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Abstract

Around 1970 Griffiths introduced the moduli of polarized Hodge structures/the
period domain D and described a dream to enlarge D to a moduli space of degener-
ating polarized Hodge structures. Since in general D is not a Hermitian symmetric
domain, he asked for the existence of a certain automorphic cohomology theory for D,
generalizing the usual notion of automorphic forms on symmetric Hermitian domains.
Since then there have been many efforts in the first part of Griffith’s dream but the
second part still lives in darkness. The objective of the present text is two-folded.
First, we give an exposition of the subject. Second, we give another formulation of
the Griffiths problem, based on the classical Weierstrass uniformization theorem.

1 Introduction

I got acquainted with the subject of present paper, when I was looking for works on Abelian
integrals in algebraic geometry. My initial aim was to collect some information and then
try to apply them in the study of Abelian integrals in differential equations/holomorphic
foliations (see [38, 40]). In a canonical way, I found many articles of P. A. Griffiths around
1970 on periods of projective manifolds and in particular, his survey article [23] which
contains almost all of his ideas on the subject. After a long period of investigation, I
observed that I had gone far from my initial aim. But it was worthfull because, in my
opinion, this is a very beautiful piece of mathematics which can attract many young
mathematicians. Later, I got the idea of modular foliations (see [44, 43]) based on the
generalized Griffiths domain and did not touch more the problems posed by Griffiths.

The conference ”CIMPA-UNESCO-IPM School on Recent Topics in Geometric Anal-
ysis, 2006” was a nice occasion for me to start writing what I had collected so far on the
subject. The present text is the main body of my talks at the mentioned conference and
it is mainly expository. Its objective is to introduce the reader with the literature on the
moduli of polarized Hodge structures and compactification problems after Satake, Baily
and Borel. I have tried to introduce the subject from the point of view of the classical
Weierstrass uniformization theorem. This seems to me the proper way of the realiza-
tion of Griffiths dream on automorphic type functions for the moduli of polarized Hodge
structures. Let us explain the contents of this text.

In §2 we sketch the objective of this text in the case of elliptic curves. This yields
to the classical theory of Eisenstein series and modular forms. In §3 we recall the Hodge
structures on the de Rham cohomologies of projective manifolds and the associated polar-
izations. In §4 we construct the classifying space of polarized Hodge structures D, called
the Griffiths domain, and the action of an arithmetic group ΓZ on D from the left. In
§5 we recall Ehresmann’s fibration theorem and then the fact that the period maps form
coefficient spaces to ΓZ\D satisfy the so called Griffiths transversality. In §6 we state the
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Baily-Borel theorem on the unique algebraic structure of quotients of symmetric Hermi-
tian domains by discrete arithmetic groups. Since except in few cases D is not a Hermitian
symmetric domain, one cannot apply this theorem to D. We will mention such few cases
which give origin to the notion of Shimura varieties in algebraic geometry. Finally, in §7
we give a new formulation of the automorphic type functions corresponding to families of
hypersurfaces.

I am currently working on the text [44] in which an analytic variety P over the Griffiths
domain is constructed and many notions of the present text, like the action of an arithmetic
group, period map, Griffiths transversality and so on are extended to P .

2 Elliptic curves

In this section we sketch the objective of the present text in the case of polarized Hodge
structures arising from elliptic curves. The reader who is not familiar with Hodge struc-
tures is recommended to read first this section and then the following sections.

2.1 Elliptic integrals and elliptic curves

Elliptic integrals ∫
I

dx√
4x3 − t2x− t3

, t1, t2 ∈ C,∆ := t32 − 27t23 6= 0,

where I is some path in C with end points in the roots of 4x3 − t2x − t3 = 0 or infinity,
can be written, up to some algebraic constants, as

∫
δ

dx
y , where δ ∈ H1(Et,Z) and Et is

an elliptic curve in the Weierstrass family of elliptic curves

(1) Et : y2 − 4x3 + t2x+ t3 = 0, t = (t1, t2) ∈ U0 := C2.

A parameter t with ∆(t) = 0 corresponds to the singular Et. In fact, after adding the
point at infinity to Et it turns to be a compact elliptic curve and by Et we mean the
compact one. The de-Rham cohomology (with complex valued differential forms) of Et

is a two dimensional C-vector space generated by the classes ω and ω̄ of the differential
forms dx

y |Et and dx̄
ȳ |Et , respectively, in H1

dR(Et).

