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Abstract
In this article we study the iterated integrals in holomorphic foliations. We define

the corresponding Petrov/Brieskorn type modules, give a formula for the Gauss-Manin
connection of iterated integrals and calculate the Melnikov functions for certain topo-
logical cycles in terms of iterated integrals. As an application we show that after a
deformation of a holomorphic foliation with a generic first integral in the complex
plane, one cannot get two commuting holonomies.

1 Introduction

In a deformation of an integrable foliation one obtains the first Melnikov function as an
Abelian integral whose zeros give rise to limit cycles in the deformed foliation. In the case
in which the Abelian integral is identically zero such limit cycles are controlled by higher
order Melnikov functions and L. Gavrilov in [4] has shown that they can be expressed in
terms of iterated integrals and so they satisfy certain Picard-Fuchs equations. In a different
context, the second named author and K. Yanai in [19, 18] have used iterated integrals
to investigate the existence of relations between formal diffeomorphisms. Basic properties
of iterated integrals are established by A. N. Parsin in 1969 and a systematic approach
for de Rham cohomology type theorems for iterated integrals was made by K.-T. Chen
around 1977. In the articles [15, 16] the application of Abelian integrals in holomorphic
foliations are given. In this article we give a survey of iterated integrals in holomorphic
foliations and as an application we investigate the existence of relations between deformed
holonomies.

Let us consider a polynomial f(x, y) ∈ C[x, y],deg(f) ≥ 3 in two variables and perform
a perturbation

(1) Fε : df + εω, ε ∈ (C, 0), deg(ω) ≤ deg(f)− 1,

where ω = Pdx + Qdy is a polynomial differential form and deg(ω) is the maximum of
deg(P ) and deg(Q). We take a path δ ∈ π1(f−1(b), p), where b is a regular value of f ,
and ask for the conditions on ω such that the deformed holonomy hε : Σ → Σ, where
Σ is a transversal section to F0 at p, is identity. The first result in this direction is due
to Yu. Ilyashenko (see [10]): Consider a polynomial f whose fibers intersect the line at
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infinity transversally and it has only Morse type singularities with distinct images (these
are generic conditions on f). If hε is the identity map for all ε ∈ (C, 0) and the homology
class of δ is a vanishing cycle then ω is an exact form and so Fε is again Hamiltonian. The
generalization of this result for pencils of type F p

Gq in P2, pencils in arbitrary projective
manifolds and logarithmic foliations is done in the articles [14, 15, 16]. The theory of
iterated integrals gives us further generalizations of the above theorem for cycles with zero
homology classes. For a, b in a group G let (a, b) := aba−1b−1 be the commutator of a and
b.

Theorem 1. For a generic polynomial f as before, let us assume that hε is the identity
map for all ε ∈ (C, 0), δ = (δ1, δ2) and the homology classes of δ1 and δ2 vanish along
two paths which do not intersect each other except at b. Further assume that the homology
classes of δ1 and δ2 have non-zero intersection. Then ω is an exact form and so Fε is
again Hamiltonian.

The above theorem is a special case of Theorem 2 in §4 stated for strongly tame
functions. Another special case of Theorem 2 is the following: Let M be a projective
compact manifold of dimension two and F(ω0) be a holomorphic foliation in M obtained
by a generic non rational Lefschetz pencil (see [11] and §4). Here ω0 is a global holomorphic
section of Ω1

M ⊗ L such that the zero locus of ω0 is a finite set in M , where L is a line
bundle on M and Ω1

M is the sheaf of holomorphic 1-forms in M . Let

Fε = F(ω0 + εω1), ε ∈ (C, 0), ω1 ∈ H0(M,Ω1
M ⊗ L)

be a linear deformation of F(ω0). If δ1, δ2 are two vanishing cycles with the same properties
as in Theorem 1, H1(M, Q) = 0 and the holonomies associated to δ1 and δ2 commute then
Fε has a first integral.

A typical example of the situation of Theorem 1 is the following: Assume that f :
R2 → R has two non-degenerated critical points: p1 a center singularity and p2 a saddle
singularity. Assume that there is no more critical value of f between f(p1) and f(p2).
The real vanishing cycle around p1 and the complex vanishing cycle around p2 satisfy the
hypothesis of Theorem 1. For a more explicit example take f the product of d degree 1
real polynomials which are in general position and deform it in order to obtain a generic
polynomial required by Theorem 1. For a precise description of the generic properties we
have posed on f see §4.

The zeros of iterated integrals have a big impact on the topology of the leaves of
holomorphic foliations obtained by deformation of pencils in complex manifolds. This
is similar to the real case in which the zeros of iterated integrals controls the birth of
limit cycles. However, it is not proved or disproved whether there are limit cycles, real or
complex, beyond the zeros of iterated integrals. This point of view may give some light
into the infinitesimal version of the minimal set question investigated by C. Camacho, A.
Lins Neto and P. Sad in [2].

The paper is organized as follows: In §2 we recall some basic terminology related to
iterated integrals. In §3 we consider iterated integrals depending on a parameter and
gives the formula (7) for the Gauss-Manin connection of iterated integrals which has the
expected property stated in Proposition 2. We find also a formula for the Melnikov function
of certain cycles. In §4 we consider a strongly tame function, which is a generalization of
a generic polynomial in C2, in an affine variety and prove Theorem 1 for such functions.
Finally in Appendix A we have listed some basic properties of iterated integrals.
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2 Iterated integrals and homotopy groups

In this section we collect the necessary machinery for dealing with iterated integrals. Our
approach to iterated integrals is the homology type Z-modules H1,r(U, Z), r = 1, 2, . . .
(see §2.2) and the construction of their duals in terms of differential forms (see §2.3). This
approach, which is more convenient in holomorphic foliations, is not the classical approach
in the literature and this is the main reason why we have reproduced some well-known
materials in this section.

