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Abstract:

In B-model of mirror symmetry, period manipulations play an
important role for computing the Gromov-Witten invariants of
the A-model. This requires computing power series of periods,
finding a maximal unipotent monodromy, mirror map etc. In this
talk I will present a purely algebraic version of such
computations for Calabi-Yau varieties of arbitrary dimension. It
involves a construction of the moduli space of enhanced
Calabi-Yau varieties and modular vector fields on it. This will
give us an algebraic BCOV anomaly equation and will
eventually lead us to the the theory of Calabi-Yau modular
forms.



Inspired by and have used the works of:

Candelas et. al 1991, Bershadsky-Cecotti-Ooguri-Vafa 1994,
Huang-Klemm-Quackenbush 2009, Yamaguchi-Yau 2004 and
many works of D. van Straten, M. Alim, E. Scheidegger, B.
Haghighat, Ch. Doran, Sh. Hosono, B. Lian, S.-T. Yau and ....



Period manipulation in B-model:

Most of the time we do not need to know the CY3 geometry.
We only need to know the Picard-Fuchs equation/system of a
holomorphic (3,0)-form. For mirror quintic Xz , z ∈ P1 this is:
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∂z
. (1)

A basis of the solution space of (1) is given by:
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and (a)n := a(a + 1) · · · (a + n − 1) for n > 0 and (a)0 := 1.



Integration of four differential forms over four cycles

We use the base change
x11
x21
x31
x41

 =


0 0 1 0
0 0 0 1
0 5 5

2 −25
12

−5 0 −25
12 200 ζ(3)

(2πi)3




1
54ψ3
2πi
54 ψ2

(2πi)2

54 ψ1
(2πi)3

54 ψ0

 .

We have xi1 =
∫
δi
η, i = 1,2,3,4, where η is a holomorphic

three form on Xz and δi ∈ H3(Xz ,Z), i = 1,2,3,4 is a
symplectic basis.
Mirror map:

τ0 :=
x11

x21
, q := e2πiτ0 ,

16 periods:
xij := θj−1xi1, i , j = 1,2,3,4.



Seven holomorphic quantities at MUM:
The seven functions

t0 = x21, (2)
t1 = 54x21 ((6z − 1)x21 + 5(11z − 1)x22 + 25(6z − 1)x23 + 125(z − 1)x24) ,

t2 = 54x2
21 ((2z − 7)x21 + 15(z − 1)x22 + 25(z − 1)x23) ,

t3 = 54x3
21 ((z − 6)x21 + 5(z − 1)x22) ,

t4 = zx5
21,

t5 = 55(z − 1)x2
21 (x12x21 − x11x22) ,

t6 = 55(z − 1)x21 (3(x12x21 − x11x22) + 5(x13x21 − x11x23)) .

are holomorphic at z = 0 and so there are holomorphic
functions hi defined in some neighborhood of 0 ∈ C such that

ti = (
2πi
5

)di hi(e2πiτ0), (3)

where

di := 3(i + 1), i = 0,1,2,3,4, d5 := 11, d6 := 8.



q-expansion

q0 q1 q2 q3 q4 q5 q6

1
24 t0

1
120 1 175 117625 111784375 126958105626 160715581780591

−1
750 t1

1
30 3 930 566375 526770000 592132503858 745012928951258

−1
50 t2

7
10 107 50390 29007975 26014527500 28743493632402 35790559257796542

−1
5 t3

6
5 71 188330 100324275 86097977000 93009679497426 114266677893238146

−t4 0 -1 170 41475 32183000 32678171250 38612049889554
1

125 t5 − 1
125 15 938 587805 525369650 577718296190 716515428667010

1
25 t6 - 3

5 187 28760 16677425 15028305250 16597280453022 20644227272244012
1

125 t7 − 1
5 13 2860 1855775 1750773750 1981335668498 2502724752660128

1
10 t8 − 1

50 13 6425 6744325 8719953625 12525150549888 19171976431076873
1

10 t9 − 1
10 17 11185 12261425 16166719625 23478405649152 36191848368238417



Yukawa coupling

Y =
58(t4 − t5

0 )2

t3
5

(4)

= (
2πi
5

)−3
(

5 + 2875
q

1− q
+ 609250 · 23 q2

1− q2 + · · ·+ ndd3 qd

1− qd + · · ·
)

(5)
Here, nd is the virtual number of rational curves in a generic
quintic threefold. The numbers nd are also called instanton
numbers or BPS degeneracies (Computed for the fist time in
1991 by Candelas et al. )



Modular vector field or GMCD

ti ’s satisfy the ordinary differential equation R0, with ∗̇ := ∂∗
∂τ0

.

