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Abstract
For a punctured Riemann surface we construct the de Rham cohomology type

spaces which are dual to the quotients of the lower central series of the homotopy group
of the Riemann surface. We also construct a basis of such de Rham cohomologies in
terms of P. Hall’s basic commutators.

The present text has arisen from many conversations of the author with I. Nakai and
L. Gavrilov. It contains some results of the papers [5, 2]. The reader is referred to these
texts for a detailed account of the subject.

1 Homotopy groups of punctured Riemann surfaces

Let Ū be compact Riemann surface, U be the complement of a finite non-empty set of
points of Ū and p ∈ U . The fact that Ū\U is not empty plays an important role in the
present text. Its first consequence is that the homotopy group F := π1(U, p) is freely
generated by m := g(Ū) + #(Ū\U)− 1 elements. We denote by 1 the identity element of
F . For δ1, δ2 ∈ F we denote by (δ1, δ2) = δ1δ2δ

−1
1 δ−1

2 the commutator of δ1 and δ2 and for
two sets A,B ⊂ F by (A,B) we mean the group generated by (a, b), a ∈ A, b ∈ B. Let

Fr := (Fr−1, F ), r = 1, 2, 3, . . . , F1 := F.

Each quotient
H1,r(U, Z) := Fr/Fr+1

is a free Z-module of rank
Mm(r) :=

1
r

∑
d|r

µ(d)m
r
d ,

where µ(d) is the möbius function: µ(1) = 1, µ(p1p2 · · · ps) = (−1)s for distinct primes
pi’s, and µ(n) = 0 otherwise. Note that for r prime we have Mm(r) = mr−m

r . A basis of
H1,r(U, Z) is given by basic commutators of weight r (see §5).

The Z-module H1,1(U, Z) is the classical 1-th homology group H1(U, Z) of U with
integer coefficients. Its dual H1(U, Z) := {a : H1(U, Z) → Z, Z − linear} is the 1-th
cohomology group of U . It can be constructed either by Cech cohomology or de Rham
cohomology. In the second case we have

H1
dR(U) :=

Ω1
U

dΩ0
U

∼= H1(U, C) := H1(U, Z)⊗Z C,
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where Ωi
U is the set of meromorphic differential forms in Ū with poles in Ū\U . Here we

have again used the fact that Ū\U is not empty. An element ω ∈ H1
dR(U) maps to

H1(U, Z) → C, δ 7→
∫

δ
ω.

under the above isomorphism. In this text we are going to construct similar de Rham
type cohomologies for the Z-modules H1,r(U, Z).

2 Iterated integrals

Let pi ∈ U, i = 0, 1 and

Ω•,r
U = C + ·Ω•

U + ·Ω•
UΩ•

U + · · ·+ ·Ω•
UΩ•

U · · ·Ω•
U︸ ︷︷ ︸

r times

.

An element of Ω•,r
U is called to be of length≤ r. By definition Ω1,r

U ⊂ Ω•,r
U contains only

differential 1-forms and in each homogeneous piece of an element of Ω0,r
U ⊂ Ω•,r

U there
exists exactly one differential 0-form. We have the differential map

d = dU : Ω0,•
U → Ω1,•

U

which is C-linear and is given by the rules

(1) d(g) = dg − g(p1) + g(p0)

d(gω1ω2 · · ·ωr) = dgω1ω2 · · ·ωr − (gω1)ω2 · · ·ωr + g(p0)ω1ω2 · · ·ωr

d(ω1 · · ·ωi−1gωi+1 · · ·ωr) =

ω1 · · ·ωi−1dgωi+1 · · ·ωr − ω1 · · ·ωi−1(gωi+1) · · ·ωr + ω1 · · · (ωi−1g)ωi+1 · · ·ωr

d(ω1ω2 · · ·ωrg) = ω1ω2 · · ·ωrdg − g(p1)ω1ω2 · · ·ωr + ω1ω2 · · · (ωrg).

Let

(2) Ω =
Ω1,•

U

dΩ0,•
U

and
C = Ω0 ⊂ Ω1 ⊂ Ω2 ⊂ Ω3 ⊂ · · · ⊂ Ωr ⊂ · · · ⊂ Ω

be the filtration given by the length:

Ωr :=
Ω1,≤r

U

dΩ0,≤r
U

.

