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Abstract The space D of Hodge structures on a fixed polarized lattice is known as Griffiths
period domain and its quotient by the isometry group of the lattice is the moduli of polarized
Hodge structures of a fixed type. When D is a Hermition symmetric domain then we have
automorphic forms on D, which according to Baily-Borel theorem, they give an algebraic
structure to the mentioned moduli space. In this article we slightly modify this picture by
considering the space U of polarized lattices in a fixed complex vector space with a fixed
Hodge filtration and polarization. It turns out that the isometry group of the filtration and
polarization, which is an algebraic group, acts on U and the quotient is again the moduli
of polarized Hodge structures. This formulation leads us to a notion of quasi-automorphic
forms which generalizes quasi-modular forms attached to elliptic curves.
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In 1970 Griffiths in his article [6] introduced the period domain D and described a project

to enlarge D to a moduli space of degenerating polarized Hodge structures. He also asked
for the existence of a certain automorphic form theory for D, generalizing the usual notion
of automorphic forms on Hermitian symmetric domains. Since then there have been much
effort made on the first part of Griffiths’s project (see [8, 15] and the references there).
For the second part Griffiths himself introduced the theory of automorphic cohomology;
however, the generating function role of automorphic forms is somewhat lacking in this
theory.

Some years ago, I was looking for some analytic spaces over D for which one may
state the Baily-Borel theorem on the unique algebraic structure of quotients of Hermitian
symmetric domains by discrete arithmetic groups. I realized that even in the simplest case
of Hodge structures, namely h01 = h10 = 1, such spaces are not well studied. This led me to
the definition of a class of holomorphic functions on the Poincaré upper-half-plane which
generalize the classical modular forms (see [16]). Since a differential operator acts on them
I called them differential modular forms. Soon after I realized that such functions play a
central role in mathematical physics and, in particular, in mirror symmetry (see [11] and
the references therein). Inspired by this special case of Hodge structures with its fruitful
applications, I felt the necessity to develop as much as possible similar theories for an
arbitrary type of Hodge structure.

In this note we construct an analytic variety U and an action of an algebraic group G0
on U from the right such that U/G0 is the moduli space of polarized Hodge structures
of a fixed type. We may pose the following algebraization problem for U , in parallel to
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the Baily-Borel theorem in [1]: construct functions on U which have some automorphic
properties with respect to the action of G0 and have some finite growth when a Hodge
structure degenerates. There must be enough of them in order to enhance U with a canonical
structure of an algebraic variety such that the action of G0 is algebraic. In the case for
which the Griffiths period domain is Hermitian symmetric, for instance for the Siegel upper
half-plane, this problem seems to be promising but needs a reasonable amount of work if
one wants to construct such functions through the inverse of the generalized period maps
(see §4.1). Among them are calculating explicit affine coordinates in certain moduli spaces
and calculating Gauss-Manin connections. Some main ingredients of such a study for K3
surfaces endowed with polarizations is already done by many authors, see for instance
[2] and the references therein. For the case in which the Griffiths period domain is not
Hermitian symmetric, we reformulate the algebraization problem further (see §3.3) and we
solve it for the Hodge numbers h30 = h21 = h12 = h03 = 1 (see §4.2 and [13]). This gives
us a first example of quasi-automorphic forms theory attached to a period domain which is
not Hermitian symmetric.

The realization of the algebraization problem in the case of elliptic curves and the cor-
responding Hodge numbers h10 = h01 = 1 clarifies many details of the previous paragraph;
therefore, I explain it here (for more details see [16]). In this case U = SL(2,Z)\P, where

P := {
(

x1 x2
x3 x4

)
∈ SL(2,C) | Im(x1x3)> 0}.

In order to find an algebraic structure on U we work with the following family of elliptic
curves:

Et : y2−4(x− t1)3 + t2(x− t1)+ t3 = 0,

where the parameter t = (t1, t2, t3) is a point of the affine variety

T := {(t1, t2, t3) ∈ C3 | 27t2
3 − t3

2 6= 0}.

The generalized period map
pm : T →U, (1)

t 7→

[
1√
−2πi

(∫
δ1

dx
y
∫

δ1
xdx

y∫
δ2

dx
y
∫

δ2
xdx

y

)]
is in fact a biholomorphism. Here, [·] means the equivalence class and {δ1,δ2} is a basis of
the Z-module H1(Et ,Z) with 〈δ1,δ2〉=−1. The algebraic group

G0 = {
(

k k′

0 k−1

)
| k,k′ ∈ C, k 6= 0}

acts from the right on U by the usual multiplication of matrices. Under pm the action of G0
is given by

t •g = (t1k−2 + k′k−1, t2k−4, t3k−6),

t = (t1, t2, t3) ∈ C3, g =

(
k k′

0 k−1

)
∈ G0.

