CY modular forms

Hossein Movasati

IMPA, CMSA, www.impa.br/~hossein/

Abstract:

In the B-model of mirror symmetry, period manipulations play an important role for computing the Gromov-Witten invariants of the A-model. This requires computing power series of periods, finding a maximal unipotent monodromy, mirror map etc. In this talk I will present a purely algebraic version of such computations for Calabi-Yau varieties of arbitrary dimension. It involves a construction of the moduli space of enhanced Calabi-Yau varieties and modular vector fields on it. This will give us an algebraic BCOV anomaly equation and will eventually lead us to the the theory of Calabi-Yau modular forms.

Figure: Published in US and China

(日)

Period manipulation in B-model:

Most of the time we do not need to know the *CY*3 geometry. We only need to know the Picard-Fuchs equation/system of a holomorphic (3, 0)-form. For mirror quintic $X_z, z \in \mathbb{P}^1$ this is:

$$\theta^4 - z(\theta + \frac{1}{5})(\theta + \frac{2}{5})(\theta + \frac{3}{5})(\theta + \frac{4}{5}) = 0, \quad \theta = z\frac{\partial}{\partial z}.$$
 (1)

A basis of the solution space of (1) is given by:

$$\psi_i(z) = \frac{1}{i!} \frac{\partial^i}{\partial \epsilon^i} (5^{-5\epsilon} F(\epsilon, z)), \quad i = 0, 1, 2, 3,$$

where

$$F(\epsilon, z) := \sum_{n=0}^{\infty} \frac{(\frac{1}{5} + \epsilon)_n (\frac{2}{5} + \epsilon)_n (\frac{3}{5} + \epsilon)_n (\frac{4}{5} + \epsilon)_n}{(1 + \epsilon)_n^4} z^{\epsilon+n}$$

and $(a)_n := a(a+1)\cdots(a+n-1)$ for n > 0 and $(a)_0 := 1$.

◆□ → ◆□ → ◆ = → ◆ = → のへで

Integration of four differential forms over four cycles

We use the base change

$$\begin{pmatrix} x_{11} \\ x_{21} \\ x_{31} \\ x_{41} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 5 & \frac{5}{2} & -\frac{25}{12} \\ -5 & 0 & -\frac{25}{12} & 200 \frac{\zeta(3)}{(2\pi i)^3} \end{pmatrix} \begin{pmatrix} \frac{1}{5^4} \psi_3 \\ \frac{2\pi i}{5^4} \psi_2 \\ \frac{(2\pi i)^2}{5^4} \psi_1 \\ \frac{(2\pi i)^3}{5^4} \psi_0 \end{pmatrix}$$

We have $x_{i1} = \int_{\delta_i} \eta$, i = 1, 2, 3, 4, where η is a holomorphic three form on X_z and $\delta_i \in H_3(X_z, \mathbb{Z})$, i = 1, 2, 3, 4 is a symplectic basis. **Mirror map:**

$$au_0 := rac{x_{11}}{x_{21}}, \ \ q := e^{2\pi i au_0},$$

16 periods:

$$x_{ij} := \theta^{j-1} x_{i1}, \ i, j = 1, 2, 3, 4.$$

<□▶ <圖▶ < 差▶ < 差▶ = 差 = のへで

Seven holomorphic quantities at MUM:

The seven functions

$$\begin{split} t_0 &= x_{21}, \\ t_1 &= 5^4 x_{21} \left((6z-1) x_{21} + 5(11z-1) x_{22} + 25(6z-1) x_{23} + 125(z-t_2) \right) \\ t_2 &= 5^4 x_{21}^2 \left((2z-7) x_{21} + 15(z-1) x_{22} + 25(z-1) x_{23} \right), \\ t_3 &= 5^4 x_{21}^3 \left((z-6) x_{21} + 5(z-1) x_{22} \right), \\ t_4 &= z x_{21}^5, \\ t_5 &= 5^5 (z-1) x_{21}^2 \left(x_{12} x_{21} - x_{11} x_{22} \right), \\ t_6 &= 5^5 (z-1) x_{21} \left(3(x_{12} x_{21} - x_{11} x_{22} \right) + 5(x_{13} x_{21} - x_{11} x_{23}) \right). \end{split}$$