The map ε : Ω → C associate to each ω its constant term in Ω0 = C. Take a basis
x1, x2, . . . , xm of the C-vector space H1

dR(U). For simplicity we take a basis dual to δi’s
i.e.,

∫
δi

ωj = 1 if i = j and = 0 otherwise.
The C-vector space Ω is freely generated by xi1xi2 · · ·xik , 1 ≤ i1, i2, . . . ik ≤ µ, k ∈ N0.

The fact that these elements generate Ω follows from the definition of the differential d
and various uses of the fact that every ω ∈ Ω1

U can be written as a C-linear combination
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of xi’s plus some dg, g ∈ Ω0
U . We obtain an isomorphism between Ω and the abstract

associative ring generated by xi’s. In this way Ω turns to be an associative, but non
commutative, C-Algebra. Note that the C-algebra structure of Ω does depend on the
choice of the basis and p0, p1. However, the isomorphism of C-vector spaces obtained in
the quotient Ωr/Ωr−1, r = 1, 2, . . . does not depend on the basis and p0, p1.

Let δ : [0, 1] → U be a path which connects p0 to p1 and ωi ∈ Ω1
U , i = 1, 2, . . . , r. The

iterated integral is defined by induction and according to the rule:∫
δ
ω1ω2 · · ·ωr =

∫
δ
ω1(
∫

δx

ω2 · · ·ωr),

where for δ(t1) = x we have δx := δ|[0,t1]. By C-linearity one extends the definition to
Ω1,•

U and it is easy to verify that an iterated integral of the elements in dΩ0,•
U is zero ([3]

Proposition 1.3) and hence
∫
δ ω, ω ∈ Ω is well-defined. It is homotopy functorial. This

can be checked by induction on r. We have∫
δ
ω1ω2 · · ·ωr =

∫
δ
ω1 · · ·ωi(

∫
δx

ωi+1 · · ·ωr), i = 1, 2, . . . , r − 1.

3 The properties of iterated integrals

In this section we list properties of iterated integrals in the context of this paper. The
following four statements can be considered as the axioms of iterated integrals:

I 1. By definition the iterated integral is C-linear with respect to the elements of Ω and∫
1
ω := ε(ω), ω ∈ Ω,

∫
α

1 = 1, α ∈ F.

We use the convention ω1ω2 · · ·ωr = 1 for r = 0.

I 2. For α, β ∈ F and ω1, ω2, . . . ωr ∈ Ω1
U∫

αβ
ω1 · · ·ωr =

r∑
i=0

∫
α

ω1 · · ·ωi

∫
β

ωi+1 · · ·ωr

([3], Proposition 2.9).

I 3. For α ∈ F and ω1, ω2, . . . ωr ∈ Ω1
U∫

α−1

ω1ω2 · · ·ωr = (−1)r

∫
α

ωr · · ·ω1.

([3], Proposition 2.12).

I 4. For α ∈ F and ω1, ω2, . . . ωr+s ∈ Ω1
U we have the shuffle relations

(3)
∫

α
ωi1 · · ·ωir

∫
α

ωj1 · · ·ωjs =
∑

(k1,k2,...,kr+s)

∫
α

ωk1ωk2 · · ·ωkr+s ,

where (k1, k2, . . . , kr+s) runs through all shuffles of (i1, . . . , ir) and (j1, . . . , js) ([3], Lemma
2.11). This means that there is a partition of {1, 2, . . . , r + s} into two disjoint sets I, J
such that (ki, i ∈ I) (resp. (ki, i ∈ J)) ordered as I(resp. J) is equal to (i1, . . . , ir) (resp.
= (j1, . . . , js)).
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Note that I1, I2 and I3 imply that every iterated integral can be written as a polynomial
in
∫
δ ω1ω2 · · ·ωr, where δ runs through a set which generated F freely and ωi runs through

a fixed basis of H1
dR(U). However by I4 this way of writing is not unique.