In fact, T is the moduli space of pairs (E,{ω1,ω2}), where E is an elliptic curve and
{ω1,ω2} is a basis of H1

dR(E) such that ω1 is represented by a differential form of the first
kind and 1

2πi
∫

E ω1∪ω2 = 1.
The algebra of quasi-modular forms arises in the following way: We consider the com-

position of maps

H i
↪→ P→U

pm−1
→ T ↪→ T̃ , (2)

where H= {τ ∈ C | Im(τ)> 0} is the upper half-plane,
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i : H→ P, i(τ) =
(

τ −1
1 0

)
,

P→U is the quotient map and T̃ = C3 is the underlying complex manifold of the affine
variety Spec(C[t1, t2, t3]). The pullback of the function ring C[t1, t2, t3] of T̃ by the com-
position H→ T̃ is a C-algebra which we call the C-algebra of quasi-modular forms for
SL(2,Z). Three Eisenstein series

gi(τ) = ak

(
1+bk

∞

∑
d=1

d2k−1 e2πidτ

1− e2πidτ

)
, k = 1,2,3, (3)

where

(b1,b2,b3) = (−24,240,−504), (a1,a2,a3) = (
2πi
12

,12(
2πi
12

)2,8(
2πi
12

)3)

are obtained by taking the pullback of the ti’s. Our reformulation of the algebraization
problem is based on (2) and the pullback argument, see §3.3.

We fix some notations from linear algebra. For a basis ω1,ω2, . . . ,ωh of a vector space
we denote by ω an h×1 matrix whose entries are the ωi’s. In this way we also say that ω

is a basis of the vector space. If there is no danger of confusion we also use ω to denote an
element of the vector space. We use At to denote the transpose of the matrix A. Recall that
if δ and ω are two bases of a vector space, δ = pω for some p ∈ GL(h,C) and a bilinear
form on V0 in the basis δ (resp. ω) has the matrix form A (resp. B) then pBpt = A. By
[ai j]h×h we mean an h×h matrix whose (i, j) entry is ai j.

1 Moduli of polarized Hodge structures

In this section we define the generalized period domain U and we explain its comparison
with the classical Griffiths period domain.

1.1 The space of polarized lattices

We fix a C-vector space V0 of dimension h, a natural number m ∈ N and a h× h integer-
valued matrix Ψ0 such that the associated bilinear form

Zh×Zh→ Z, (a,b)→ at
Ψ0b

is non-degenerate, symmetric if m is even and skew if m is odd. Note that, in the case of
Z-modules, by non-degenerate we mean that the associated morphism

Zh→ (Zh)∨, a→ (b→ at
Ψ0b)

is an isomorphism, where ∨ means the dual of a Z-module.
A lattice VZ in V0 is a Z-module generated by a basis of V0. A polarized lattice (VZ,ψZ)

of type Ψ0 is a lattice VZ together with a bilinear map ψZ : VZ×VZ → Z such that in a
Z-basis of VZ, ψZ has the form Ψ0.

Let L be the set of polarized lattices of type Ψ0 in V0. It has a canonical structure of a
complex manifold of dimension dimC(V0)

2. One can take a local chart around (VZ,ψZ) by
fixing a basis of the Z-module VZ. Usually, we denote an element of L by x,y, . . . and the
associated lattice (resp. bilinear form) by VZ(x),VZ(y), . . . (resp. ψZ(x),ψZ(y), . . .). Let R
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be any subring of C. For instance, R can be Q, R, C, Z. We define

VR(x) :=VZ(x)⊗Z R and ψR(x) : VR(x)×VR(x)→ R the induced map.

Conjugation with respect to x ∈ L of an element ω = ∑
h
i=1 aiδi ∈ V0, where VZ(x) =

∑
h
i=1Zδi, is defined by

ω
x :=

h

∑
i=1

aiδi,

where s, s ∈ C is the usual conjugation of complex numbers.

1.2 Hodge filtration

We fix Hodge numbers

hi,m−i ∈ N∪{0}, hi :=
m

∑
j=i

h j,m− j, i = 0,1, . . . ,m, h0 = h

a filtration

F•0 : {0}= Fm+1
0 ⊂ Fm

0 ⊂ ·· · ⊂ F1
0 ⊂ F0

0 =V0, dim(F i
0) = hi (4)

on V0 and a bilinear form
ψ0 : V0×V0→ C

such that in a basis of V0 its matrix is Ψ0 and it satisfies

ψ0(F i
0,F

j
0 ) = 0, ∀i, j, i+ j > m. (5)

A basis ωi, i = 1,2, . . . ,h of V0 is compatible with the filtration F•0 if ωi, i = 1,2, . . . ,hi is a
basis of F i

0 for all i. It is sometimes convenient to fix a basis ωi, i = 1,2, . . . ,h of V0 which
is compatible with the filtration F•0 and such that the polarization matrix [ψ0(ωi,ω j)] is a
fixed matrix Φ0:

[ψ0(ωi,ω j)] = Φ0.

The matrices Ψ0 and Φ0 are not necessarily the same. For any x ∈L we define

H i,m−i(x) := F i
0 ∩Fm−i

0
x

and the following properties for x ∈L :

1. ψC(x) = ψ0;
2. V0 =⊕m

i=0H i,m−i(x);

3. (−1)
m(m−1)

2 +i(
√
−1)−mψC(x)(ω,ωx)> 0, ∀ω ∈ H i,m−i(x), ω 6= 0.