are holomorphic at z = 0 and so there are holomorphic functions h_i defined in some neighborhood of $0 \in \mathbb{C}$ such that

$$t_i = (\frac{2\pi i}{5})^{d_i} h_i(e^{2\pi i \tau_0}),$$
(3)

э

where

$$d_i := 3(i+1), i = 0, 1, 2, 3, 4, d_5 := 11, d_6 := 8.$$

q-expansion

	q^0	q^1	q^2	q^3	q^4	q^5	q^6	
$\frac{1}{24}t_0$	$\frac{1}{120}$	1	175	117625	111784375	126958105626	160715581780591	
$\frac{-1}{750}t_1$	$\frac{1}{30}$	3	930	566375	526770000	592132503858	745012928951258	
$\frac{-1}{50}t_2$	$\frac{7}{10}$	107	50390	29007975	26014527500	28743493632402	35790559257796542	
$\frac{-1}{5}t_3$	65	71	188330	100324275	86097977000	93009679497426	114266677893238146	
$-t_4$	Ō	-1	170	41475	32183000	32678171250	38612049889554	
$\frac{1}{125}t_5$	$-\frac{1}{125}$	15	938	587805	525369650	577718296190	716515428667010	
$\frac{1}{25}t_6$	- 35	187	28760	16677425	15028305250	16597280453022	20644227272244012	
$\frac{1}{125}t_7$	$-\frac{1}{5}$	13	2860	1855775	1750773750	1981335668498	2502724752660128	
$\frac{1}{10}t_8$	$-\frac{1}{50}$	13	6425	6744325	8719953625	12525150549888	19171976431076873	
$\frac{1}{10}t_9$	$-\frac{1}{10}$	17	11185	12261425	16166719625	23478405649152	36191848368238417	

Yukawa coupling

$$Y = \frac{5^8 (t_4 - t_0^5)^2}{t_5^3}$$
(4)
= $(\frac{2\pi i}{5})^{-3} \left(5 + 2875 \frac{q}{1-q} + 609250 \cdot 2^3 \frac{q^2}{1-q^2} + \dots + n_d d^3 \frac{q^d}{1-q^d} \right)$ (5)

(ロ) (同) (三) (三) (三) (○) (○)

Here, n_d is the virtual number of rational curves in a generic quintic threefold. The numbers n_d are also called instanton numbers or BPS degeneracies (Computed for the fist time in 1991 by Candelas et al.)

Modular vector field or GMCD

 t_i 's satisfy the ordinary differential equation R_0 , with $\dot{*} := \frac{\partial *}{\partial \tau_0}$.

$$\begin{cases} \dot{t}_{0} = \frac{1}{t_{5}} (6 \cdot 5^{4} t_{0}^{5} + t_{0} t_{3} - 5^{4} t_{4}) \\ \dot{t}_{1} = \frac{1}{t_{5}} (-5^{8} t_{0}^{6} + 5^{5} t_{0}^{4} t_{1} + 5^{8} t_{0} t_{4} + t_{1} t_{3}) \\ \dot{t}_{2} = \frac{1}{t_{5}} (-3 \cdot 5^{9} t_{0}^{7} - 5^{4} t_{0}^{5} t_{1} + 2 \cdot 5^{5} t_{0}^{4} t_{2} + 3 \cdot 5^{9} t_{0}^{2} t_{4} + 5^{4} t_{1} t_{4} + 2 t_{2} t_{3}) \\ \dot{t}_{3} = \frac{1}{t_{5}} (-5^{10} t_{0}^{8} - 5^{4} t_{0}^{5} t_{2} + 3 \cdot 5^{5} t_{0}^{4} t_{3} + 5^{10} t_{0}^{3} t_{4} + 5^{4} t_{2} t_{4} + 3 t_{3}^{2}) \\ \dot{t}_{4} = \frac{1}{t_{5}} (5^{6} t_{0}^{4} t_{4} + 5 t_{3} t_{4}) \\ \dot{t}_{5} = \frac{1}{t_{5}} (-5^{4} t_{0}^{5} t_{6} + 3 \cdot 5^{5} t_{0}^{4} t_{5} + 2 t_{3} t_{5} + 5^{4} t_{4} t_{6}) \\ \dot{t}_{6} = \frac{1}{t_{5}} (3 \cdot 5^{5} t_{0}^{4} t_{6} - 5^{5} t_{0}^{3} t_{5} - 2 t_{2} t_{5} + 3 t_{3} t_{6}) \end{cases}$$