Let Z[F ] be the integral group ring of F , J be the kernel of Z[F ] → Z,
∑k

i=1 aiαi 7→∑k
i=1 ai, ai ∈ Z, αi ∈ F . We have the canonical filtration of Z[F ] by subideals:

· · · ⊂ J3 ⊂ J2 ⊂ J1 = J ⊂ Z[F ].

By definition an iterated integral over Z[F ] is Z-linear. All the well-known properties of
iterated integrals in the literature can be deduced form I1,I2,I3 and I4.

I 5. For α, β ∈ J and ω1, ω2, . . . ωr ∈ Ω1
U , r ≥ 1∫

αβ
ω1 · · ·ωr =

r−1∑
i=1

∫
α

ω1 · · ·ωi

∫
β

ωi+1 · · ·ωr.

In particular,
∫
αβ ω1 = 0.This statement follows from I1 and I2.

I 6. We have ∫
Js

Ωr = 0, for 0 ≤ r < s.

This follows by induction on r from I5.

I 7. For α1, α2, · · · , αr ∈ F and ω1, ω2, . . . , ωr ∈ Ω1
U∫

(α1−1)(α2−1)···(αr−1)
ω1 · · ·ωr =

r∏
i=1

∫
αi

ωi.

This follows by induction on r from I5, I6 and I1.

We conclude that
∫
α ω, ω ∈ Ωr/Ωr−1, α ∈ Jr/Jr+1 is well-defined. Now we list some

properties related to Fr’s.

I 8. For r < s and ω1, ω2, . . . , ωr ∈ Ω1
U we have∫

βs

ω1ω2 · · ·ωr = 0, βs = (α1, α2, · · · , αs) or its inverse,

where (α1, α2, . . . , αr) = ((· · · ((α1, α2), α3) · · · ), αr).

It is enough to prove the statement for βs. For β−1
s it follows from I2 applied on

βsβ
−1
s = 1. The proof for βs = (βs−1, αs) is by induction on s. For s = 1 it is trivially

true. Suppose that the statement is true for s and let us prove it for s + 1. After various
applications of I2 and the induction hypothesis we have∫

βs+1

ω1ω2 · · ·ωr =
∫

βs

ω1ω2 · · ·ωr +
∫

β−1
s

ω1ω2 · · ·ωr

Now we apply I2 for βsβ
−1
s = 1 and we conclude that the right hand side of the above

equality is zero.
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I 9. For ω1, ω2, . . . , ωr ∈ Ω1
U we have∫

α
ω1ω2 · · ·ωr = 0, α ∈ Fs, r < s,

∫
αβ

ω1 · · ·ωr =
∫

α
ω1 · · ·ωr +

∫
β

ω1 · · ·ωr, α, β ∈ Fr,∫
α−1

ω1 · · ·ωr = −
∫

α
ω1 · · ·ωr, α ∈ Fr,∫

α
(ω1ω2 · · ·ωr + (−1)rωr · · ·ω1) = 0, α ∈ Fr.

I9 implies that
∫
α ω, α ∈ Fr/Fr+1, ω ∈ Ωr/Ωr−1 is well-defined.

I 10. For α ∈ Fr and β ∈ Fs∫
(α,β)

ω1ω2 · · ·ωr+s =
∫

α
ω1 · · ·ωr

∫
β

ωr+1 · · ·ωr+s −
∫

β
ω1 · · ·ωs

∫
α

ωs+1 · · ·ωr+s

In particular

(4)
∫

(α,β)
ω1ω2 = det

(∫
α ω1

∫
β ω1∫

α ω2

∫
α ω2

)
, α, β ∈ F, ω1, ω2 ∈ Ω1

U .

The above statement follows by several application of I2,I9 (see also [1] Lemma 3).

I 11. For α1, β1, α2, β2, · · · , αr, βr ∈ F and ω1, ω2 ∈ Ω1
U∫

Qs
i=1(αi,βi)

ω1ω2 =
s∑

i=1

det

(∫
αi

ω1

∫
βi

ω1∫
αi

ω2

∫
βi

ω2

)
.

The above statement follows by induction on s.

4 Free Z-Lie algebras

One can associate to a free group F the Z-Lie algebra

LF := ⊕∞
i=1Fi/Fi+1, [xFi, yFj ] = (x, y)Fi+j .