2.1 Iterated integrals

Let Ū be compact Riemann surface, U be the complement of a finite non-empty set of
points of Ū and pi ∈ U, i = 0, 1. Let Ω•

U be the set of meromorphic differential forms in
Ū with poles in Ū\U and

Ω•,r
U := C + Ω•

U + Ω•
UΩ•

U + · · ·+ Ω•
UΩ•

U · · ·Ω•
U︸ ︷︷ ︸

r times

.

For simplicity, in the above definition + denotes the direct sum and Ω•
UΩ•

U denotes Ω•
U ⊗C

Ω•
U . An element of Ω•,r

U is called to be of length≤ r. By definition Ω1,r
U ⊂ Ω•,r

U contains
only differential 1-forms and in each homogeneous piece of an element of Ω0,r

U ⊂ Ω•,r
U there

exists exactly one differential 0-form. We have the differential map

d = dU : Ω0,•
U → Ω1,•

U

which is C-linear and is given by the rules

(2) d(g) = dg − g(p1) + g(p0)

d(gω1ω2 · · ·ωr) = (dg)ω1ω2 · · ·ωr − (gω1)ω2 · · ·ωr + g(p0)ω1ω2 · · ·ωr

d(ω1 · · ·ωigωi+1 · · ·ωr) =

ω1 · · ·ωi(dg)ωi+1 · · ·ωr − ω1 · · ·ωi(gωi+1) · · ·ωr + ω1 · · · (ωig)ωi+1 · · ·ωr

d(ω1ω2 · · ·ωrg) = ω1ω2 · · ·ωr(dg)− g(p1)ω1ω2 · · ·ωr + ω1ω2 · · · (ωrg),

where 1 ≤ i ≤ r − 1. Let

(3) B =
Ω1,•

U

dΩ0,•
U

and
C = B0 ⊂ B1 ⊂ B2 ⊂ B3 ⊂ · · · ⊂ Br ⊂ · · · ⊂ B

be the filtration given by the length:

Br :=
Ω1,≤r

U

dΩ0,≤r
U

.
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The map ε : B → C associates to each ω its constant term in B0 = C. Take a basis
ω1, ω2, . . . , ωm of the C-vector space

H1(U, C) ∼= H1
dR(U) =

Ω1
U

dΩ0
U

.

Note that Ū\U is not empty. The C-vector space B is freely generated by ωi1ωi2 · · ·ωik , 1 ≤
i1, i2, . . . ik ≤ m, k ∈ N0. The fact that these elements generate B follows from the
definition of the differential d and various applications of the fact that every ω ∈ Ω1

U

can be written as a C-linear combination of ωi’s plus some dg, g ∈ Ω0
U . We obtain an

isomorphism between B and the abstract associative ring generated by ωi’s. In this way
B turns to be an associative, but non commutative, C-Algebra. Note that the C-algebra
structure of B does depend on the choice of the basis and p0, p1. However, the isomorphism
of C-vector spaces obtained in the quotient Br/Br−1, r = 1, 2, . . . does not depend on the
base p0, p1.

Let δ : [0, 1] → U be a path which connects p0 to p1 and ωi ∈ Ω1
U , i = 1, 2, . . . , r. The

iterated integral is defined by induction and according to the rule:∫
δ
ω1ω2 · · ·ωr =

∫
δ
ω1(
∫

δx

ω2 · · ·ωr),

where for δ(t1) = x we have δx := δ|[0,t1]. By C-linearity one extends the definition to
Ω1,•

U and it is easy to verify that an iterated integral of the elements in dΩ0,•
U is zero ([7]

Proposition 1.3) and hence
∫
δ ω, ω ∈ B is well-defined. It is homotopy functorial. This

can be checked by induction on r. We will frequently use the equality∫
δ
ω1ω2 · · ·ωr =

∫
δ
ω1 · · ·ωi(

∫
δx

ωi+1 · · ·ωr), i = 1, 2, . . . , r − 1.

2.2 Homotopy groups

From now on we take p := p0 = p1 and let

G := π1(U, p), m = number of generators of G.

We denote by 1 the identity element of G. For δ1, δ2 ∈ G we denote by (δ1, δ2) = δ1δ2δ
−1
1 δ−1

2

the commutator of δ1 and δ2 and for two sets A,B ⊂ G by (A,B) we mean the group
generated by (a, b), a ∈ A, b ∈ B. Let

Gr := (Gr−1, G), r = 1, 2, 3, . . . , G1 := G.

Each quotient
H1,r(U, Z) := Gr/Gr+1

is a free Z-module of rank
Mm(r) :=

1
r

∑
d|r

µ(d)m
r
d ,

where µ(d) is the möbius function: µ(1) = 1, µ(p1p2 · · · ps) = (−1)s for distinct primes
pi’s, and µ(n) = 0 otherwise. Note that for r prime we have Mm(r) = mr−m

r . A basis of
H1,r(U, Z) is given by basic commutators of weight r (see [9] Chapter 11).
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There is another way to study G by finite rank Z-modules mainly used in Hodge
theory (see [7]). Let Z[G] be the integral group ring of G, J be the kernel of Z[G] →
Z,
∑k

i=1 aiαi 7→
∑k

i=1 ai, ai ∈ Z, αi ∈ G. We have the canonical filtration of Z[G] by
subideals:

· · · ⊂ J3 ⊂ J2 ⊂ J1 = J ⊂ Z[G].