Throughout the text we call these properties P1, P2 and P3. Fix a polarized lattice x ∈L .
P1 implies that

ψ0(H i,m−i(x),H j,m− j(x)) = 0 except for i+ j = m.

This is because if i+ j > m then ψ0(F i
0,F

j
0 ) = 0 and if i+ j < m then ψ0(F i

0
x
,F j

0

x
) = 0. We

have also ∑i H i,m−i(x) =⊕iH i,m−i(x) if and only if

F i
0 ∩F j

0

x
= 0, ∀ i+ j > m. (6)
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If am−k,k + · · ·+a0,m = 0, ai,m−i ∈ H i,m−i(x) for some 0≤ k ≤ m with am−k,k 6= 0, then

−am−k,k = am−k−1,k+1 + · · ·+a0,m ∈ Fm−k
0 ∩Fk+1

0

x
⇒ ak,m−k = 0

which is a contradiction. The proof in the other direction is a consequence of

F i
0 ∩F j

0

x
= H i,m−i(x)∩Hm− j, j(x), i+ j > m.

1.3 Period domain U

Define
X := {x ∈L | x satisfies P1 },

U := {x ∈L | x satisfies P1,P2, P3 }.

Proposition 1. The set X is an analytic subset of L and U is an open subset of X.

Proof. Take a basis ωi, i = 1,2, . . . ,h of V0 compatible with the Hodge filtration. The prop-
erty (5) is given by

ψC(x)(ωr,ωs) = 0, r ≤ hi, s≤ h j, i+ j > m

and so X is an analytic subset of L .
Now choose a basis δ of VZ(x) and write δ = pω . Using ω we may assume that V0 =Ch

and δ is constituted by the rows of p. We have

ω = p−1
δ =⇒ ω

x = p−1
δ = p−1 pω

Therefore, the rows of p−1 p are complex conjugates of the entries of ω . Now it is easy to
verify that if the property (6), dim(H i,m−i(x)) = hi,m−i and P3 are valid for one x then they
are valid for all points in a small neighborhood of x (for P3 we may first restrict ψ0 to the
product of sphere of radius 1 and center 0 ∈ Ch).

1.4 An algebraic group

Let G0 be the algebraic group

G0 := Aut(F•0 ,ψ0) :=

{g : V0→V0 linear | g(F i
0) = F i

0, ψ0(g(ω1),g(ω2)) = ψ0(ω1,ω2),ω1,ω2 ∈V0}.

It acts from the right on L in a canonical way:

xg := g−1(x), ψZ(xg)(·, ·) := ψZ(g(·),g(·)), g ∈ G0, x ∈L .

One can easily see that for all ω ∈V0, x ∈L and g ∈ G we have

ω
xg = g−1g(ω)

x
.
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Proposition 2. The properties P1, P2 and P3 are invariant under the action of G0.

Proof. The property P1 for xg follows from the definition. Let x ∈L , g ∈ G0 and ω ∈V0.
We have

H i,m−i(xg) = F i
0 ∩Fm−i

0
xg
= F i

0 ∩g−1g(Fm−i
0 )

x
= F i

0 ∩g−1(Fm−i
0

x
)

= g−1(F i
0 ∩Fm−i

0
x
) = g−1(H i,m−i(x))

and
ψC(xg)(ω,ωxg) = ψC(x)(g(ω),gg−1g(ω)

x
) = ψC(x)(g(ω),g(ω)

x
).

These equalities prove the proposition.

The above proposition implies that G0 acts from the right on U . We fix a basis ωi, i =
1,2, . . . ,h, of V0 compatible with the Hodge filtration F•0 and, if there is no danger of con-
fusion, we identify each g ∈ G0 with the h×h matrix g̃ given by

[g−1(ω1),g−1(ω2), . . . ,g−1(ωh)] = [ω1,ω2, . . . ,ωh]g̃. (7)

1.5 Griffiths period domain

In this section we give the classical approach to the moduli of polarized Hodge structures
due to P. Griffiths. The reader is referred to [9, 8] for more developments in this direction.

Let us fix the C-vector space V0 and the Hodge numbers as in §1.2. Let also F be the
space of filtrations (4) in V0. In fact, F has a natural structure of a compact smooth projective
variety. We fix the polarized lattice x0 ∈L and define the Griffiths domain

D := {F• ∈ F | (VZ(x0),ψZ(x0),F•) is a polarized Hodge structure }.

The group
ΓZ := Aut(VZ(x0),ψZ(x0))

acts on V0 from the right in the usual way and this gives us an action of ΓZ on D. The space
ΓZ\D is the moduli space of polarized Hodge structures.

Proposition 3. There is a canonical isomorphism

β : U/G0
∼→ ΓZ\D.

Proof. We take x ∈U and an isomorphism

γ : (VZ(x),ψZ(x))
∼→ (VZ(x0),ψZ(x0)).

The pushforward of the Hodge filtration F•0 under this isomorphism gives us a Hodge fil-
tration on V0 with respect to the lattice VZ(x0) and so it gives us a point β (x) ∈D. Different
choices of γ leads us to the action of ΓZ on β (x). Therefore, we have a well-defined map

β : U → ΓZ\D.