2.2 Polarized Hodge structures

We have the Hodge decomposition

H1
dR(Et) := H10 ⊕H01,H01 = H10,

where H10 is the one dimensional C-vector space generated by ω. From another side we
have

H1(Et,Z)⊗ C = H1(Et,C) ∼= H1
dR(Et),

where H1(Et,Z) is the dual of the Z-module H1(Et,Z). In H1(Et,Z) we have the non-
degenerated bilinear map

H1(Et,Z)×H1(Et,Z) → Z, ψ(a, b) =
∫

Et

a ∧ b up to a constant
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which is dual (by Poincaré duality, see [21] p. 59 and §3.2) to the intersection mapping
in H1(Et,Z). It is also called a polarization. It satisfies −

√
−1ψ(ω, ω̄) > 0 which is

equivalent to:

(2) Im(z) > 0, z :=

∫
δ1
ω∫

δ2
ω
,

where δi, i = 1, 2 is a basis of the Z-module H1(Et,Z). Usually one takes the symplectic
basis of H1(Et,Z), i.e. 〈δ1, δ2〉 = 1, and so in this basis the intersection matrix in H1(Et,Z)
is

Ψ :=
(

0 1
−1 0

)
.

Let δ̌i ∈ H1(Et,Z), i = 1, 2 be the dual of δi. We have

ω = (
∫

δ1

ω)δ̌1 + (
∫

δ2

ω)δ̌2

and so elliptic integrals are encoded in an abstract structure consisting of: A Z-module
VZ of rank two and a polarization ψZ : VZ × VZ → Z, which is a non-degenerated anti-
symmetric bilinear map, and a Hodge structure

VC := VZ ⊗ C = H10 ⊕H01, H01 = H10, dimH01 = dimH10 = 1,

−
√
−1ψ(v, v̄) > 0, ∀v ∈ H10.

One call this a polarized Hodge structure of type Φ := (m,h10, h01,Ψ), where m = 1 and
h10 = h01 = 1.

2.3 Moduli of polarized Hodge structures

Next, we want to construct the moduli of polarized Hodge structures of type Φ. Fix a
Z-module of rank 2 and a polarization ψZ on VZ. Let D be the space of all polarized
Hodge structures of type Φ. It is in fact isomorphic to the Poincaré upper half plane

H := {x+ iy ∈ C | y > 0}.

The isomorphism H → D is constructed in the following way: To z ∈ H we associate the
Hodge structure in which H10 is generated by zδ̌1 + δ̌2, where {δ̌1, δ̌2} is a basis of VZ with
ψZ(δ̌1, δ̌2) = 1. The group

SL(2,Z) := {A ∈ Mat(2,Z) | det(A) = 1}

acts on H by
(
a b
c d

)
z := az+b

cz+d and the Hodge structures associated to z and Az, A ∈

SL(2,Z) are isomorphic. It is not difficult to see that ΓZ\H is the moduli of polarized
Hodge structures of type Φ.
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2.4 Period map

The multiplicative group C∗ := C\{0} acts in C2 in the following way:

λ · (x, y) = (λ2x, λ3y), λ ∈ C∗, (x, y) ∈ C2.

This induces an action of C∗ on U0:

λ • (t2, t3) = (λ4t2, λ
6t3), λ ∈ C∗, (t2, t3) ∈ U0

and an isomorphism Eλ•t ∼= Et of elliptic curves in the family (1). Therefore, Et, t ∈
P2,3 := C∗\U0 may be non-isomorphic elliptic curves. Note that ∆ = 0 induces a one
point set c in P2,3. We have the period map form P2,3\{c} to the moduli of polarized
Hodge structures of type Φ. Composing this with the isomorphism obtained in §2.3 and
extending it to c we have:

(3) pm : P2,3 → (ΓZ\H) ∪ {∞}, pm(t) = [z], z :=

∫
δ1
ω1∫

δ2
ω
, pm(c) = ∞,

which we call it again the period mapping. The different choice of the cycles δ1, δ2 with
〈δ1, δ2〉 = 1 will lead to the action of SL(2,Z) on z and so the above map is well-defined.
The point ∞ can be thought of the point obtained by the action of SL(2,Z) on Q. It is
called a cusp point.