Each quotient Z[G]/Jr is a freely generate Z-module of finite rank.

2.3 The dual of H1,r(U, C)

Using the properties of iterated integrals it is easy to see that∫
δ
ω, δ ∈ H1,r(U, Z), ω ∈ Br/Br−1

is well-defined (see Appendix A). Knowing the fact that

dimC(Br/Br−1) = mr ≥ rankZ(Gr/Gr−1) = Mm(r)

we expect that

Vr := {ω ∈ Br/Br−1 |
∫

H1,r(U,Z)
ω = 0}

has non zero dimension. In fact by shuffle formula (see Appendix A), we know that in
general Vr 6= 0. It has been recently proved in [5] that Vr is generated by the shuffle
relations. By the extension of Atyiah-Hodge-Grothendieck theorem to iterated integrals,
see [8] commentary after Theorem 13.5 and Corollary 7.3, we know that for every δ ∈
H1,r(U, Z) there is a ω ∈ Br/Br−1 such that

∫
δ ω 6= 0. Therefore,

H1,r
dR(U) := Br/(Br−1 + Vr) ∼= Ȟ1,r(U, C),

where ˇmeans dual and H1,r(U, C) = H1,r(U, Z) ⊗Z C. One may be interested to find a
basis of H1,r

dR(U) similar to basic commutators (see [9]). For instance one can construct
Mm(r) elements of H1,r

dR(U) in the following way: In the construction of basic commutators
we replace the set which generates G freely with a basis of H1

dR(U) and (·, ·) with [·, ·]. By
definition [u, v] = uv − vu for u, v ∈ B. The basic commutators of weight r obtained in
this way form a basis of H1,r

dR(U). This is easy to see for r = 1, 2 and the complete proof
is given in [5].

Remark 1. The authors of [19] have used another construction of H1,r(U, Z) by means
of iterated integrals over Feynman diagrams. Such a construction is associated to a basis
of the freely generated group G and has the advantage that it does not require to perform
a tensor product of the Z-module H1,r(U, Z) with C.

3 Iterated integrals depending on a parameter

In this section we consider a two dimensional complex manifold M , a one dimensional
submanifold D of M (possibly not connected) and a regular proper holomorphic map
f : M → V such that f |D is also regular, where V is some small open disk in C. By
Ehresmann’s theorem f : (M,D) → V is topologically trivial over V . We are going to
work with iterated integrals in Ut := f−1(t)\D, t ∈ V . In other words, the Riemann
surface of the previous section depends on the parameter t. Instead of two points p0, p1 we
use two transversal section Σ0,Σ1 to the fibers of f at points p0, p1 ∈ Ut0 for some t0 ∈ V .
We assume that Σi, i = 0, 1 are parameterized by the the image t ∈ V of f : Σi → V .
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3.1 Gauss-Manin connection of iterated integrals

Let U := M\D, Ω1
U be the set of of meromorphic differential 1-forms in M with poles

along D, Ω1
V be the set of holomorphic differential 1-forms in V and Ω1

U/V = Ω1
U

f∗Ω1
V

be

the set of relative differentials. The set Ω1
U/V is a O(V )-module in a canonical way. We

redefine the set B in (3) using

Ω•,r
U/V = O(V ) + Ω•

U/V + Ω•
U/V Ω•

U/V + · · ·+ Ω•
U/V Ω•

U/V · · ·Ω
•
U/V︸ ︷︷ ︸

r times

.

The differential d = dU/V is OV -linear and is defined by the equalities in (2). Here by
f(pi), i = 0, 1 we mean f |Σi as a function in t (one has to verify that d is well-defined).

Let δ be a path in Ut0 which connects p0 to p1. We denote by (M, δ) a small neigh-
borhood of δ in M which can be homotopically contracted to δ. By a holomorphic object
(function, differential form etc.) along δ we mean a holomorphic object defined in a
universal covering of (M, δ). Therefore it can be viewed as a holomorphic object in a
neighborhood of δ in M which may be multi-valued in the self intersection points of δ.

Let ω be a holomorphic 1-form defined along the path δ. Let x0 ∈ Σ0 and δx,x0 be
a path which connects x0 to x ∈ M in f−1(f(x0)) along the path δ. For simplicity, we
use

∫ x
x0

ω =
∫
δx,x0

ω and consider it as a holomorphic function along δ. The Gelfand-Leray

form dω
df restricted to Ut’s is well-defined. For ω ∈ Ω1

U/V , the map ω 7→ dω
df is also called

the Gauss-Manin connection with respect to the parameter t. The reader is referred to
[1, 15] for more details.

We denote by ω̃ (resp. ω̄) the pullback of ω |Σi by the the holonomy map (M, δ) → Σi

with i = 0 (resp. i = 1). The form ω̃ is of the form a(f)df, a2 ∈ O(V ) and so we define

ω̃1

df
:= a ∈ O(V ).

If there is no confusion we will also use ω̃1
df to denote a(f). In a similar way we define ω̄

df .

Proposition 1. We have

(4) d(
∫ x

x0

ω) = (
∫ x

x0

dω

df
)df + ω − ω̃.

This is [4] Lemma 1. For the convenience of the reader we prove it here.

