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Abstract

Classifications of irreducible components of the set of polynomial differential equa-
tions with a fixed degree and with at least one center singularity lead to some other
new problems on Picard-Lefschetz theory and Brieskorn modules of polynomials. In
this article we explain these problems and their connections to such classifications.

0 Introduction

The set of polynomial 1-forms ω = P (x, y)dy − Q(x, y)dx,deg P,deg Q ≤ d, d ≥ 2 is a
vector space of finite dimension and we denote by F(d) its projectivization. Its subset F(d)
containing all ω’s with P and Q relatively prime and deg(ω) := max{deg P,deg Q} = d is
Zariski open in F(d). We denote the elements of F(d) by F(ω) or F if there is no confusion
about the underlying 1-form ω in the text. Any F(ω) induces a holomorphic foliation F
in C2 i.e., the restrictions of ω to the leaves of F are identically zero. Therefore, we name
an element of F(d) a (holomorphic) foliation of degree d.

The points in sing(F(ω)) = {P = 0, Q = 0} are called the singularities of F(ω).
A singularity p ∈ C2 of F(ω) is called reduced if (PxQy − PyQx)(p) %= 0. A reduced
singularity p is called a center singularity or center for simplicity if there is a holomorphic
coordinates system (x̃, ỹ) around p with x̃(p) = 0, ỹ(p) = 0 such that in this coordinates
system ω ∧ d(x̃2 + ỹ2) = 0. One can call f := x̃2 + ỹ2 a local first integral around p. The
leaves of F around the center p are given by x̃2 + ỹ2 = c. Therefore, the leaf associated to
the constant c contains the one dimensional cycle {(x̃

√
c, ỹ

√
c) | (x̃, ỹ) ∈ R2, x̃2 + ỹ2 = 1}

which is called the vanishing cycle. We consider the subset of F(d) containing F(ω)’s with
at least one center and we denote its closure in F(d) by M(d). It turns out that M(d) is
an algebraic subset of F(d) (see for instance [Mo1]). Now the problem of identifying the
irreducible components of M(d) arises. This problem is also known by the name ”Center
conditions” in the context of real polynomial differential equations. Let us introduce some
of irreducible components of M(d).

For n ∈ N ∪ {0}, let Pn denote the set of polynomials of degree at most n in x and y

variables. Let also di ∈ N, i = 1, 2, . . . , s with
∑s

i=1 di = d − 1 and L(d1, . . . , ds) be the
set of logarithmic foliations

F(f1 · · · fs

s∑
i=1

λi
dfi

fi
), fi ∈ Pdi

, λi ∈ C

1Keywords: Holomorphic foliations, holonomy.
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For practical purposes, one assumes that deg fi = di,λi ∈ C∗, 1 ≤ i ≤ s and that fi’s
intersect each other transversally, and one obtains an element in F(d). Such a foliation
has the logarithmic first integral fλ1

1 · · · fλs

s . Since L(d1, . . . , ds) is parameterized by λi

and fi’s it is irreducible.

Theorem 1. ([Mo2]) The set L(d1, . . . , ds) is an irreducible component of M(d), where
d =

∑s
i=1 di − 1.

In the case s = 1 we can assume that λ1 = 1 and so L(d+1) is the space of foliations of
the type F(df), where f is a polynomial of degree d+1. This case is proved by Ilyashenko
in [Il].

In general the aim is to find di ∈ N∪{0}, i = 1, 2, . . . , k and parameterize an irreducible
component X = X(d1, d2, . . . , dk) of M(d) by Pd1

×Pd2
× · · ·×Pdk

. In the above example
k = 2s and ds+1 = · · · d2s = 0. Once we have done this, we can reformulate the fact that
X is an irreducible component of M(d) in a meaningful way as follows:

Theorem 2. There exists an open dense subset U of X with the following property: for
all F ∈ U parameterized with fi ∈ Pdi

, i = 1, 2, . . . , k and a center p ∈ C2 of F let Fε be
a holomorphic deformation of F in F(d) such that its unique singularity pε near p is still
a center. Then there exist polynomials fiε ∈ Pdi

such that Fε is parameterized by fiε’s.
Here fiε’s are holomorphic in ε and fi0 = fi.

The above theorem also says that the persistence of one center implies the persistence
of all other type of singularities.