$$(6)$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

A new moduli space:

Let T be the moduli of pairs (X, [α_1 , α_2 , α_3 , α_4]), where X is a mirror quintic Calabi-Yau threefold and

$$\alpha_i \in F^{4-i} \setminus F^{5-i}, \quad i = 1, 2, 3, 4,$$
$$[\langle \alpha_i, \alpha_j \rangle] = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix},$$

Here, $H^3_{dR}(X)$ is the third algebraic de Rham cohomology of X, F^i is the *i*-th piece of the Hodge filtration of $H^3_{dR}(X)$, $\langle \cdot, \cdot \rangle$ is the intersection form in $H^3_{dR}(X)$.

Gauss-Manin connection

We construct the universal family $X \rightarrow T$ together with global sections α_i , i = 1, 2, 3, 4 of the relative algebraic de Rham cohomology $H^3(X/T)$. Let

$$\nabla: H^3_{dR}(X/T) \to \Omega^1_T \otimes_{\mathcal{O}_T} H^3_{dR}(X/T),$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

be the algebraic Gauss-Manin connection on $H^3(X/T)$.

[Mov15, Mov17]

There is a unique vector field R_0 in T such the Gauss-Manin connection of the universal family of mirror quintic Calabi-Yau threefolds over T composed with the vector field R_0 , namely ∇_{R_0} , satisfies:

$$\nabla_{\mathsf{R}_{0}} \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \\ \alpha_{4} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & Y & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \\ \alpha_{4} \end{pmatrix}$$
(7)

for some regular function Y in T. In fact,

$$\mathsf{T} := \operatorname{Spec}(\mathbb{Q}[t_0, t_1, \dots, t_6, \frac{1}{t_4 t_5 (t_4 - t_0^5)}]), \tag{8}$$

and the vector field R_0 and Y are given as before.

Main goal: A new theory of modular forms

These are not classical modular forms! Modular type functions? Zagier called classical modular forms for $SL(2, \mathbb{Z})$:

Elliptic modular forms.

I decided to call these new theories:

CY modular forms

(日) (日) (日) (日) (日) (日) (日)

A general theorem: [Mov20]

Let X/T be a universal family of enhanced smooth projective Calabi-Yau varieties of dimension *n*. There exist unique global vector fields v_j , $j = 1, 2, ..., h_{\text{prim}}^{n-1,1}$ in T and unique $h_{\text{prim}}^{n-i+1,i-1} \times h_{\text{prim}}^{n-i,i}$ matrices $Y_j^{i-1,i}$, i = 1, 2, ..., n with entries as regular functions in T such that

$$\nabla_{\mathbf{v}_{j}} \alpha = \begin{pmatrix} 0 & Y_{j}^{01} & 0 & \cdots & 0 \\ 0 & 0 & Y_{j}^{12} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & Y_{j}^{n-1,n} \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} \alpha$$