2.5 Gauss-Manin connection

For practical purposes it is useful to redefine the period map in the following way: Let L
be the set of lattices Zω1 + Zω2,

ω1
ω2
∈ H. The new period map is

(4) pm : U0\{∆ = 0} → L, pm(t) =
1√
2πi

∫
H1(Et,Z)

ω.

The previous period map is the quotient of the new one. The derivative of the period map
can be calculated using the following argument: For a cycle δ ∈ H1(Et,Z) define

η1 =
∫

δ

dx

y
, η2 =

∫
δ

xdx

y

which are multi-valued holomorphic functions in U0\{∆ = 0}. Then η1, η2 satisfy the
following Picard-Fuchs system

(5)
(
dη1

dη2

)
=

1
∆

(
−d∆

12 −3δ
2

− t2δ
8

d∆
12

) (
η1

η2

)
, δ = 3t3dt2 − 2t2dt3.

(see for instance [45]). The 2× 2 matrix in the above equality is called the Gauss-Manin
connection matrix of the family (1) with respect to the differential forms dx

y ,
xdx
y . The al-

gorithms which calculate the Gauss-Manin connection can be implemented in any software
for commutative algebra (see [39, 44]).
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2.6 Eisenstein series and full modular forms

For a given elliptic curve in the Weierstrass family we constructed the associated Hodge
structure. Now, is it possible to construct the inverse map? In fact, it turns out that
the period map (3) is a biholomorphism whose inverse is given by the SL(2,Z) invariant
j-function:

j(z) := q−1 + 744 + 196884q + 21493760q2 + · · · , q = e2πiz.

Let us sketch the proof. The period map in (4) is a local biholomorphic map. This can
be check by the formula of its derivative. It satisfies also

pm(λ • t) = λpm(t).

Therefore, the induced map P2,3\{c} → SL(2,Z)\H is a local biholomorphism. Since
P2,3\{c} ∼= C, it must be a biholomorphism.

The inverse of the period map (4) composed with the canonical map {(ω1, ω2) | ω1
ω2
∈

H} → L is given by (g4, g6) := (60E4,−140E6), where Ei is the Eisenstein series of weight
i:

Ei(Λ) :=
∑

0 6=a∈Λ

1
ai

=
∑

0 6=(n,m)∈Z2

1
(mω1 + nω2)i

.

This follows from Weierstrass uniformization theorem (see for instance [50]). We have

j(z) =
g3
4(z)

g3
4(z)− 27g2

6(z)
.

A holomorphic function g in L is called a full modular form of weight i, i an even positive
integer, if

f(k · Λ) = kif(Λ), λ ∈ C∗,Λ ∈ L

and the pull-back f̃ of f by the canonical map H → L has a finite growth at infinity, i.e.
limIm(z)→+∞ f̃(z) = a < ∞. The function gi, i = 4, 6 is a full modular form of weight
i. The fact that the period map (4) is a biholomorphism implies that every full modular
form can be written in a unique way as a polynomial in g4 and g6. It is easy to see that
there is no full modular form of odd weight.

The classical definition of a full modular form is as follows: A holomorphic function f̃
on H is called a modular form of weight i if it has a finite growth at infinity and

(cz + d)−if(Az) = f(z), ∀z ∈ H, A ∈ SL(2,Z).

The map f 7→ f̃ constructed in the previous paragraph is a bijection between the two
notions.

One can interpret the modular forms of weight i (in the second sense) as the sections
K

i
2 , where K is the canonical bundle of SL(2,Z)\H(see §6). The literature of modular

forms and their arithmetic properties is huge. For instance, the Fermat last theorem
is proved to be equivalent to Shimura-Taniyama conjecture which asks for the existence
of certain modular forms. The moonshine conjecture interprets the coefficients of the
j-function in terms of the representation of the Monster group.
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3 Hodge theory of projective manifolds

Let M ⊂ PN be a projective (compact) manifold of dimension n. This means that in the
homogeneous coordinates of PN , M is given by the zeros of homogeneous polynomials. In
M we consider the canonical orientation induced by its complex structure. Any Hermitian
metric in M induces such an orientation. In the following by Hm(M,Z) (resp. Hm(M,Z))
we mean the image of the classical singular cohomology (resp. homology) in Hm(M,C)
(resp. Hm(M,C)). Therefore, we have killed the torsion.