Since G0 = Aut(V0,F•0 ,ψ0), β induces the desired isomorphism (it is surjective because
for any polarized Hodge structure (VZ(x0),ψZ(x0),F•) we have VZ(x0) =V0, ψC(x0) = ψ0
and F• = g(F•0 ) for some g ∈ G0).

The Griffiths domain is the moduli space of polarized Hodge structures of a fixed type
and with a Z-basis in which the polarization has a fixed matrix form. Our domain U is the
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moduli space of polarized Hodge structures of a fixed type and with a C-basis compatible
with the Hodge filtration and for which the polarization has a fixed matrix form.

2 Period map

In this section we introduce Poincaré duals, period matrices and Gauss-Manin connections
in the framework of polarized Hodge structures.

2.1 Poincaré dual

In this section we explain the notion of Poincaré dual. Let (VZ(x),ψZ(x)) be a polarized
lattice and δ ∈ VZ(x)∨, where ∨ means the dual of a Z-module. We will use the symbolic
integral notation ∫

δ

ω := δ (ω), ∀ω ∈V0.

The equality ∫
δ

ω
x =

∫
δ

ω, ∀ω ∈V0, δ ∈VZ(x)∨ (8)

follows directly from the definition. The Poincaré dual of δ ∈ VZ(x)∨ is an element δ pd ∈
VZ(x) with the property ∫

δ

ω = ψZ(x)(ω,δ pd), ∀ω ∈VZ(x).

It exists and is unique because ψZ is non-degenerate. Using the Poincaré duality one defines
the dual polarization

ψZ(x)∨(δi,δ j) := ψZ(x)(δ
pd
i ,δ pd

j ), δi,δ j ∈VZ(x)∨.

We have
(A∨δ )pd = A−1

δ
pd, ∀A ∈ ΓZ, δ ∈VZ(x0)

∨,

where A∨ : VZ(x0)
∨→VZ(x0)

∨ is the induced dual map. This follows from:∫
A∨δ

ω =
∫

δ

Aω = ψZ(x0)(Aω,δ pd) = ψZ(x0)(ω,A−1
δ
pd), ∀ω ∈V0.

We define
Γ
∨
Z := Aut(VZ(x0)

∨,ψZ(x0)
∨).

It follows that ΓZ→ Γ ∨Z , A 7→ A∨ is an isomorphism of groups.

2.2 Period matrix

Let ωi, i = 1,2, . . . ,h be a C-basis of V0 compatible with F•0 . Recall that ω means the h×1
matrix with entries ωi. For x ∈U , we take a Z-basis δi, i = 1,2, . . . ,h of VZ(x)∨ such that
the matrix of ψZ(x)∨ in the basis δ is Ψ0. We define the abstract period matrix/period map
in the following way:
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pm= pm(x) = [
∫

δi

ω j]h×h :=


∫

δ1
ω1
∫

δ1
ω2 · · ·

∫
δ1

ωh∫
δ2

ω1
∫

δ2
ω2 · · ·

∫
δ2

ωh
...

...
...

...∫
δh

ω1
∫

δh
ω2 · · ·

∫
δh

ωh

 .

Instead of the period matrix it is useful to use the matrix

q= q(x), where δ
pd = qω.

Then we have
Ψ

t
0 = pm ·qt.

If we identify V0 with Ch through the basis ω then q is a matrix whose rows are the entries
of δ . We define P to be the set of period matrices pm. We write an element A of ΓZ in a
basis of VZ(x0), and redefine ΓZ:

ΓZ := {A ∈ GL(h,Z) | AΨ0At =Ψ0}.

The group ΓZ acts on P from the left by the usual multiplication of matrices and

U = ΓZ\P.

In a similar way, if we identity each element g of G0 with the matrix g̃ in (7) then G0 acts
from the right on P by the usual multiplication of matrices.

2.3 A canonical connection on L

We consider the trivial bundle H = L ×V0 on L . On H we have a well-defined inte-
grable connection

∇ : H →Ω
1
L ⊗OL

H

such that a section s of H in a small open set V ⊂L with the property

s(x) ∈ {x}×VZ(x), x ∈V.

is flat. Let ω1,ω2, . . . ,ωh be a basis of V0 compatible with the Hodge filtration F•0 . We can
consider ωi as a global section of H and so we have

∇ω = A⊗ω, A =


ω11 ω12 · · · ω1h
ω21 ω22 · · · ω2h

...
...

. . .
...

ωh1 ωh2 · · · ωhh

 , ωi j ∈ H0(L ,Ω 1
L ). (9)

A is called the connection matrix of ∇ in the basis ω . The connection ∇ is integrable and
so dA = A∧A:

dωi j =
h

∑
k=1

ωik ∧ωk j, i, j = 1,2, . . . ,h. (10)

Let δ be a basis of flat sections. Write δ = qω . We have

ω = q−1
δ ⇒ ∇(ω) = d(q−1)qω ⇒

A = dq−1 ·q= d(pmt ·Ψ−t0 ) · (Ψ t
0 ·pm−t) = d(pmt) ·pm−t.
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and so
A = d(pmt) ·pm−t. (11)

where pm is the abstract period map. We have used the equality Ψ0 = pm · qt. Note that
the entries of A are holomorphic 1-forms on L and a fundamental system for the linear
differential equation dY = A ·Y in L is given by Y = pmt:

dpmt = A ·pmt.