ṫ0 = 1
t5

(6 · 54t5
0 + t0t3 − 54t4)

ṫ1 = 1
t5

(−58t6
0 + 55t4

0 t1 + 58t0t4 + t1t3)

ṫ2 = 1
t5

(−3 · 59t7
0 − 54t5

0 t1 + 2 · 55t4
0 t2 + 3 · 59t2

0 t4 + 54t1t4 + 2t2t3)

ṫ3 = 1
t5

(−510t8
0 − 54t5

0 t2 + 3 · 55t4
0 t3 + 510t3

0 t4 + 54t2t4 + 3t2
3 )

ṫ4 = 1
t5

(56t4
0 t4 + 5t3t4)

ṫ5 = 1
t5

(−54t5
0 t6 + 3 · 55t4

0 t5 + 2t3t5 + 54t4t6)

ṫ6 = 1
t5

(3 · 55t4
0 t6 − 55t3

0 t5 − 2t2t5 + 3t3t6)

(6)



A new moduli space:

Let T be the moduli of pairs (X , [α1, α2, α3, α4]), where X is a
mirror quintic Calabi-Yau threefold and

αi ∈ F 4−i\F 5−i , i = 1,2,3,4,

[〈αi , αj〉] =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 ,

Here, H3
dR(X ) is the third algebraic de Rham cohomology of X ,

F i is the i-th piece of the Hodge filtration of H3
dR(X ), 〈·, ·〉 is the

intersection form in H3
dR(X ).



Gauss-Manin connection

We construct the universal family X→ T together with global
sections αi , i = 1,2,3,4 of the relative algebraic de Rham
cohomology H3(X/T). Let

∇ : H3
dR(X/T)→ Ω1

T ⊗OT H3
dR(X/T),

be the algebraic Gauss-Manin connection on H3(X/T).



[Mov15, Mov17]

There is a unique vector field R0 in T such the Gauss-Manin
connection of the universal family of mirror quintic Calabi-Yau
threefolds over T composed with the vector field R0, namely
∇R0 , satisfies:

∇R0


α1
α2
α3
α4

 =


0 1 0 0
0 0 Y 0
0 0 0 −1
0 0 0 0



α1
α2
α3
α4

 (7)

for some regular function Y in T. In fact,

T := Spec(Q[t0, t1, . . . , t6,
1

t4t5(t4 − t5
0 )

]), (8)

and the vector field R0 and Y are given as before.



Main goal: A new theory of modular forms

These are not classical modular forms! Modular type functions?
Zagier called classical modular forms for SL(2,Z):

Elliptic modular forms.

I decided to call these new theories:

CY modular forms



A general theorem: [Mov20]

Let X/T be a universal family of enhanced smooth projective
Calabi-Yau varieties of dimension n. There exist unique global
vector fields vj , j = 1,2, . . . ,hn−1,1

prim in T and unique

hn−i+1,i−1
prim × hn−i,i

prim matrices Y i−1,i
j , i = 1,2, . . . ,n with entries

as regular functions in T such that

∇vjα =


0 Y 01

j 0 · · · 0
0 0 Y 12

j · · · 0
...

...
...

. . .
...

0 0 0 · · · Y n−1,n
j

0 0 0 · · · 0

α

with



Y 01
j = [0,0, . . . ,0,1,0, . . . ,0], 1 is in the j-th place

Y i−1,i
j = (−1)n−1

(
Y n−i,n−i+1

j

)tr
,

vj(Y
i−1,i
k ) = vk (Y i−1,i

j ),

Y i−1,i
j Y i,i+1

k = Y i−1,i
k Y i,i+1

j .



Quasi affinness conjecture:

We know that the moduli of smooth Calabi-Yau varieties exists
as a quasi-projective variety (Viehweg 1995). This implies the
same statement for T. However,

Conjecture
The moduli space T is quasi-affine and moreover, the universal
family X→ T exists.



Elliptic curves: [Mov12]

T := Spec(Q[t1, t2, t3,
1

27t2
3 − t3

2
])

Universal family

y2 = 4(x − t1)3 − t2(x − t1)− t3, α1 = [
dx
y

], α2 = [
xdx
y

]

Ramanujan vector field:

R = (t2
1 −

1
12

t2)
∂

∂t1
+ (4t1t2 − 6t3)

∂

∂t2
+ (6t1t3 −

1
3

t2
2 )

∂

∂t3
.

(partially inspired by K. Saito’s work on primitive forms!)