It is in fact freely generated by δ1, δ2, . . . , δm. Another way to construct LF is as follows:
The remarks after I7 and I9 suggest that there may be an isomorphism between Fr/Fr+1

and Jr/Jr+1. In fact the maps Fr/Fr+1 → Jr/Jr+1 induced by x 7→ x−1 are well-defined
and gives us an isomorphism of Z-Lie algebras:

LF → ⊕∞
r=1J

r/Jr+1

This is proved in [6]. There is also a third way to define a free Lie algebra: Let Ω be the
free non-commutative ring generated by x1, x2, . . . , xm. We denote by Ωn the subset of Ω
containing homogeneous polynomials of degree n, Ω = ⊕∞

i=0Ωi. In Ω we define the bracket

[α, β] = αβ − βα, α, β ∈ Ω.
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In this way Ω turns out to be a Lie algebra and we consider the smallest sub Lie algebra
Ωl of Ω generated by xi, i = 1, 2, . . . ,m. Note that only + and [·, ·] is allowed. A element
of Ωl is called a Lie element. We have an isomorphism of Z-Lie algebras:

A : Ωl → LF , induced by xi 7→ δi − 1, i = 1, 2, . . . ,m.

For ω ∈ Ωr the integration
∫
δ ω is well-defined for δ ∈ Fr/Fr+1

∼= Jr/Jr+1 and so we can
talk about A−1(δ) ∈ Ωl. In this way

(5)
∫

δ
ω = 〈ω, A−1δ〉

where 〈·, ·〉 is defined in Ωl
i, i = 1, 2, . . . by the rules:

〈xi1xi2 · · ·xin , xj1xj2 · · ·xjn〉 =
{

1 i1 = j1, . . . , in = jn

0 otherwise

5 Basic commutators

P. Hall in [4] Chapter 11 proves that a basis of H1,r(U, Z) is given by the so called basic
commutators of weight r. In this section we explain the construction of such a basis. We
have adapted the notations of [8], Chapter IV.

We choose a basis δi, i =, 2, · · · ,m and put the order δi < δj if i < j. The basic
commutators of weight 1 are δi’s. Having defined the basic commutators of weight less
than r, the basic commutators of weight r are (ci, cj), where

1. ci and cj are basic and w(ci) + w(cj) = r;

2. ci < cj and if cj = (cs, ct) then cs ≤ ci;

The commutators of weight r follows those of weight less than r and are ordered arbitrarily
with respect to each other. In practice, one takes the lexicographical order in two elements
ci, cj for the basic commutators (ci, cj) of weight r.

In Ω we define the commutator [·, ·] by [u, v] := uv− vu and in a similar way we define
the basic commutators in Ω. In the construction of basic commutators we replace {δi}
with with a basis {xi} of H1

dR(U) and (·, ·) with [·, ·].

6 The dual of H1,r(U, C)

Let Ωs be the sub Z-module of Ω generated by the shuffle elements: ω is a shuffle element
if it is of the form ∑

(k1,k2,...,kr)

ωk1ωk1 · · ·ωkr

for some r ∈ N, where for a fixed indices i = (i1, i2, . . . , ia) and j = (j1, j2, . . . , jb), a+b = r
the above sum runs through all shuffles of i and j.

Theorem 1. The subspaces Ωl
r and Ωs

r of Ωr, r = 2, 3, . . . are orthogonal to each other
with respect to the bilinear map 〈·, ·〉 and

Ω = Ωl
r ⊕ Ωs

r
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Proof. The first statement follows from I4 and (5) for ω ∈ Ωs
r and A−1δ ∈ Ωl

r. The second
statement follows form the first part and

dim(Ωl
r) = Mm(r) = mr − dim Ωs

r

(see for instance [7] p. 218).

Let us define
H1,r

dR(U) := Ωr/(Ωr−1 + Ωs
r).

Corollary 1. The map

α : H1,r
dR(U) → Ȟ1,r(U, C), α(ω)(δ) =

∫
δ
ω.

is an isomorphism of C-vector spaces, whereˇmeans dual and H1,r(U, C) = H1,r(U, Z)⊗ZC.
A basis of H1,r

dR(U) is given by basic commutators of weight r.
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