Proof. First, we remark that if the equality (4) is true for ω then it is also true for
ω + gdf , where g is a holomorphic function along δ. By analytic continuation argument,
it is enough to prove the proposition in a small neighborhood of p0. We take coordinates
(z1, z2) : Vp0 → (C2, 0) around p0 such that

p0 = (0, 0), x = (z1, z2), x0 = (0, z2), f = z2, Σ0 = {0} × (C, 0).

Based on the first remark we can assume that ω = a(z1, z2)dz1, a ∈ O(C2,0). We have

d(
∫ x

x0

ω) = d(
∫ z1

0
a(z̃1, z2)dz̃1)

= a(z1, z2)dz1 + (
∫ z1

0

∂a(z̃1, z2)
∂z2

dz̃1)dz2

= ω − ω̃ + (
∫ x

x0

dω

df
)df.
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Here
∫ z1

0 is the integration on the straight line which connects 0 to z1.

Let ωi, i = 1, 2, . . . t be holomorphic differential 1-forms along δ, p1 =
∫ x
x0

ω1 and
ω = ω2 · · ·ωr. We have

(5)
∫ x1

x0

ω
d(ω2p1)

df
=
∫ x1

x0

ω

(
−ω2 ∧ ω1

df
− ω̃1

df
ω2 + ω2

dω1

df
+

dω2

df
ω1

)
because∫ x1

x0

ω
d(ω2p1)

df
=

∫ x1

x0

ω(
dp1 ∧ ω2 + p1dω2

df
)

=
∫ x1

x0

ω

(
−ω2 ∧ ω1

df
− ω̃1

df
ω2 + ω2(

∫ x

x0

dω1

df
) +

dω2

df
(
∫ x

x0

ω1)
)

= L.H.S.

Now we define the Gauss-Manin connection:

Ω1,•
U/V → Ω1,•

U/V , ω 7→ ω′.

By definition it is a C-linear map, it is zero on Ω1,0
U and for ω ∈ Ω1

U/V we have:

(6) ω′ =
dω

df
+

ω̄

df
− ω̃

df

For r ≥ 2 and ω1, ω2, · · · , ωr ∈ Ω1
U/V

(7) (ω1ω2 · · ·ωr)′ :=

r∑
i=1

ω1ω2 · · ·ωi−1
dωi

df
ωi+1 · · ·ωr −

r−1∑
i=1

ω1 · · ·ωi−1
ωi ∧ ωi+1

df
ωi+2 · · ·ωr+

ω̄1

df
ω2 · · ·ωr − ω1 · · ·ωr−1

ω̃r

df
.

(For r = 1 this is (6)). We have to show that this definition is well-defined and does not
depend on the choice of ωi in its class in Ω1

U/V . Since (7) is linear in ωi, it is enough to
prove that (ω1 · · ·ωr)′ = 0 if for some i we have ωi ∈ f∗Ω1

V . This can be easily checked
using the facts dωi

df = 0, ωi∧ωj

df = ωi
df ωj .

Note that the definition (7) does depend on the choice of the transversal sections. The
idea behind the definition (7) lies in the proof of the following proposition:

Proposition 2. For continuous family of paths δt connecting x0 ∈ Σ0 to x1 ∈ Σ1 in
Ut, t ∈ V and along the path δ, we have

(8)
∂

∂t

∫
δt

ω =
∫

δt

ω′, ω ∈ Ω1,•
U

Proof. Let ω = ω1ω2 · · ·ωr. For r = 0 the equality (8) is true by definition. For r = 1 it
follows from Proposition 1. Let us assume that r ≥ 2. Define

pi(x) :=
∫ x

x0

ωi · · ·ωr =
∫ x

x0

ωipi+1, i = 1, 2, · · · , r, pr+1 := 1.
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Let Pi, i = 1, 2, . . . , r be the restriction of pi to Σ1. We consider Pi as a function in t. We
have:

∂P1

∂t

(4)
=

(∫ x1

x0

d(ω1p2)
df

)
+

ω1p2

df
− ω̃1p2

df
=
(∫ x1

x0

d(ω1p2)
df

)
+

ω̄1

df
P2

(5)
=

∫ x1

x0

(
−ω1 ∧ ω2

df
ω3 · · ·ωr −

ω̃2p3

df
ω1 + ω1

d(ω2p3)
df

+
dω1

df
ω2ω3 · · ·ωr +

ω̄1

df
ω2 · · ·ωr

)
...

...

=
∫ x1

x0

ω′

In the (i− 1)-th line, 2 ≤ i ≤ r, we have used the fact that pi |Σ0= 0 and so ω̃i−1pi = 0.

Similar to the previous section we define Vr = {ω ∈ Br/Br−1 |
∫
H1,r(Ut,Z) ω = 0, ∀t ∈

V } and H1,r
dR(U/V ) = Br/(Br−1 +Vr) for the case Σ0 = Σ1. The Gauss-Manin connection

does not necessarily maps dΩ0,r
U/V , r ≥ 2 to itself (for instance check it for r = 2) and so it

may not induce a well-defined operator from B to itself. However, we have:

Proposition 3. If Σ0 = Σ1 then the Gauss-Manin connection induces a well-defined map

(9) H1,r
dR(U/V ) → H1,r

dR(U/V ), ω1ω2 · · ·ωr →
r∑

i=1

ω1ω2 · · ·ωi−1
dωi

df
ωi+1 · · ·ωr

which is independent of the choice of the transversal section Σ0.

Proof. First note that the Gauss-Manin connection induces a well-defined map in Br/Br−1 =
(H1

dR(U/V ))r even if it is not well-defined in Br. By Proposition 2 it maps Vr to itself
and so it induces a well-defined map in H1,r

dR(U/V ). In the formula (7) the terms after the
first sum have length less that r and so they are zero in H1,r

dR(U/V ).