3.1 De Rham cohomology

The de-Rham cohomology of M is given by

Hm
dR(M) :=

Zm(M)
dAm−1(M)

where Am(M) (resp. Zm(M)) is the set of C∞ complex valued differential m-forms (resp.
closed m-forms) on M . From another side we have

Hm
dR(M) = Hm(M,C) := Hm(M,Z)⊗Z C.

We look Hm(M,Z) as a lattice in Hm
dR(M).

3.2 Intersection form

We have the Poincaré duality

P : Hm(M,Z) → H2n−m(M,Z),
∫

δ′
P (δ) = 〈δ, δ′〉

under which for n = m the non-degenerate bilinear intersection map 〈·, ·〉 in homology
corresponds to the bilinear map

ψ(ω1, ω2) = c

∫
M
ω1 ∧ ω2, ω1, ω2 ∈ Hm

dR(M),

where c is a positive real number depending only on M (note that any two Hermitian
metric induce the same orientation in M). It assures us that for ω1, ω2 ∈ Hm(M,Z) we
have c

∫
M ω1 ∧ ω2 ∈ Z. If we use the notion of singular p-chains (see [21], p. 43) for the

definition of integral on manifolds we can assume that c = 1.

3.3 Hodge decomposition

We have the Hodge decomposition

(6) Hm
dR(M) = Hm,0 ⊕Hm−1,1 ⊕ · · · ⊕H1,m−1 ⊕H0,m,

where Hp,q ∼= Zp,q(M)
dAp+q−1(M)∩Zp,q(M)

and Zp,q
d is the set of C∞ closed (p, q)-forms on M .

We have the canonical inclusions Hp,q → Hm
dR(M) and one can prove (6) using harmonic

forms, see M. Green’s lectures [20], p. 14. We have the conjugation mapping

Hm
dR(M) → Hm

dR(M), ω 7→ ω̄
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which leaves Hm(M,R) invariant and maps Hp,q isomorphically to Hq,p. By taking local
charts it is easy to verify that

(7) ψ(H i,m−i,Hm−j,j) = 0 unless i = j,

(8) (−1)i+m
2 ψ(a, ā) > 0, ∀a ∈ H i,m−i, a 6= 0.

3.4 Hodge conjecture

One of the central conjectures in Hodge theory is the so called Hodge conjecture. Let m
be an even natural number and Z =

∑s
i=1 riZi, where Zi, i = 1, 2, . . . , s is a compact

algebraic subvariety of M of complex dimension m
2 and ri ∈ Z. By Chow theorem every

compact analytic subvariety of M is algebraic, i.e. it is given by zeros of polynomials (see
[21]). Using a resolution map Z̃i → M , where Z̃i is a compact complex manifold, one
can define an element

∑s
i=1 ri[Zi] ∈ Hm(M,Z) which is called an algebraic cycle (see [4]).

Since the restriction to Z of a (p, q)-form with p + q = m and p 6= m
2 is identically zero,

an algebraic cycle δ has the following property:∫
δ
Hp,m−p = 0, ∀p 6= m

2
.

A cycle δ ∈ Hm(M,Z) with the above property is called a Hodge cycle. The assertion of
the Hodge conjecture is that for any Hodge cycle δ ∈ Hm(M,Z) there is an integer a ∈ N
such that a · δ is an algebraic cycle, i.e. there exist subvarieties Zi ⊂ M of dimension
m
2 and rational numbers ri such that δ =

∑
ri[Zi]. The difficulty of this conjecture lies

in constructing varieties just with their homological information. The conjecture is false
with a = 1 (see [25]). In the literature one usually finds the notion of a Hodge class which
is an element in H

m
2

, m
2 ∩Hm(M,Q). The Poincaré duality gives a bijection between the

Q-vector space generated by Hodge cycles and the Q-vector space of Hodge classes (see
[54] §11).