We define the Griffiths transversality distribution by:

Fgr : ωi j = 0, i≤ hm−x, j > hm−x−1, x = 0,1, . . . ,m−2. (12)

A holomorphic map f : V →U , where V is an analytic variety, is called a period map if it
is tangent to the Griffiths transversality distribution, that is, for all ωi j as in (12) we have
f−1ωi j = 0.

2.4 Some functions on L

For two vectors ω1,ω2 ∈V0, we have the following holomorphic function on L :

L → C, x 7→ ψC(x)(ω1,ω2).

We choose a basis ω of V0 and δ of VZ(x)∨ for x ∈L and write δ pd = q ·ω . Then

F := [ψC(x)(ωi,ω j)] = (q−1)Ψ0q
−t = pmt

Ψ
−t

0 pm (13)

(we have used the identity Ψ t
0 = pm ·qt). The matrix F satisfies the differential equation

dF = A ·F +F ·At, (14)

where A is the connection matrix. The proof is a straightforward consequence of (13) and
(11):

dF = d(pmt
Ψ
−t

0 pm)

= (dpmt)Ψ−t0 pm+pmt
Ψ
−t

0 (dpm)

= A ·F +F ·At

It is easy to check that every solution of the differential equation (14) is of the form pmt ·
C · pm for some constant h× h matrix C with entries in C (if F is a solution of (14) then
F ·pm−1 is a solution of dY = A ·Y ). We restrict F,A and pm to U and we conclude that

Φ0 = pmt
Ψ
−t

0 pm (15)

A ·Φ0 =−Φ0 ·At.

where by definition F |U is the constant matrix Φ0.
We have a plenty of non-holomorphic functions on L . For two elements ω1,ω2 ∈ V0

we define
L → C, x 7→ ψC(x)(ω1,ω2

x).

Let ω and δ be as before. We write δ pd = q ·ωx and we have

G := [ψC(x)(ωi, ω̄
x
j )] = pmt

Ψ
−t

0 pm= (q−1)Ψ0q
−t (16)
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The matrix G satisfies the differential equation

dG = A ·G+G ·At
, (17)

where A is the connection matrix.

3 Quasi-modular forms attached to Hodge structures

In this section we explain what is a quasi-modular form attached to a given fixed data of
Hodge structures and a full family of enhanced projective varieties.

3.1 Enhanced projective varieties

Let X be a complex smooth projective variety of a fixed topological type. This means that
we fix a C∞ manifold X0 and assume that X as a C∞-manifold is isomorphic to X0 (we do
not fix the isomorphism). Let n be the complex dimension of X and let m be an integer
with 1 ≤ m ≤ n. We fix an element θ ∈ H2n−2m(X ,Z)∩Hn−m,n−m(X). By H i(X ,Z) we
mean its image in H i(X ,C) = H i

dR(X); therefore, we have killed the torsion. We consider
the bilinear map

〈·, ·〉C : Hm
dR(X)×Hm

dR(X)→ C, 〈ω,α〉= 1
(2πi)m

∫
X

ω ∪α ∪θ .

The (2πi)−m factor in the above definition ensures us that the bilinear map 〈·, ·〉C is de-
fined for the algebraic de Rham cohomology (see for instance Deligne’s lecture in [3]). We
assume that it is non-degenerate. The cohomology Hm

dR(X) is equipped with the so-called
Hodge filtration F•. We assume that the Hodge numbers hi,m−i, i = 0,1,2, . . . ,m coincide
with those fixed in this article. We consider Hodge structures with an isomorphism

(Hm
dR(X),F•,〈·, ·〉C)∼= (V0,F•0 ,ψ0).

From now on, by an enhanced projective variety we mean all the data described in the
previous paragraph.

We also need to introduce families of enhanced projective varieties. Let V be an irre-
ducible affine variety and OV be the ring of regular functions on V . By definition V is the
underlying complex space of Spec(OV) and OV is a finitely generated reduced C-algebra
without zero divisors. Also, let X →V be a family of smooth projective varieties as in the
previous paragraph. We will also use the notations {Xt}t∈V or X/V to denote X →V . The
de Rham cohomology Hm

dR(X/V ) and its Hodge filtration F•Hm
dR(X/V ) are OV -modules

(see for instance [7]) and in a similar way we have 〈·, ·〉OV : Hm
dR(X/V )×Hm

dR(X/V )→OV .
Note that we fix an element θ ∈ Fn−mH2n−2m

dR (X/V ) and assume that it induces in each
fiber Xt an element in H2n−2m(Xt ,Z). We say that the family is enhanced if we have an
isomorphism(