3.2 Melnikov functions as iterated integrals

Recall the notations of the previous section. Let

(10) Fε : ωε = df + εω1 + ε2ω2 + · · · = 0, ωi ∈ Ω1
U ε ∈ (C, 0)

be a holomorphic deformation of F = F0. Let hε(t) : Σ0 → Σ1 be the holonomy of Fε

along the path δ. We write

hε(t)− t = M1(t)ε + M2(t)ε2 + · · ·+ Mi(t)εi + · · · , i!.Mi(t) =
∂ihε

∂εi
|ε=0 .

Mi is called the i-th Melnikov function of the deformation along the path δ. Let M1 ≡
M2 ≡ · · · ≡ Mk−1 ≡ 0 and Mk 6≡ 0. It is a well known fact that the multiplicity of Mk at
t = 0 is the number of fixed points of the holonomy hε (as a function in t).
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Proposition 4. If M1 ≡ M2 ≡ · · · ≡ Mk ≡ 0 then

Mk+1(t) = −
∫

δt

(
k∑

i=0

ωk+1−ipi)

where pi and gi are holomorphic functions along δ defined recursively by

(11) pidf + dgi = −
i−1∑
j=0

ωi−jpj , i = 1, 2 . . . , k, p0 = 1.

Moreover, the restriction of pi (resp. gi) to Σ0 and Σ1 coincide (as functions in t).

For the proof of the above theorem see [21] Proposition 6 p. 73 or [15] Theorem 7.1.
Now we want to write Mk+1 as an iterated integral. This has been done in [4] Theorem
2, for the linear deformation of df . The idea of the proof is based on various usages of

(12) pi =
∫ x

x0

d

df
(
i−1∑
j=0

ωi−jpj)

and the equality (5). Note that by Proposition 4

dpi = (
∫ x

x0

d2

df2
(
i−1∑
j=0

ωi−jpj))df +
d

df
(
i−1∑
j=0

ωi−jpj)−
˜

d

df
(
i−1∑
j=0

ωi−jpj).

Since d
df (
∑i−1

j=0 ωi−jpj) is defined modulo relatively zero differential 1-forms, the term
d2

df2 (
∑i−1

j=0 ωi−jpj)) is not uniquely defined even modulo relatively zero 1-forms. Note that

we can add any holomorphic differential form η with
∫
δt

η ≡ 0 to
∑i−1

j=0 ωi−jpj in the
definition of pi and so pi and gi’s are not uniquely defined.

For simplicity we define ω∗ = dω
df and define (ω1ω2 · · ·ωr)∗ =

∑r
i=1 ω1 · · ·ωi−1ω

∗
i ωi+1 · · ·ωr.

The first Melnikov functions are given by:

M1 = −
∫

δt

ω1.

M2 = −
∫

δt

ω2 + ω1p1 = −
∫

δt

ω2 + ω1ω
∗
1.

We have

p2 =
∫ x

x0

(ω2 + ω1p1)∗ =
∫ x

x0

ω∗
2 −

ω1 ∧ ω∗
1

df
− ω1

ω̃∗
1

df
+ ω∗

1ω
∗
1 + ω1ω

∗∗
1

and so

M3 = −
∫

δt

ω3 +ω2p1 +ω1p2 = −
∫

δt

ω3 +ω2ω
∗
1 +ω1(ω∗

2−
ω1 ∧ ω∗

1

df
−ω1

ω̃∗
1

df
+ω∗

1ω
∗
1 +ω1ω

∗∗
1 )

= −
∫

δt

ω3 + ω2ω
∗
1 + ω1(ω∗

2 −
ω1 ∧ ω∗

1

df
+ ω∗

1ω
∗
1 + ω1ω

∗∗
1 ).

In the last equality we have used
∫
δt

ω1ω1 ≡ 0. In a similar way one calculates Mi’s as
iterated integrals.
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Remark 2. In the process of writing Mk as an iterated integral, we do not use the fact
that Mi = 0, i < k. However, we have used them in the proof of Proposition 4. They may
simplify the formula for Mk as we have seen in M3.

Proposition 5. If Σ0 = Σ1 and δ ∈ Gk then M1 = M2 = · · · = Mk−1 = 0 and

(13) Mk =
∫

δt

ω1(ω1(· · · (ω1(︸ ︷︷ ︸
k−1 times (

ω1)′ · · · )′)′.

Proof. For k = 1, 2 we have already checked the equalities. In general the proof is as
follows: For an arbitrary path δ connecting p0 to p1 we claim that Mk can be written
as the iterated integral in (13) plus integrals, call it Ik−1, of differential forms of length
strictly less than k. It is enough to prove that pi, i ≤ k − 1 is given by

pi =
∫ x

x0

(ω1(· · · (ω1(︸ ︷︷ ︸
i times (

ω1)∗ · · · )∗)∗ + Ii−1

because if this claim is true then

Mk = −
∫

δt

ω1pk−1 + Ik−1 =
∫

δt

ω1(ω1(· · · (ω1(︸ ︷︷ ︸
k−1 times (

ω1)′ · · · )′)′ + Ik−1.

Our claim on pi’s follows by various applications of (5) in the formula of (12). Note that
if in (5) ω1 is an arbitrary homogeneous element in Ω1,•

U of length k then we have∫ x1

x0

ω(ω2p1)∗ =
∫ x1

x0

ω(ω2ω1)∗ + Ik+r−2.