(日) (日) (日) (日) (日) (日) (日)

with

$$\begin{split} Y_{j}^{01} &= [0, 0, \dots, 0, 1, 0, \dots, 0], \quad 1 \text{ is in the } j\text{-th place} \\ Y_{j}^{i-1,i} &= (-1)^{n-1} \left(Y_{j}^{n-i,n-i+1} \right)^{\text{tr}}, \\ v_{j}(Y_{k}^{i-1,i}) &= v_{k}(Y_{j}^{i-1,i}), \\ Y_{j}^{i-1,i}Y_{k}^{i,i+1} &= Y_{k}^{i-1,i}Y_{j}^{i,i+1}. \end{split}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Quasi affinness conjecture:

We know that the moduli of smooth Calabi-Yau varieties exists as a quasi-projective variety (Viehweg 1995). This implies the same statement for T. However,

Conjecture

The moduli space T is quasi-affine and moreover, the universal family $X \to T$ exists.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Elliptic curves: [Mov12]

$$\mathsf{T} := \operatorname{Spec}(\mathbb{Q}[t_1, t_2, t_3, \frac{1}{27t_3^2 - t_2^3}])$$

Universal family

$$y^2 = 4(x - t_1)^3 - t_2(x - t_1) - t_3, \ \alpha_1 = [\frac{dx}{y}], \ \alpha_2 = [\frac{xdx}{y}]$$

Ramanujan vector field:

$$\mathsf{R} = (t_1^2 - \frac{1}{12}t_2)\frac{\partial}{\partial t_1} + (4t_1t_2 - 6t_3)\frac{\partial}{\partial t_2} + (6t_1t_3 - \frac{1}{3}t_2^2)\frac{\partial}{\partial t_3}.$$

(partially inspired by K. Saito's work on primitive forms!)

Dwork family: M.+Nikdelan [MN16]

We consider the equivariant part of the cohomology of

$$X_{\psi} \subset \mathbb{P}^{n+1}$$
: $x_0^{n+2} + x_1^{n+2} + \ldots + x_{n+1}^{n+2} - (n+2)\psi x_0 x_1 \ldots x_n = 0$,
under a finite group of automorphisims of X_{ψ} :

dim(T) =
$$\begin{cases} \frac{(n+1)(n+3)}{4} + 1, & \text{if } n \text{ is odd} \\ \frac{n(n+2)}{4} + 1, & \text{if } n \text{ is even} \end{cases}$$
, (9)

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Note that dim(T) for n = 2k + 1 and n = 2k + 2 are the same.

For n = 1, 2 one gets vector fields which can be solved with modular forms. For instance, for n = 2 (family of K3 surfaces) one gets

$$\mathsf{R}_{2}: \begin{cases} \dot{t}_{1} = t_{3} - t_{1}t_{2} \\ \dot{t}_{2} = 2t_{1}^{2} - \frac{1}{2}t_{2}^{2} \\ \dot{t}_{3} = -2t_{2}t_{3} + 8t_{1}^{3} \\ \dot{t}_{4} = -4t_{2}t_{4} \end{cases}, \dot{*} = -\frac{1}{5} \cdot q \cdot \frac{\partial *}{\partial q}, \quad t_{3}^{2} = 4(t_{1}^{4} - t_{4})$$
(10)

which is solved by

$$\begin{cases} \frac{10}{6}t_{1}(\frac{q}{10}) = \frac{1}{24}(\theta_{3}^{4}(q^{2}) + \theta_{2}^{4}(q^{2})), \\\\ \frac{10}{4}t_{2}(\frac{q}{10}) = \frac{1}{24}(E_{2}(q^{2}) + 2E_{2}(q^{4})), \\\\ 10^{4}t_{4}(\frac{q}{10}) = \eta^{8}(q)\eta^{8}(q^{2}), \end{cases}$$
(11)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Conjecture

For the Dwork family, the CY modular forms for n = 2k + 2 are in the algebraic closure of the field generated by CY modular forms for n = 2k + 2!