Hm
dR(X/V ), F•Hm

dR(X/V ), 〈·, ·〉OV

)∼= (V0⊗C OV , F•0 ⊗C OV , ψ0⊗C OV ) . (18)

We fix a basis ωi, i = 1,2, . . . ,h of V0 compatible with the filtration F•0 . Under the above
isomorphism we get a basis ω̃i, i = 1,2, . . . ,h of the OV -module Hm

dR(X/V ) which is com-
patible with the Hodge filtration and the bilinear map 〈·, ·〉OV written in this basis is a
constant matrix. This gives us another formulation of an enhanced family of projective va-
rieties. An enhanced family of projective varieties {Xt}t∈V is full if we have an algebraic
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action of G0 (defined in §1.4) from the right on V (and hence on OV ) such that it is compati-
ble with the isomorphism (18). This is equivalent to saying that for Xt and ω̃i, i = 1,2, . . . ,h
as above, we have an isomorphism

(Xtg, [ω̃1, ω̃2, . . . , ω̃h])∼= (Xt , [ω̃1, ω̃2, . . . , ω̃h]g), t ∈V, g ∈ G0,

(recall the matrix form of g ∈ G0 in (7)). A morphism Y/W → X/V of two families of
enhanced projective varieties is a commutative diagram

Y → X
↓ ↓

W → V

such that
Hm(X/V )→ Hm(Y/W )
↓ ↓

V0⊗C OV → V0⊗C OW

is also commutative.

3.2 Period map

For an enhanced projective variety X , we consider the image of Hm(X ,Z) in Hm(X ,C) ∼=
Hm

dR(X) ∼= V0 and hence we obtain a unique point in U . Note that by this process we kill
torsion elements in Hm(X ,Z). We fix bases ωi and ω̃i as in §3.1 and a basis δi, i= 1,2, . . . ,h
of Hm(X ,Z) = Hm(X ,Z)∨ with [〈δi,δ j〉] =Ψ0 and we see that the corresponding point in
U := ΓZ\P is given by the equivalence class of the geometric period matrix [

∫
δi

ω̃ j].
For any family of enhanced projective varieties {Xt}t∈V we get

pm : V →U

which is holomorphic. It satisfies the so-called Griffiths transversality, that is, it is tangent to
the Griffiths transversality distribution. It is called a geometric period map. The pullback of
the connection ∇ constructed in §2.3 by the period map pm is the Gauss-Manin connection
of the family {Xt}t∈V . If the family is full then the geometric period map commutes with
the action of G0:

pm(tg) = pm(t)g, g ∈ G0, t ∈V.

3.3 Quasi-modular forms

Let M be the set of enhanced projective varieties with the fixed topological data explained
in §3.1. We would like to prove that M is in fact an affine variety. The first step in devel-
oping a quasi-modular form theory attached to enhanced projective varieties is to solve the
following conjectures.

Conjecture 1. There is an affine variety T and a full family X/T of enhanced projective
varieties which is universal in the following sense: for any family of enhanced projective
varieties Y/S we have a unique morphism of Y/S→ X/T of enhanced projective varieties.

We would also like to find a universal family which describes the degeneration of projective
varieties:

Conjecture 2. There is an affine variety T̃ ⊃ T of the same dimension as T and with the
following property: for any family f : Y → S of projective varieties with fixed prescribed
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topological data, but not necessarily enhanced and smooth, and with the discriminant vari-
ety ∆ ⊂ S, the map Y\ f−1(∆)→ S\∆ is an underlying morphism of an enhanced family,
and hence, we have the map S\∆ → T which extends to S→ T̃ . The conjecture is about the
existence of T̃ with such an extension property.

Similar to Shimura varieties, we expect that T and T̃ are affine varieties defined over Q̄.
Both conjectures are true in the case of elliptic curves (see the discussion in the Introduc-
tion). In this case, the function ring of T (resp. T̃ ) is C[t1, t2, t3, 1

27t2
3−t3

2
] (resp. C[t1, t2, t3] ).

We have also verified the conjectures for a particular class of Calabi-Yau varieties (see §4.2
and [13]).

Now, consider the case in which both conjectures are true. We are going to explain the
rough idea of the algebra of quasi-modular forms attached to all fixed data that we had. It
is the pullback of the C-algebra of regular functions in T̃ by the composition

H i
↪→ P|Im(pm)→U |Im(pm)

pm−1
→ T ↪→ T̃ . (19)

Here pm is the geometric period map. We need that the period map is locally injective
(local Torelli problem) and hence pm−1 is a local inverse map. The set H is a subset of the
set of period matrices P and it will play the role of the Poincaré upper half-plane. If the
Griffiths period domain D is Hermitian symmetric then it is biholomorphic to D (see 4.1);
however, in other cases it depends on the universal period map T →U and its dimension
is the dimension of the deformation space of the projective variety. In this case we do not
need to define H explicitly (see 4.2). More details of this discussion will be explained by
two examples of the next section.