4 Deformation of Holomorphic foliations

In this section we consider a smooth affine variety U and a polynomial function f in U and
look at it as a morphism f : U → C of algebraic varieties. There is a compact projective
manifold M = U∪D and a rational morphism f̄ : M → P1 which coincides with f : U → C
in U . Let F = F(df) be the foliation in U whose leaves are connected component of the
fibers of f . We are going to consider the holomorphic foliation

(14) Fε : df + εω, ε ∈ (C, 0), ω ∈ Ω1
U .

We will apply the machinery of the previous section for f : f−1(V ) → V , where V is a
small open disk in C.

4.1 Tame functions

Let us first define a tame function.

Definition 1. The morphism f : U → C is tame if

1. The divisor at infinity D := M\U is smooth and H1(U, Q) = 0;
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2. The foliation F(df) is not rational, i.e. the closure of a generic fiber of f is not
isomorphic to P1.

3. f has non-degenerated singularities pi, i = 1, 2, 3 . . . , µ with distinct images ci :=
f(pi);

4. A generic fiber of f is connected and its closure in M intersects D transversally.

Ehresmann’s theorem implies that a tame morphism is topologically trivial over C\C,
where C := {c1, c2, c3, . . . , cµ}. We have two main examples in mind. The first is a generic
Lefschetz pencil (see [11, 17]) in a projective manifold M ⊂ Pm. The first and second
conditions become intrinsic properties of the pair (M, Pm). For this example, one can
take D in such a way that f̄ is also topologically trivial over ∞. The second example is
mainly used in planar differential equations. Let f be a polynomial in two variables with
deg(f) = d ≥ 3. We may compactify C2 inside P2, and look at F(df) as a foliation in P2.
For a generic choice of the coefficients, the polynomial f is tame. For instance, to obtain
the fourth condition one assumes that {[x; y] ∈ P1

∞ | fd(x, y) = 0} has d distinct points,
where fd is the last homogeneous piece of f . In this case D ∼= P1 is not a regular fiber of
f . Geometrically seen, d sheets of a regular fiber of f accumulate at D.

We take a distinguished system of paths γi, i = 1, 2, . . . , µ in C (see [1]). The path γi

connects a regular value b of f to ci and has not an intersection point with other paths
except at b. Let δi ∈ H1(Ub, Z) be the vanishing cycle along γi. One calls δi, i = 1, 2, . . . , µ
a distinguished basis of vanishing cycles. The Dynkin diagram of f is a graph whose
vertices are vanishing cycles δi. The vertex δi is connected to δj if and only if 〈δi, δj〉 6= 0.
The morphism f is called strongly tame if f is tame and its Dynkin diagram is connected.
A generic Lefschetz pencil and a generic polynomial in two variables discussed above are
strongly tame. For a proof see [11] 7.3.5 and [13] Theorem 2.3.2, 2. The polynomial
case has been proved in [10]. It follows also from the following: If a tame polynomial f
is obtained by a topologically trivial deformation of a morphism g : U → C with only
one singularity then the Dynkin diagram of f is connected and so it is strongly tame (see
[12, 3, 6]). By a topologically trivial deformation we mean the one in which the topological
structure of the smooth fiber does not change.

Proposition 6. If f is a strongly tame morphism then

1. A distinguished basis of vanishing cycles generate H1(Ub, Q);

2. For a cycle δ ∈ H1(Ub, Q) such that H1(Ub, Q) → Q, δ′ 7→ 〈δ, δ′〉 is not the zero
map, the action of the monodromy on δ generates H1(Ub, Q). In particular, this is
true for vanishing cycles.

Proof. The first part can be proved by a slight modifications of the arguments of [11], §5.
For a precise proof see [13] Theorem 2.2.1. The second part follows from the first part,
the connectivity of the Dynkin diagram and Picard-Lefschetz formula.

A peculiar property of a tame polynomial is that if
∫
δt

ω = 0 for a continuous family of
vanishing cycles δt and ω ∈ Ω1

U then ω is relatively exact, i.e.
∫
δ ω = 0, ∀δ ∈ H1(Ut, Z), t ∈

C\C and then it turns out that it is zero in the Brieskorn module

H =
Ω1

U

df ∧ Ω0
U + dΩ0

U

,
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where Ω1
U is the set of (algebraic) differential 1-forms in U (see [15] Theorem 5.1). The

module H, called also a Brieskorn module, is a C[t]-module in a canonical way, t[ω] = [fω].
The Gauss-Manin connection ∇ ∂

∂t
= d

df on H takes the form

d

df
: H → HC , ω 7→ ω′ :=

dω

df
,

where HC is the localization of H on the multiplicative group generated by t − ci, i =
1, 2, . . . , µ (see [16]). According to discussion in §2.3 it is natural to define H̃r := H ⊗C[t]

H ⊗C[t] · · · ⊗C[t] H, Vr := {ω ∈ H̃r |
∫
Hr(Ub,Z) ω = 0, ∀b ∈ C\C}, Hr = H̃r/Vr and define

the connection Hr → Hr
C , ω 7→ Hr

C as in (9). This connection is the algebraization of the
canonical connection of the vector bundle H1,r(Ut, Z)⊗Z C, t ∈ C\C, where the sections
with images in H1,r(Ut, Z) are flat sections.

Remark 3. A systematic way for further generalizations of the main results of this paper
would be a kind of Picard-Lefschetz theory for H1,r(Ut, Z). This requires the definition of
a reasonable intersection theory in H1,r(Ut, Z), Picard-Lefschetz type formulas and so on.
Such a theory does not seem to be worked out in the literature.