4 The classifying space of polarized Hodge structure

In this section we construct the classifying space of Hodge structures D = D(m,h, ψ) with
a fixed weight m, Hodge numbers h = (hm−i,i, i = 0, 1, . . . ,m) and a polarization ψ on a
fixed freely generated Z-module H (Z). One can look D in two ways: First, as the space
of Hodge filtrations and second as a quotient G/K, where G is a real Lie group and K is
a compact subgroup (not necessarily maximal). For a subring K of C we define

H (K) := H (Z)⊗Z K.

4.1 Polarized Hodge structures

Let us be given a freely generated Z-module H(Z). A Hodge structure of weight m, m ∈ N
and type h = (hm,0, hm−1,1, . . . , h0,m) ∈ Nm+1 on H(Z) is a decomposition

H(C) := Hm,0 ⊕Hm−1,1 ⊕ · · · ⊕H0,m
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with H̄ i,m−i = Hm−i,i and hi,m−i = dimCH
i,m−i. We call hm−i,i the Hodge numbers and

define hi := hm,0 + hm−1,1 + · · · , hm−i,i. When H (Z) has a Hodge structure of type m we
denote it by Hm(Z).

Instead of Hodge structures, we will use Hodge filtrations. The main reason is that one
can define de Rham cohomologies of algebraic varieties over a field k and the associated
Hodge filtrations in such a way that they coincide with the classical notions in the case of
k = C (see [24]). For 0 ≤ i ≤ m we define

F i = F iHm(C) := Hm,0 ⊕Hm−1,1 ⊕ · · · ⊕H i,m−i.

To recover the Hodge filtration we define H i,m−i = F i ∩ F̄m−i.
When we have a family of Hodge structures parameterized by α ∈ I then we denote the

Hodge structure associated to α ∈ I by Hm(α,Z). This notation is also used replacing Z
with Q, R, C and so on. We write also F i = F i(α,C) = F i(α), Hm−i,i = Hm−i,i(α,C) =
H i,m−i(α) and so on.

A polarization ψ = 〈·, ·〉 for H(Z) is a non-degenerate bilinear map H(Z)×H(Z) → Z
symmetric if m is even and skew if m is odd

ψ(a, b) = (−1)mψ(b, a), a, b ∈ Hm(Z)

such that its complexification (we denote it again by ψ) satisfies (7) and (8). All the data
above is called a polarized Hodge structure of type Φ = (m,h, ψ).

4.2 Hodge structure in cohomologies with real coefficients

Every element x ∈ Hm(R) can be written in the form

x = xm,0 + xm−1,1 + · · ·+ xm−1,1 + xm,0, xm−i,i ∈ Hm−i,i

with xm
2

, m
2

= xm
2

, m
2

if m is even. We define H i ⊂ Hm(R), i < m
2 to be the set of all

xm−i,i + xm−i,i, x ∈ Hm(C) and H
m
2 , for m even, to be the set of all xm

2
, m

2
, x ∈ Hm(C).

These are real subvector spaces of Hm(R) and we have the following decomposition of
Hm(R):

(9) Hm(R) = H0 ⊕H1 ⊕ · · · ⊕H
m
2 ,

x = (xm,0 + xm,0) + (xm−1,1 + xm−1,1) + · · ·+ xm
2

, m
2
.

For i < m
2 the map xm−i,i → xm−i,i + xm−i,i induces an isomorphism of R-vector spaces

Hm−i,i and H i. Multiplication by
√
−1 in Hm−i,i induces a map

(10) Ji : H i → H i, J2
i = −Id,

x = xm−i,i + x̄m−i,i, Jix := ixmi,i + ixmi,i = i(xm−i,i − x̄m−i,i).

If m is even then we define Jm
2

to be the identity. A C-linear map in Hm−i,i corresponds
to a R-linear map in H i which commutes with Ji.

Proposition 1. (Riemann relations) For i, j ≤ m
2 we have:

1. ψ(H i,Hj) = 0 unless i = j;

2. ψ(Jix, Jiy) = ψ(x, y) for all x, y ∈ H i;
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3. If m is odd then (−1)
m−1

2
+iψ(x, Jix) > 0 for all x ∈ H i, x 6= 0 (ψ(x, x) = 0);

4. If m is even then ψ(x, Jix) = 0 and (−1)
m
2

+iψ(x, x) > 0 for all x ∈ H i, x 6= 0.

Proof. 1. It is a direct consequence of (7). 2. Write x = a+ a, y = b+ b, a, b ∈ Hm−i,i.