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Lattice polarized K3 surfaces: Alim 2014, [Mov20]

Let X/T be a universal family of enhanced K3 surfaces. There are unique vector fields v_k , $k = 1, 2, ..., h_{\text{prim}}^{1,1}$ in T such that

$$A_{\nu_k} = \begin{pmatrix} 0 & \delta_k^j & 0 \\ 0 & 0 & -\delta_k^j \\ 0 & 0 & 0 \end{pmatrix}$$
(12)

(日) (日) (日) (日) (日) (日) (日)

 $H^0(T, \mathcal{O}_T)$ is going to be the algebra of automorphic forms and their derivations for the classical mouli of lattice polarized K3 surfaces $\Gamma_{\mathbb{Z}} \setminus M$.

CY3: Alim+M.+Scheidegger+Yau, [AMSY16]

There are unique vector fields R_k , $k = 1, 2, ..., h := h^{21}$ in T and unique $Y_{ijk} \in \mathcal{O}_T$, i, j, k = 1, 2, ..., h symmetric in i, j, k such that

$$\mathsf{A}_{\mathsf{R}_{k}} = \begin{pmatrix} 0 & \delta_{k}^{j} & 0 & 0 \\ 0 & 0 & Y_{kij} & 0 \\ 0 & 0 & 0 & \delta_{k}^{j} \\ 0 & 0 & 0 & 0 \end{pmatrix}, \tag{13}$$

Further

$$\begin{aligned} \mathsf{R}_{i_1} \, Y_{i_2 i_3 i_4} &= \mathsf{R}_{i_2} \, Y_{i_1 i_3 i_4}. \end{aligned} \tag{14} \\ \dim(\mathsf{T}) &= \mathsf{h} + \frac{3\mathsf{h}^2 + 5\mathsf{h} + 4}{2}. \end{aligned}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Elliptically fibered CY3 and CY4: Haghighat+M.+Yau, [HMY17]

The computations in this article suggest that

Conjecture

There is a partial compactification $\overline{T} = S \cup T$ of T such that the modular vector fields are tangent to S and, restricted to S they have solutions by elliptic modular forms.

Abelian varieties: [Mov20], T. Fonseca 2017

There are unique vector fields v_{ij} , $i, j = 1, 2, ..., n, i \le j$ defined over \mathbb{Q} in the moduli space T of enhanced principally polarized abelian varieties such that the Gauss-Manin connection $A_{v_{ij}}$ is the constant matrix C_{ij} , where all the entries of C_{ij} are zero except (i, n + j) and (j, n + i) entries which are -1. In other words, the Gauss-Manin connection ∇ satisfies

$$abla_{\mathbf{v}_{ij}} \alpha_i = -\alpha_{\mathbf{n}+j}, \ \ \nabla \alpha_j = -\alpha_{\mathbf{n}+i}, \quad i, j = 1, 2 \dots, \mathbf{n}$$

and $\nabla_{v_{ij}}\alpha_k = 0$ otherwise.

Action of G on T:

In all these cases there is an algebraic group G acting on T which corresponds to base change in cohomology, and for *CY*3 it plays an essential role in the algebraic BCOV anomaly equation. We have a Lie algebra homomorphisim from Lie(G) to the set of (global) vector fields in T:

$$\mathfrak{g}\mapsto V_{\mathfrak{g}}.$$

(fundamental vector field). Therefore, we can talk about

$$abla_{v_{\mathfrak{g}}}, \ , \ \mathfrak{g} \in \operatorname{Lie}(\mathsf{G}).$$

It turn out that

$$\nabla_{\mathbf{v}_{\mathfrak{g}}}\alpha = \mathfrak{g}^{\mathsf{tr}}\alpha.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

G and Lie(G) for mirror quintic: [Mov17]

There are unique vector fields R_i , i = 0, 1, 2..., 6 in T and a unique regular function Y on T such that $\nabla_{R_i} \alpha = A_{R_i} \alpha$, where

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

AMSY Lie algebra

Lie brackets of R_i's.