4.2 Two commuting holonomies

First, we state a Lemma.

Lemma 1. Consider a strongly tame morphism f , a differential 1-form ω ∈ Ω1
U and a

family of vanishing cycles δ = δt such that P (t) :=
∫
δ ω has the following property: In each

c ∈ C, P can be written locally in the form P (t) = (t − c)α · p(t) for some α ∈ C and a
one valued holomorphic function p in (C, c)\{c}. Then ω is a relatively exact 1-form and
so
∫
δ ω is identically zero.

Proof. For another vanishing cycle δ′ with the corresponding critical value c′ of f and the
vanishing path γ′, if 〈δ, δ′〉 6= 0 then by Picard-Lefschtz formula along the path γ′ and for
the cycle δ we have:

(15)
∫

δ′
ω = cδ′P (t),

where cδ′ is some constant depending on δ′. Since the Dynkin diagram of f is connected,
the equality in (15) holds for all vanishing cycles δ′. Let δ be a vanishing cycle along the
path γ in the critical value c. Since 〈δ, δ〉 = 0, the value of the integral

∫
δ ω after the

monodromy along the path γ and around c does not change and so the corresponding α
must be integer.

We conclude that
∫
δ ω for any vanishing cycle δ, is a one valued function in C\C. Using

the Picard-Lefschetz formula for two vanishing cycles δi, δj with non zero intersection
number, we conclude that ω is a relatively exact 1-form.

For ω ∈ Ω1
U define deg(ω) to be the pole order of ω along D.

Theorem 2. In the deformation (14) with deg(ω) ≤ deg(df) assume that f is a strongly
tame polynomial. Consider δ1, δ2 ∈ π1(Ub, b) such that the corresponding cycles in H1(Ub, Z)
vanishes along the paths which do not intersect each other except at b. Also assume that

(16) ∀δ ∈ H1(Ub, Z)
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〈δ, δ1〉 = 0 or 〈δ, δ2〉 = 0 or ∃δ′ ∈ H1(Ub, Z) s.t. 〈δ1, δ〉〈δ2, δ
′〉 − 〈δ2, δ〉〈δ1, δ

′〉 6= 0.

If the deformed monodromies along δ1 and δ2 commute then Fε has a first integral.

Note that a generic fiber of f is not a punctured P1 and hence if 〈δ1, δ2〉 6= 0 then the
condition in (16) is fulfilled. Theorem 1 is a special case of Theorem 2.

Proof. The first Melnikov function associated to the path (δ1, δ2) is trivially zero. By
Proposition 5 and the equality (19) in Appendix A we have:

(17)

∫
δ1

ω′∫
δ1

ω
=

∫
δ2

ω′∫
δ2

ω
.

If for a continuous family of vanishing cycles δ, we have
∫
δ ω = 0 then by Proposition 6

the 1-form ω is relatively exact and so ω = Pdf + dQ for two meromorphic function in M
with poles along D. The hypothesis deg(ω) ≤ deg(df) implies that P = 0 and so ω = dQ.

Assume that that
∫
δ ω is not identically zero. Then the multi-valued function (17) is

well-defined. We denote it by P and claim that P is a rational function. Since integrals
have finite growth at critical points and at infinity, it is enough to prove that P is one
valued. By the hypothesis on the vanishing paths γi, i = 1, 2 of δi, we can put γi inside
a distinguished system of paths Γ. Let c ∈ C and δ be the corresponding vanishing cycle
along the path γ ∈ Γ. By Picard-Lefschetz formula along the path γ we have:∫

δ1
ω′ + r1

∫
δ ω′∫

δ1
ω + r1

∫
δ ω

=

∫
δ2

ω′ + r2

∫
δ ω′∫

δ2
ω + r2

∫
δ ω

,

where ri := 〈δi, δ〉, i = 1, 2. This and (17) imply that either P (t) =
R

δ ω′R
δ ω

or
∫
r1δ2−r2δ1

ω = 0.
If one of ri’s is zero then P is one valued along γ. If both are non-zero then the second
case cannot happen because of Proposition 6 and the hypothesis in (16). In the first case
we conclude that P is again one valued in a neighborhood of γ.

We have proved that P is a rational function. Now ln(
∫
δ1

ω)′ = P (t) and so∫
δ
ω = e

R
P (t)dt = Q

∏
c∈K

(t− c)αc , Q ∈ C(t), αc ∈ C, K ⊂ C, #K < ∞.

Lemma 1 finishes the proof.

Concerning the comments after Theorem 1 note that for a hyperplane section D of M
we have the long exact sequence

· · · → H2(M, Q) s1→ H2(M,U, Q) → H1(U, Q) → H1(M, Q) → · · ·

and the Leray-Thom-Gysin isomorphism s2 : H2(M,U, Q) → H0(D, Q) ∼= Q. The compo-
sition s2 ◦ s1 is the intersection with D and so s1 is not the zero map. This implies that
if H1(M, Q) is zero then H1(U, Q) = 0.

A The properties of iterated integrals

In this appendix we list properties of iterated integrals in the context of this paper. The
following four statements can be considered as the axioms of iterated integrals:
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I 1. By definition the iterated integral is C-linear (resp. Z-linear) with respect to the
elements of B (resp. Z[G]) and∫

1
ω := ε(ω), ω ∈ B,

∫
α

1 = 1, α ∈ G.

We use the convention ω1ω2 · · ·ωr = 1 for r = 0.