ψ(Jix, Jiy) = ψ(
√
−1(a− ā),

√
−1(b− b̄)) = −ψ(a− ā, b− b̄) = ψ(a, b̄) + ψ(ā, b) =

ψ(a+ ā, b+ b̄) = ψ(x, y).

3,4. We use (7) to obtain

ψ(x, Jix) = ψ(a+ ā,
√
−1(a− ā)) =

√
−1((−1) + (−1)m)ψ(a, ā),

ψ(x, x) = ψ(a+ ā, a+ ā) = ψ(a, ā) + ψ(ā, a) = (1 + (−1)m)ψ(a, ā),

and then use (8).

Let C : Hm(R) → Hm(R) be defined in the following way

Cx :=

{
(−1)

m−1
2

+iJix m odd ,
(−1)

m
2

+ix m even,
x ∈ H i.

Note that ψ(x,Cy) is a positive form on Hm(R) (see [13]). We will call the decomposition
(9) of Hm(R) and the data (10) with the properties 1,2,3 and 4 of Proposition 1 the
polarized Hodge structure on Hm(R). A polarized Hodge structure on Hm(R) gives in a
canonical way a polarized Hodge structure on Hm(C). To see this, for i = m

2 we define
H

m
2

, m
2 = H

m
2 ⊗ C and for i < m

2 we define Hm−i,i (resp. H i,m−i) to be the vector space
generated by the eigenvectors of Ji with the eigenvalue

√
−1(resp. −

√
−1). Now one can

check (7) and (8).

Proposition 2. For a polarized Hodge structure α on Hm(Z), the set

(11) Vα := {A ∈ GL(Hm(R)) | A respects the Hodge structure and

ψ(Ax,Ay) = ψ(x, y), AJi = JiA, i = 0, 1, . . .}

is a compact subgroup of GL(Hm(R)).

Proof. Define P (x) = ψ(x,Cx), x ∈ Hm(R). We have P (Ax) = P (x),∀A ∈ Vα. There-
fore, elements of Vα leaves the fibers P−1(c), c ∈ R+ invariant. Since the fibers of P are
compact sets, this finishes the proof of the proposition.

4.3 Generalized Jacobians

Let us suppose that m is odd and i = m+1
2 . Then we have a canonical isomorphism

Hm(R) → F
m+1

2 of R-vector spaces. Therefore, the projection L of Hm(Z) in F
m+1

2 is a
lattice of rank 2 dimC F

m+1
2 and so we can define the compact complex torus

Jm+1
2
Hm(Z) := F

m+1
2 /L.

This is called the m+1
2 -Jacobian variety of Hm(Z). In the case for which Hm(Z) is the inte-

gral cohomology of a smooth projective variety of dimension m, the torus J1H
1(Z), m = 1

(resp. JnH
2n−1(Z), m = 2n−1) is also called the Albanese variety (resp. Picard variety).

9



4.4 Griffiths domain

We fix m, Hodge numbers h = (hm−i,i, i = 0, 1, . . . ,m) and a non-degenerate bilinear
map ψ = 〈·, ·〉 in Hm(Z). The Griffiths domain D is the space of all decompositions
Hm(C) := Hm,0 ⊕Hm−1,1 ⊕ · · · ⊕H0,m, dimHm−i,i = hm−i,i resulting a polarized Hodge
structure on Hm(Z). We define the compact dual Ď of D similar to D but without the
condition (8). Note that D is an open subset of Ď. The compact dual Ď of D is an analytic
variety in the following way: First note that a Hodge structure on Hm(Z) is completely
determined by the data:

(12) F [m
2

]+1 = Hm,0 ⊕Hm−1,1 ⊕ · · · ⊕H [m
2

]+1,m−[m
2

]−1,

(13) F [m
2

]+1 ∩ F [m
2

]+1 = {0}, ψ(Hm−i,i,Hm−j,j) = 0, ∀i, j ≤ m− [
m

2
]− 1.

(H i,m−i is defined to be Hm−i,i and in the case m even H
m
2

, m
2 is the ψ-orthogonal com-

plement of F [m
2

]+1 + F [m
2

]+1). The decomposition (12) determines a point in the complex
grassmannian manifold Gr := Gr(hm,0,Hm(C))× · · · ×Gr(h[m

2
]+1,m−[m

2
]−1,Hm(C)). The

first condition in (13) determines an open subset of Gr and the second condition an analytic
subvariety of Gr.

