_{\mathrm{R}_{3}}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), \mathrm{A}_{\mathrm{R}_{4}}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \\
\mathrm{A}_{\mathrm{R}_{5}}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right), \mathrm{A}_{R_{6}}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

AMSY Lie algebra

Lie brackets of R_{i} 's.

	R_{0}	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}
R_{0}	0	R_{0}	$-\mathrm{R}_{0}$	$-\mathrm{R}_{2}+\mathrm{R}_{1}$	$Y \cdot \mathrm{R}_{1}$	$2 \mathrm{R}_{4}+Y \cdot \mathrm{R}_{3}$	R_{5}
R_{1}	$-\mathrm{R}_{0}$	0	0	R_{3}	$-2 \mathrm{R}_{4}$	$-\mathrm{R}_{5}$	0
R_{2}	R_{0}	0	0	$-\mathrm{R}_{3}$	0	$-\mathrm{R}_{5}$	$-2 \mathrm{R}_{6}$
R_{3}	$\mathrm{R}_{2}-\mathrm{R}_{1}$	$-\mathrm{R}_{3}$	R_{3}	0	$-\mathrm{R}_{5}$	$-2 \mathrm{R}_{6}$	0
R_{4}	$-Y \cdot \mathrm{R}_{1}$	R_{4}	0	R_{5}	0	0	0
R_{5}	$-2 \mathrm{R}_{4}-Y \cdot \mathrm{R}_{3}$	R_{5}	R_{5}	$2 \mathrm{R}_{6}$	0	0	0
R_{6}	$-\mathrm{R}_{5}$	0	$2 \mathrm{R}_{6}$	0	0	0	0

BCOV anomaly for mirror quintic: [Mov17], for arbitrary CY3 see [AMSY16]

Apart from the Yukawa coupling, we have the generating function of genus g Gromov-Witten invariants of the generic quintic in \mathbb{P}^{4}.

$$
\mathrm{F}_{g}^{\mathrm{hol}}:=\sum_{d=0}^{\infty} N_{g, d} q^{d}, g \geq 2, \quad \mathrm{~F}_{1}^{\mathrm{hol}}:=\frac{25}{12} \ln q+\sum_{d=1}^{\infty} N_{1, d} q^{d}
$$

which are called genus g topological string partition function.

$$
\begin{align*}
& \mathrm{F}_{1}^{\mathrm{alg}}:=\ln \left(t_{4}^{\frac{25}{12}}\left(t_{4}-t_{0}^{5}\right)^{-\frac{5}{12}} t_{5}^{\frac{1}{2}}\right) . \tag{15}\\
& \mathrm{R}_{i} \mathrm{~F}_{g}^{\mathrm{alg}}=0, \quad i=1,3, \tag{16}\\
& \mathrm{R}_{2} \mathrm{~F}_{g}^{\text {alg }}=(2 g-2) \mathrm{F}_{g}^{\text {alg }}, \\
& \mathrm{R}_{4} \mathrm{~F}_{g}^{\text {alg }}=\frac{1}{2}\left(\mathrm{R}_{0}^{2} \mathrm{~F}_{g-1}^{\mathrm{alg}}+\sum_{r=1}^{g-1} \mathrm{R}_{0} \mathrm{~F}_{r}^{\mathrm{alg}} \mathrm{R}_{0} \mathrm{~F}_{g-r}^{\mathrm{alg}}\right) .
\end{align*}
$$

These collections of equations do not determine $\mathrm{F}_{g}^{\text {alg }}$ uniquely.
M. Alim, H. Movasati, E. Scheidegger, and S.-T. Yau.

Gauss-Manin connection in disguise: Calabi-Yau threefolds.
Comm. Math. Phys., 334(3):889-914, 2016.
B. Haghighat, H. Movasati, and S.-T. Yau.

Calabi-Yau modular forms in limit: Elliptic Fibrations.
Communications in Number Theory and Physics, 11:879-912, 2017.

H. Movasati and Y. Nikdelan.

Gauss-Manin Connection in Disguise: Dwork Family.
ArXiv e-prints, March 2016.
H. Movasati.

Quasi-modular forms attached to elliptic curves, I.
Ann. Math. Blaise Pascal, 19(2):307-377, 2012.
H. Movasati.

Modular-type functions attached to mirror quintic Calabi-Yau varieties.
Math. Zeit., 281, Issue 3, pp. 907-929(3):907-929, 2015.
H. Movasati.

Gauss-Manin connection in disguise: Calabi-Yau modular forms.
Surveys of Modern Mathematics, Int. Press, Boston., 2017.
H. Movasati.

Modular and Automorphic Forms \& Beyond.
Book under preparation, see author's webpage. 2020.