4 Examples

In this section we discuss two examples of Hodge structures and the corresponding quasi-
modular form algebras: those attached to mirror quintic Calabi-Yau varieties and princi-
pally polarized Abelian varieties. The details of the first case are done in [13, 14] and we
will sketch the results which are related to the main thread of the present text. For the second
case there is much work that has been done and I only sketch some ideas. Much of the work
for K3 surfaces endowed with polarizations has been already done by many authors, see
[2] and the references therein. The generalization of such results to Siegel quasi-modular
forms is work for the future.

4.1 Siegel quasi-modular forms

We consider the case in which the weight m is equal to 1 and the polarization matrix is:

Ψ0 =

(
0 −Ig
Ig 0

)
,

where Ig is the g×g identity matrix. In this case g := h10 = h01 and h = 2g. We take a basis
ωi, i = 1,2, . . . ,2g, of V0 compatible with F•0 , that is, the first g elements form a basis of
F1

0 . We further assume that the polarization ψ0 : V0×V0→ C in the basis ω has the form
Φ0 :=Ψ0. Because of the particular format of Ψ0, both these assumptions do not contradict
each other. We take a basis δ of VZ(x)∨ such that the intersection form in this basis is of
the form Ψ0 and we write the associated period matrix in the form
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[
∫

δi

ω j] =

(
x1 x2
x3 x4

)
,

where xi, i = 1, . . . ,4, are g×g matrices. Since Ψ
−t

0 =Ψ0, we have(
0 −Ig
Ig 0

)
=

(
xt1 xt3
xt2 xt4

)(
0 −Ig
Ig 0

)(
x1 x2
x3 x4

)
=

(
xt3x1− xt1x3 xt3x2− xt1x4
xt4x1− xt2x3 xt4x2− xt2x4

)
and

[〈ωi, ω̄
x
j 〉] =

(
xt1 xt3
xt2 xt4

)(
0 −Ig
Ig 0

)(
x̄1 x̄2
x̄3 x̄4

)
=

(
xt3x̄1− xt1x̄3 xt3x̄2− xt1x̄4
xt4x̄1− xt2x̄3 xt4x̄2− xt2x̄4

)
.

The properties P1, P2 and P3 are summarized in the properties

xt3x1 = xt1x3, xt3x2− xt1x4 =−Ig,

x1,x2 ∈ GL(g,C),
√
−1(xt3x̄1− xt1x̄3) is a positive matrix.

By definition P is the set of all 2g× 2g matrices
(

x1 x2
x3 x4

)
satisfying the above properties:

The matrix x := x1x−1
3 is well-defined and invertible and satisfies the well-known Riemann

relations:
xt = x, Im(x) is a positive matrix.

The set of matrices x ∈ Matg×g(C) with the above properties is called the Siegel upper
half-space and is denoted by H. We have U = ΓZ\P, where

ΓZ = Sp(2g,Z) = {
(

a b
c d

)
∈ GL(2g,Z) | abt = bat, cdt = dct, adt−bct = Ig}.

We have also

G0 = {
(

k k′

0 k−t

)
∈ GL(2g,C) | kk′t = k′kt}

which acts on P from the right. The group Sp(2g,Z) acts on H by(
a b
c d

)
· x = (ax+b)(cx+d)−1,

(
a b
c d

)
∈ Sp(2g,Z), x ∈H

and we have the isomorphism

U/G0→ Sp(2g,Z)\H,

given by (
x1 x2
x3 x4

)
→ x1x−1

3 .

To each point x of P we associate a triple (Ax,θx,αx) as follows: We have Ax := Cg/Λx,
where Λx is the Z-submodule of Cg generated by the rows of x1 and x3. We have cycles

δi ∈ H1(Ax,Z), i = 1,2, . . . ,2g, which are defined by the property [
∫

δi
dz j] =

(
x1
x3

)
, where
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z j, j = 1,2, . . . ,g, are linear coordinates of Cg. There is a basis αx = {α1,α2, . . . ,α2g} of
H1

dR(Ax) such that

[
∫

δi

α j] =

(
x1 x2
x3 x4

)
.

The polarization in H1(Ax,Z) ∼= Λx (which is defined by [〈δi,δ j〉] = Ψ0) is an element
θx ∈ H2(Ax,Z) =

∧2
i=1 Hom(Λx,Z). It gives the following bilinear map

〈·, ·〉 : H1
dR(Ax)×H1

dR(Ax)→ C, 〈α,β 〉= 1
2πi

∫
Ax

α ∪β ∪θ
g−1
x

which satisfies [〈αi,α j〉] =Ψ0.
The triple (Ax,θx,αx) that we constructed in the previous paragraph does not depend on

the action of Sp(2g,Z) from the left on P; therefore, for each x ∈U we have constructed
such a triple. In fact U is the moduli space of the triples (A,θ ,α) such that A is a principally
polarized abelian variety with a polarization θ and α is a basis of H1

dR(A) compatible with
the Hodge filtration F1 ⊂ F0 = H1

dR(A) and such that [〈αi,α j〉] =Ψ0.
We constructed the moduli space U in the framework of complex geometry. In order

to introduce Siegel quasi-modular forms, we have to study the same moduli space in the
framework of algebraic geometry. We have to construct an algebraic variety T over C such
that the points of T are in one to one correspondence with the equivalence classes of the
triples (A,θ ,α). We also expect that T is an affine variety and it lies inside another affine
variety T̃ which describes the degeneration of varieties (as it is explained in §3.3). The
pullback of the C-algebra of regular functions on T̃ through the composition