1 Usual method

To prove theorems like Theorem 2 usually one has to take U the complement of X ∩
sing(M(d)) in X. But this is not an explicite description of U . In practice one defines
U by conditions like: fi, i = 1, 2, . . . , k is of degree di, fi’s have no common factors,
{fi = 0}’s intersect each other transversally and so on. To prove Theorem 2, after finding
such an open set U , it is enough to prove that for at least one F ∈ U

TFX = TFM(d)(1)

where TF means the tangent bundle at F . Note that for a foliation F ∈ X the equality
(1) does not imply that F ∈ U . There may be an irreducible component of M(d) of
dimension lower than the dimension of X such that it passes through F and its tangent
space at F is a subset of TFX. For this reason after proving (1) for F with some generic
conditions on fi’s, we may not be sure that U defined by such generic conditions on fi’s
is X − (X ∩ sing(M(d))). However, in the bellow U can mean X − (X ∩ sing(M(d))) or
some open dense subset of X.

An element F of the irreducible component X may have more than one center. The
deformation of F within X may destroy some centers but it preserves at least one center.
Therefore, we have the notion of stable and unstable center for elements of X. A stable
center of F is a center which persists after any deformation of F within X. An unstable
center is a center which is not stable. It is natural to ask

P 1. Are all the centers of a foliation F ∈ U stable?
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The answer is positive for X = L(d1, d2, . . . , ds) in Theorem 1. Every element F ∈ U

has d2 −
∑

i<j didj stable center. Here U means just an open dense subset of X.
The inclusion ⊂ in the equality (1) is trivial. To prove the other side ⊃, we fix a stable

center singularity p of F and make a deformation Fε(ω + εω1 + · · ·) of F = F(ω). Here ω1

represents an element [ω1] of TFM(d). Let f be a local first integral in a neighborhood
U ′ of p, s a holomorphic function in U ′ such that ω = s.df , δ a vanishing cycle in a leaf
of F in U ′ and Σ - (C, 0) a transverse section to F in a point p ∈ δ. We assume that the
transverse section Σ is parameterized by t = f |Σ. The holonomy of F along δ is identity.
Let hε(t) be the holonomy of Fε along the path δ. It is a holomorphic function in ε and t

and by hypothesis h0(t) = t. We write the Taylor expansion of hε(t) in ε

hε(t) − t = M1(t)ε + M2(t)ε
2 + · · · + Mi(t)ε

i + · · · , i!.Mi(t) =
∂ihε

∂εi
|ε=0

The function Mi is called the i-th Melnikov function of the deformation Fε along the path
δ. It is well-known that the first Melnikov function is given by

M1(t) = −
∫

δt

ω1

s

where δt is the lifting up of δ in the leaf through t ∈ Σ, and the multiplicity of M1 at t = 0
is the number of limit cycles (more precisely the number of fixed points of the holonomy
hε) which appears around δ after the deformation (see for instance [Mo1]). This fact shows
the importance of these functions in the local study of Hilbert 16-th problem.

Now, if in the deformation Fε the deformed singularity pε near p is center then hε = id
and in particular ∫

δt

ω1

s
= 0, ∀t ∈ Σ(2)

Let T ∗
F

X be the set of [ω1] ∈ TFF(d) with the above property. It is easy to check that
the above definition does not depends on the choice of f (see [Mo1]). We have seen that
TFM(d) ⊂ T ∗

F
X. The following question arises:

P 2. Is TFM(d) = T ∗
F

X?

If the answer is positive then it means that form the vanishing of integrals (2) one
must be able to prove that ω1 ∈ TFX. Otherwise, calculating more Melnikov functions
to get more and more information on ω1 is necessary. The proof of Theorem 1 with
s = 1 shows that the answer of P2 is positive in this case. However, the answer of P2 for
X = L(d1, d2, . . . , ds) is not known.

2 Some singularities of M(d)

The method explained in the previous section has two difficulties: First, identifying U :=
X ∩ sing(M(d)) and second to know the dynamics and topology of the original foliation
F . A way to avoid these difficulties is to look for foliations F(df), where f is a degree d+1
polynomial in C2. We already know that such foliations lie in the irreducible component
L(d+1). But if we take f a non-generic polynomial then F(df) may lie in other irreducible
components of M(d) and even worse, F(df) may not be a smooth point of such irreducible
components.
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P 3. Do all irreducible components of M(d) intersect L(d + 1)?