Dwork family: M.+Nikdelan [MN16]

xn+2
0 + xn+2

1 + . . .+ xn+2
n+1 − (n + 2)ψx0x1 . . . xn = 0,

For n = 1,2 one gets vector fields which can be solved with
modular forms.
It seems that that the theory of CY modular forms for
n = 2k + 1 is related to the same theory for n = 2k + 2!!



Lattice polarized K3 surfaces: Alim 2014, [Mov20]

Let X/T be a universal family of enhanced K3 surfaces. There
are unique vector fields vk , k = 1,2, . . . ,h1,1

prim in T such that

Avk =

0 δj
k 0

0 0 −δi
k

0 0 0

 (9)

H0(T,OT) is going to be the algebra of automorphic forms and
their derivations for the classical mouli of lattice polarized K3
surfaces ΓZ\M.



Elliptically fibered CY3 and CY4: Haghighat+M.+Yau,
[HMY17]

The computations in this article suggest that
There is a partial compactification T̄ = S ∪ T of T such that the
modular vector fields are tangent to S and, restricted to S they
have solutions by modular forms.



CY3: Alim+M.+Scheidegger+Yau, [AMSY16]

There are unique vector fields Rk , k = 1,2, . . . ,h := h21 in T
and unique Yijk ∈ OT, i , j , k = 1,2, . . . ,h symmetric in i , j , k
such that

ARk =


0 δj

k 0 0
0 0 Ykij 0
0 0 0 δi

k
0 0 0 0

 , (10)

Further
Ri1Yi2i3i4 = Ri2Yi1i3i4 . (11)

dim(T) = h +
3h2 + 5h + 4

2
.



Abelian varieties: [Mov20],T. Fonseca 2017

There are unique vector fields vij , i , j = 1,2, . . . ,n, i ≤ j defined
over Q in the moduli space T of enhanced principally polarized
abelian varieties such that the Gauss-Manin connection Avij is
the constant matrix Cij , where all the entries of Cij are zero
except (i ,n + j) and (j ,n + i) entries which are −1. In other
words, the Gauss-Manin connection ∇ satisfies

∇vijαi = −αn+j , ∇αj = −αn+i , i , j = 1,2 . . . ,n

and ∇vijαk = 0 otherwise.



Action of G on T:

In all these cases there is an algebraic group G acting on T
which corresponds to base change in cohomology, and for CY3
it plays an essential role in the algebraic BCOV anomaly
equation. Its Lie algebra Lie(G) can be embedded into the set
of (global) vector fields in T:

g 7→ vg.

Therefore, we can talk about

∇vg , , g ∈ Lie(G).

It turn out that
∇vgα = gtrα.



G and Lie(G) for mirror quintic: [Mov17]

There are unique vector fields Ri , i = 0,1,2 . . . ,6 in T and a
unique regular function Y on T such that ∇Riα = ARiα, where

AR0
=


0 1 0 0
0 0 Y 0
0 0 0 −1
0 0 0 0

 , AR1
=


0 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0

 , AR2
=


−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 ,

AR3
=


0 0 0 0
−1 0 0 0
0 0 0 0
0 0 1 0

 , AR4
=


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 ,

AR5
=


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 , AR6
=


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0





AMSY Lie algebra

Lie brackets of Ri ’s.

R0 R1 R2 R3 R4 R5 R6
R0 0 R0 −R0 −R2 + R1 Y · R1 2R4 + Y · R3 R5
R1 −R0 0 0 R3 −2R4 −R5 0
R2 R0 0 0 −R3 0 −R5 −2R6
R3 R2 − R1 −R3 R3 0 −R5 −2R6 0
R4 −Y · R1 2R4 0 R5 0 0 0
R5 −2R4 − Y · R3 R5 R5 2R6 0 0 0
R6 −R5 0 2R6 0 0 0 0



BCOV anomaly for mirror quintic: [Mov17], for arbitrary
CY 3 see [AMSY16]

Apart from the Yukawa coupling, we have the generating
function of genus g Gromov-Witten invariants of the generic
quintic in P4.

Fhol
g :=

∞∑
d=0

Ng,dqd , g ≥ 2, Fhol
1 :=

25
12

ln q +
∞∑

d=1

N1,dqd

which are called genus g topological string partition function.

Falg
1 := ln(t

25
12
4 (t4 − t5

0 )
−5
12 t

1
2
5 ). (12)

RiF
alg
g = 0, i = 1,3, (13)

R2Falg
g = (2g − 2)Falg

g ,

R4Falg
g =

1
2

(R2
0Falg

g−1 +

g−1∑
r=1

R0Falg
r R0Falg

g−r ).

These collections of equations do not determine Falg
g uniquely.
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