I 2. For α, β ∈ G and ω1, ω2, . . . ωr ∈ Ω1
U∫

αβ
ω1 · · ·ωr =

r∑
i=0

∫
α

ω1 · · ·ωi

∫
β

ωi+1 · · ·ωr

([7], Proposition 2.9).

I 3. For α ∈ G and ω1, ω2, . . . ωr ∈ Ω1
U∫

α−1

ω1ω2 · · ·ωr = (−1)r

∫
α

ωr · · ·ω1.

([7], Proposition 2.12).

I 4. For α ∈ G and ω1, ω2, . . . ωr+s ∈ Ω1
U we have the shuffle relations

(18)
∫

α
ω1 · · ·ωr

∫
α

ωr+1 · · ·ωr+s =
∑

σ

∫
α

ωσ(1)ωσ(2) · · ·ωσ(r+s),

where σ runs through all shuffles of type (r, s)([7], Lemma 2.11). Recall that a permutation
σ of {1, 2, 3, . . . , r + s} is a shuffle of type (r, s) if

σ−1(1) < σ−1(2) < · · · < σ−1(r) and σ−1(r + 1) < · · · < σ−1(r + 2) < σ−1(r + s).

Note that I1, I2 and I3 imply that every iterated integral can be written as a polynomial
in
∫
δ ω1ω2 · · ·ωr, where δ runs through a set which generated G freely and ωi runs through

a fixed basis of H1
dR(U). However by I4 this way of writing is not unique. By various

applications of I4, we can get shuffle type formulas for the products of s ≥ 2 integrals.
All the well-known properties of iterated integrals in the literature can be deduced form
I1,I2,I3 and I4.

I 5. For α, β ∈ J and ω1, ω2, . . . ωr ∈ Ω1
U , r ≥ 1∫

αβ
ω1 · · ·ωr =

r−1∑
i=1

∫
α

ω1 · · ·ωi

∫
β

ωi+1 · · ·ωr.

In particular,
∫
αβ ω1 = 0.This statement follows from I1 and I2.

I 6. We have ∫
Js

Br = 0, for 0 ≤ r < s.

This follows by induction on r from I5.
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I 7. For α1, α2, · · · , αr ∈ G and ω1, ω2, . . . , ωr ∈ Ω1
U∫

(α1−1)(α2−1)···(αr−1)
ω1 · · ·ωr =

r∏
i=1

∫
αi

ωi.

This follows by induction on r from I5, I6 and I1.

We conclude that
∫
α ω, ω ∈ Br/Br−1, α ∈ Jr/Jr+1 is well-defined. Now we list some

properties related to Gr’s.

I 8. For r < s and ω1, ω2, . . . , ωr ∈ Ω1
U we have∫

βs

ω1ω2 · · ·ωr = 0, βs = (α1, α2, · · · , αs) or its inverse,

where (α1, α2, . . . , αr) = ((· · · ((α1, α2), α3) · · · ), αr).

It is enough to prove the statement for βs. For β−1
s it follows from I2 applied on

βsβ
−1
s = 1. The proof for βs = (βs−1, αs) is by induction on s. For s = 1 it is trivially

true. Suppose that the statement is true for s and let us prove it for s + 1. After various
applications of I2 and the induction hypothesis we have∫

βs+1

ω1ω2 · · ·ωr =
∫

βs

ω1ω2 · · ·ωr +
∫

β−1
s

ω1ω2 · · ·ωr

Now we apply I2 for βsβ
−1
s = 1 and we conclude that the right hand side of the above

equality is zero.

I 9. For ω1, ω2, . . . , ωr ∈ Ω1
U we have∫

α
ω1ω2 · · ·ωr = 0, α ∈ Gs, r < s,

∫
αβ

ω1 · · ·ωr =
∫

α
ω1 · · ·ωr +

∫
β

ω1 · · ·ωr, α, β ∈ Gr,∫
α−1

ω1 · · ·ωr = −
∫

α
ω1 · · ·ωr, α ∈ Gr,∫

α
(ω1ω2 · · ·ωr + (−1)rωr · · ·ω1) = 0, α ∈ Gr.

I9 implies that
∫
α ω, α ∈ Gr/Gr+1, ω ∈ Br/Br−1 is well-defined.

I 10. For α ∈ Gr and β ∈ Gs∫
(α,β)

ω1ω2 · · ·ωr+s =
∫

α
ω1 · · ·ωr

∫
β

ωr+1 · · ·ωr+s −
∫

β
ω1 · · ·ωs

∫
α

ωs+1 · · ·ωr+s

In particular

(19)
∫

(α,β)
ω1ω2 = det

(∫
α ω1

∫
β ω1∫

α ω2

∫
α ω2

)
, α, β ∈ G, ω1, ω2 ∈ Ω1

U .

The above statement follows by several application of I2,I9 (see also [4] Lemma 3).
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I 11. For α1, β1, α2, β2, · · · , αr, βr ∈ G and ω1, ω2 ∈ Ω1
U∫

Qs
i=1(αi,βi)

ω1ω2 =
s∑

i=1

det

(∫
αi

ω1

∫
βi

ω1∫
αi

ω2

∫
βi

ω2

)
.

The above statement follows by induction on s.
The remarks after I7 and I9 suggest that there may be a relation between Gr/Gr+1

and Jr/Jr+1. In fact the maps Gr/Gr+1 → Jr/Jr+1 induced by x 7→ x−1 are well-defined
and gives us a morphism of Lie algebras over Z:

⊕∞
r=1Gr/Gr+1 → ⊕∞

r=1J
r/Jr+1

For further information see [20].
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