If the answer of the above question is positive then the classification of irreducible
components of M(d) leads to the classification of polynomials of degree d + 1 in C2

according to their Picard-Lefschetz theory and Brieskorn modules. If not, we may be
interested to find an irreducible component X which does not intersect L(d + 1). In any
case, the method which we are going to explain bellow is useful for those X which intersect
L(d + 1).

The foliation F = F(df) has a first integral f and so it has no dynamics. The function
f induces a (C∞) locally trivial fibration on C − C, where C is a finite subset of C. The
points of C are called critical values of f and the associated fibers are called the critical
fibers. We have Picard-Lefschetz theory of f and the action of monodromy

π1(C − C, b) × H1(f
−1(b), Q) → H1(f

−1(b), Q)

where b ∈ C − C is a regular fiber. Let δ′ ∈ H1(f−1(b), Q) be the monodromy of δ (the
vanishing cycle around a center singularity of F(df)) along an arbitrary path in C − C

with the end point b. From analytic continuation of the integral (2) one concludes that∫
π1(C−C).δ ω = 0.

P 4. Determine the subset π1(C − C).δ ⊂ H1(f−1(b), Q).

In the case of a generic polynomial f , Ilyashenko has proved that in P4 the equality
happens. To prove Theorem 1, I have used a polynomial f which is a product of d+1 lines
in general position and I have proved that π1(C−C).δ together with the cycles at infinity
generate H1(f−1(b), Q). Cycles at infinity are cycles around the points of compactification
of f−1(b).

Parallel to the above topological theory theory, we have another algebraic theory as-
sociated to each polynomial. The Brieskorn module H = Ω1

dΩ0+Ω0df , where Ωi, i = 0, 1, 2 is

the set of polynomial differential i-forms in C2, is a C[t]-module in a natural way and we
have the action of Gauss-Manin connection

∇ : HC → HC

where HC is the localization of H over the multiplicative subgroup of C[t] generated by
t − c, c ∈ C (see [Mo2]).

P 5. Find the torsions of H and classify the kernel of the maps ∇i = ∇ ◦ ∇ ◦ · · · ◦ ∇
i-times.

When f is the product of lines in general position then H has not torsions and the
classification of the kernel of ∇i is done in [Mo2] using a theorem of Cerveau-Mattei.

Solutions to the both problems P4 and P5 are closely related to the position of F(df)
in M(d). Using solutions to P4 and P5 one calculates the Melnikov functions Mi’s by
means of integrals of 1-forms (the data of the deformation) over vanishing cycles and
one calculates the tangent cone TCFM(d) of F = F(df) in M(d) and compare it with
the tangent cone of suspicious irreducible components of M(d). For instance, to prove
Theorem 1, we have taken f the product of d + 1 lines in general position and we have
proved that

∪∑
s

i=1
di=d−1 TCFL(d1, d2, . . . , ds) = TCFM(d)(3)

All the varieties L(d1, . . . , ds),
∑s

i=1 di = d − 1 pass through F = F(df).
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P 6. Are L(d1, . . . , ds)’s all irreducible components of M(d) through F(df)?

Note that the equality (3) does not give an answer to this problem. There may be an
irreducible component of M(d) through F(df) and different form L(d1, d2, . . . , ds)’s such
that its tangent cone at F(df) is a subset of (3). In this case the definition of other notions
of tangent cone based on higher order 1-forms in the deformation of F(df) seems to be
necessary.

The first case in which one may be interested to use the method of this section can be:

P 7. Let li = 0, i = 0, 1, . . . , d be lines in the real plane and mi, i = 0, 1, . . . , d be integer
numbers. Put f = lm0

0 · · · lmd

d . Find all irreducible components of M(d) through F(df).

In this problem the line li has multiplicity mi and it would be interesting to see
how the classification of irreducible components through F(df) depends on the different
arrangements of the lines li in the real plane and the associated multiplicities. In particular,
we may allow several lines to pass through a point or to be parallel. When there are lines
with negative multiplicities then we have a third kind of singularities {li = 0} ∩ {lj = 0}
called dicritical singularities, where li (resp. lj) has positive (resp. negative) multiplicity.
They are indeterminacy points of f and are characterized by this property that there are
infinitely many leaves of the foliation passing through the singularity. Also in this case
there are saddle critical points of f which are not due to the intersection points of the
lines with positive (resp. negative) multiplicity. The reader may analyze the situation by
the example f = l0l1

l2l3
.