H→ P→U
pm−1
→ T ↪→ T̃

is, by definition, the C-algebra of Siegel quasi-modular forms. The first map is given by

z→
(

z −Ig
Ig 0

)
and the second is the canonical map. The period map in this case is a biholomorphism. If we
impose a functional property for f regarding the action of G0 then this will be translated
into a functional property of a Siegel quasi-modular form with respect to the action of
Sp(2g,Z). In this way we can even define a Siegel quasi-modular form defined over Q̄
(recall that we expect T̃ to be defined over Q̄). It is left to the reader to verify that the C-
algebra of Siegel quasi-modular forms is closed under derivations with respect to zi j with
z = [zi j] ∈ H. For the realization of all these in the case of elliptic curves, g = 1, see the
Introduction and [16]. See the books [10, 4, 12] for more information on Siegel modular
forms.

4.2 Hodge numbers, 1,1,1,1

In this section we consider the case m = 3 and the Hodge numbers h30 = h21 = h12 = h03 =
1, h = 4. The polarization matrix written in an integral basis is given by

Ψ0 =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 .
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Let us fix a basis ω1,ω2,ω3,ω4 of V0 compatible with the Hodge filtration F•0 , a basis
δ1,δ2,δ3,δ4 ∈VZ(x)∨ with the intersection matrix Ψ0 and let us write the period matrix in
the form pm(x) = [xi j]i, j=1,2,...,4. We assume that the polarization ψ0 in the basis ωi is given
by the matrix

Φ0 :=


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 .

The algebraic group G0 is defined to be

G0 :=

g =


g11 g12 g13 g14
0 g22 g23 g24
0 0 g33 g34
0 0 0 g44

 , gtΦ0g = Φ0, gi j ∈ C

 .

One can verify that it is generated by six one-dimensional subgroups, two of them isomor-
phic to the multiplicative group C∗ and four of them isomorphic to the additive group C.
Therefore, G0 is of dimension 6. We consider the subset H̃ of P consisting of matrices

τ =


τ0 1 0 0
1 0 0 0
τ1 τ3 1 0
τ2 −τ0τ3 + τ1 −τ0 1

 , (20)

where τi, i = 0,1,2,3, are some variables in C (they are coordinates of the corresponding
moduli space of polarized Hodge structures and so this moduli space is of dimension four).
The particular expressions for the (4,2) and (4,3) entries of the above matrix follow from
the polynomial relations (15) between periods. The connection matrix A restricted to H̃ is

dτ
t · τ−t =


0 dτ0 −τ3dτ0 +dτ1 −τ1dτ0 + τ0dτ1 +dτ2
0 0 dτ3 −τ3dτ0 +dτ1
0 0 0 −dτ0
0 0 0 0

 .

The Griffiths transversality distribution is given by

−τ3dτ0 +dτ1 = 0, −τ1dτ0 + τ0dτ1 +dτ2 = 0.

and so, if we consider τ0 as an independent parameter defined in a neighborhood of
+
√
−1∞, and all other quantities τi depending on τ0, then we have

τ3 =
∂τ1

∂τ0
,

∂τ2

∂τ0
= τ1− τ0

∂τ1

∂τ0
. (21)

In [13] we have checked the conjectures in §3.3 for the Calabi-Yau threefolds of mirror
quintic type. In this case dim(T ) = 7 = 1+6, where 1 is the dimension of the moduli space
of mirror quintic Calabi-Yau varieties and 6 is the dimension of the algebraic group G0.
Hence, we have constructed an algebra generated by seven functions in τ0, which we call
it the algebra of quasi-modular forms attached to mirror quintic Calabi-Yau varieties. The
image of the geometric period map lies in H with

τ1 =−
25
12

+
5
2

τ0(τ0 +1)+
1

(2πi)2

∞

∑
n=1

(
∑
d|n

ndd3

)
e2πiτ0n

n2 . (22)
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Here, nd’s are instanton numbers and the second derivative of τ1 with respect to τ0 is the
Yukawa coupling. The Yukawa coupling itself turns out to be a quasi-modular form in our
context but not its double primitive τ1. The set H is a subset of H̃ defined by (21) and
(22). As far as I know this is the first case in which the Griffiths period domain is not
Hermitian symmetric and we have an attached algebra of quasi-modular forms and even
the Global Torelli problem is true; that is, the period map is globally injective (see [5]).
However, note that in [13] we have only used the local injectivity of the period map. In this
case we can prove that the pullback map from the algebra of regular functions on T̃ to the
algebra of holomorphic functions on H is injective. Our quasi-modular form theory in this
example is attached to mirror quintic Calabi-Yau varieties and not the corresponding period
domain. There are other functions τ1 attached to one-dimensional families of varieties and
the corresponding period maps. They may have their own quasi-modular forms algebra
different from the one explained in this section.
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