	R ₀	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆
R ₀	0	R ₀	-R ₀	$-R_{2} + R_{1}$	$Y \cdot R_1$	$2R_4 + Y \cdot R_3$	R ₅
R ₁	$-R_0$	0	0	R ₃	$-2R_4$	-R ₅	0
R ₂	R ₀	0	0	-R ₃	0	-R ₅	-2R ₆
R ₃	$R_2 - R_1$	-R ₃	R ₃	0	$-R_5$	-2R ₆	0
R ₄	$-Y \cdot R_1$	2R ₄	0	R ₅	0	0	0
R ₅	$-2R_4 - Y \cdot R_3$	R ₅	R ₅	2R ₆	0	0	0
R ₆	-R ₅	0	2R ₆	0	0	0	0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

BCOV anomaly for mirror quintic: [Mov17], for arbitrary *CY*3 see [AMSY16]

Apart from the Yukawa coupling, we have the generating function of genus g Gromov-Witten invariants of the generic quintic in \mathbb{P}^4 .

$$\mathsf{F}^{ ext{hol}}_g := \sum_{d=0}^\infty N_{g,d} q^d, \ g \ge 2, \quad \mathsf{F}^{ ext{hol}}_1 := rac{25}{12} \ln q + \sum_{d=1}^\infty N_{1,d} q^d$$

which are called genus g topological string partition function.

$$\mathsf{F}_{1}^{\mathrm{alg}} := \ln(t_{4}^{\frac{25}{12}}(t_{4} - t_{0}^{5})^{\frac{-5}{12}}t_{5}^{\frac{1}{2}}). \tag{15}$$

$$\begin{aligned} \mathsf{R}_{i}\mathsf{F}_{g}^{\mathrm{alg}} &= 0, \quad i = 1, 3, \\ \mathsf{R}_{2}\mathsf{F}_{g}^{\mathrm{alg}} &= (2g-2)\mathsf{F}_{g}^{\mathrm{alg}}, \\ \mathsf{R}_{4}\mathsf{F}_{g}^{\mathrm{alg}} &= \frac{1}{2}(\mathsf{R}_{0}^{2}\mathsf{F}_{g-1}^{\mathrm{alg}} + \sum_{r=1}^{g-1}\mathsf{R}_{0}\mathsf{F}_{r}^{\mathrm{alg}}\mathsf{R}_{0}\mathsf{F}_{g-r}^{\mathrm{alg}}). \end{aligned}$$
(16)

These collections of equations do not determine $\mathsf{F}_{g}^{\mathrm{alg}}$ uniquely.

M. Alim, H. Movasati, E. Scheidegger, and S.-T. Yau.

Gauss-Manin connection in disguise: Calabi-Yau threefolds. *Comm. Math. Phys.*, 334(3):889–914, 2016.

B. Haghighat, H. Movasati, and S.-T. Yau.

Calabi-Yau modular forms in limit: Elliptic Fibrations. Communications in Number Theory and Physics, 11:879–912, 2017.

H. Movasati and Y. Nikdelan.

Gauss-Manin Connection in Disguise: Dwork Family. *ArXiv e-prints*, March 2016.

H. Movasati.

Quasi-modular forms attached to elliptic curves, I. Ann. Math. Blaise Pascal, 19(2):307–377, 2012.

H. Movasati.

Modular-type functions attached to mirror quintic Calabi-Yau varieties. *Math. Zeit.*, 281, Issue 3, pp. 907-929(3):907–929, 2015.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

H. Movasati.

Gauss-Manin connection in disguise: Calabi-Yau modular forms. Surveys of Modern Mathematics, Int. Press, Boston., 2017.

H. Movasati.

Modular and Automorphic Forms & Beyond. Book under preparation, see author's webpage. 2020.