3 Looking for irreducible components of M(d)

To apply the methods of previous sections one must find some irreducible subsets of M(d)
and then one conjectures that they must be irreducible components of M(d). The objective
of this section is to do this.

Classification of codimension one foliations on complex manifolds of higher dimension
is a subject related to center conditions. We state the problem in the case of Cn, n > 2
which is compatible with this text. However, the literature on this subject is mainly for
projective spaces of dimension greater than two (see [CL]).

The set of polynomial 1-forms ω =
∑n

i=1 Pi(x)dxi,deg Pi ≤ d is a vector space of finite

dimension and we denote by F(n, d) its projectivization. Its subset F(n, d) containing all
ω’s with P ′

is relatively prime and deg(ω) := max{deg Pi, i = 1, 2, . . . , n} = d is Zariski
open in F(n, d). An element [ω] ∈ F(n, d) induces a holomorphic foliation F = F(ω) in
Cn if and only if ω satisfies the integrability condition

ω ∧ dω = 0(4)

This is an algebraic equation on the coefficients of ω. Therefore, the elements of F(n, d)
which induce a holomorphic foliation in Cn form an algebraic subset, namely M(n, d), of
F(n, d). Now we have the problem of identifying the irreducible components of M(n, d).
We define F(2, d) := F(d) and M(2, d) := M(d).

Let us be given a polynomial map F : C2 → Cn, n ≥ 2 and a codimension one foliation
F = F(ω) in Cn. In the case n > 2, let us suppose that F is regular in a point p ∈ C2.
This implies that F around p is a smooth embedding. We assume that F (C2, p) has a
tangency with the leaf of F through F (p). In the case n = 2, we assume that F is singular
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at p. In both cases, after choosing a generic F and F , the pullback of F by F has a center
singularity at p.

P 8. Fix an irreducible component X of F(n, d). Is

{F ∗F ,F ∈ X, deg fi ≤ di, i = 1, 2, . . . , n}

where F = (f1, f2, . . . , fn), an irreducible component of M(d′′) for some d′′ ∈ N?

For instance in Theorem 1, the elements of L(d1, d2, . . . , ds) are pull backs of holo-
morphic foliations F(x1x2 · · · xs

∑s
i=1 λi

dxi

xi
), λi ∈ C∗ in Cs by the polynomial maps

F = (f1, f2, . . . , fs), deg fi ≤ di.
Another way to find irreducible subsets of M(d) is by looking for foliations of lower

degree. Take a polynomial of degree d in C2 with the generic conditions considered by
Ilyashenko, i.e. f has non degenerated singularities with distinct images. Now F(df) has
degree d − 1 which is less than the degree of a generic foliation in F(d).

P 9. Classify all irreducible components of M(d) through F(df).

All L(d1, . . . , ds)’s pass through F(df). There are other candidates as follows:

1. Ai = {F(dp
p + d( q

pi )) | deg(p) = 1, deg(q) = d} i = 0, 1, 2, . . . , d;

2. B1 = {F(dq
q + d(p)) | deg(p) = 1, deg(q) = d};

An element of Ai (resp. B1) has a first integral of the type peq/pi

(resp. qep). These
candidates are supported by Dulac’s classification (see [Du] and [CL] p.601) in the case
d = 2.

We can look at our problem in a more general context. Let M be a projective complex
manifold of dimension two. We consider the space F(L) of holomorphic foliations in M

with the normal line bundle L (see for instance [Mo1]). Let also M(L) be its subset
containing holomorphic foliation with at least one center singularity. Again M(L) is an
algebraic subset of F(L) and one can ask for the classification of irreducible components
of M(L). For M = CP (2) some irreducible components of M(L) are identified in [Mo1].

P 10. Prove a theorem similar to Theorem 1 for an arbitrary projective manifold of
dimension two.

In this generality one must be careful about trivial centers which we explain now. Let
F be a holomorphic foliation in C2 and 0 a regular point of F . We make a blow up (see
[CaSa]) at 0 and we obtain a divisor CP (1) which contains exactly one singularity of the
blow up foliation and this singularity is a center.
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