4.5 D as a quotient of real Lie groups

For a subring K of R define

ΓK := Aut(H(K), 〈·, ·〉) :=

{A : H(K) → H(K) | A is K-linear and ∀x, y ∈ H(K), 〈Ax,Ay〉 = 〈x, y〉}.

The group ΓR acts from the left on D in a canonical way. For a fixed point p0 ∈ D define

V = Vp0 := {a ∈ ΓR | a.p0 = p0}.

According to Proposition 2, V is a compact subgroup of ΓR. The map

α : ΓR/V → D, α(a) = a · p0

is an isomorphism and so we may identifyD with ΓR/V . Note that V may not be maximal.
Since ΓZ is discrete in ΓR, i.e. it has the discrete topology as a subset of ΓR, the group

ΓZ acts discontinuously on D, i.e. for any two compact subset K1,K2 in D the set

{A ∈ ΓZ | A(K1) ∩K2 6= ∅}

is finite. The set ΓZ\D is the moduli of polarized Hodge structures of type Φ = (m,h, 〈·, ·〉)
and it has a canonical structure of a complex analytic space.

4.6 Tangent space of D

Let

gK = Lie(ΓK) := {N ∈ EndK(Hm(K)) | 〈Nx, y〉+ 〈x,Ny〉 = 0, ∀x, y ∈ Hm(K)}.
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To each α ∈ D, there is a natural filtration in gC

F igC = {N ∈ gC | N(F p) ⊂ F p+i, ∀p ∈ Z}, i = 0,−1,−2, . . . ,

where F • is the Hodge filtration associated to α. We get a natural filtration of the tangent
bundle

T h
αD := F−1(gC)/F 0(gC) ⊂ F−2(gC)/F 0(gC) ⊂ · · · ⊂ gC/F

0(gC) = TαD.

One usually calls T h
αD the horizontal tangent bundle. When m = 1 then the horizontal

and usual tangent bundles are the same.
The subgroup V is connected and is contained in a unique maximal compact subgroup

K of ΓR. When K 6= V , then there is a fibration of D = ΓR/V → ΓR/K with compact
fibers isomorphic to K/V which are complex subvarieties of D. In this case we have
Tα(D) = T h

α (D) ⊕ T v
α(D), where T v(D) restricted to a fibre of π coincides with the

tangent bundle of that fibre. For more information see [11] and the references there.

4.7 Few good cases

Here is the classification of all cases in which V is a maximal compact subgroup of ΓR, i.e.
it is compact and there is no other compact subgroup of ΓR containing V .

Proposition 3. ([32] page 4 or [10]) The group V is maximal in ΓR only in one of the
following cases:

1. m = 2a+ 1, hp,n−p = 0 if p 6= a, a+ 1;

2. m = 2a, ha+1,a−1 ≤ 1 and hp,m−p = 0 if p 6= a− 1, a, a+ 1.

In the first case D is the Siegel domain (see [17, 34]).
A subgroup of ΓR is called arithmetic if it is commensurable with ΓZ. Here two

subgroups A and B of a group are commensurable when their intersection has finite index
in each of them. For the case in which V is maximal in ΓR, the quotient D := ΓR/V is
a Hermitian symmetric domain (see for instance [37]). For an arithmetic subgroup Γ of
ΓR, the compactification of Γ\D is done by I. Satake, A. Borel and W. Baily ([3, 46]). In
fact the compactification due to Borel and Baily gives us an algebraic structure on Γ\D.
For the case in which V is not maximal, partial compactifications are done by E. Cattani,
A. Kaplan, A. Ash, D. Mumford, M. Rapoport, Y. S. Tai, K. Kato and S. Usui (see the
references of [31, 32]).

5 Period map

Roughly speaking the period map associate to each variety its polarized Hodge structure
and hence a point in the Griffiths domain.

5.1 Ehresmann fibration theorem

For a family of algebraic varieties depending on a parameter one can always find a Zariski
open subset U in the parameter space in such a way that the varieties with corresponding
parameter in U are topologically the same (see for instance [53], corollary 5.1). However,
they may have different analytic structures and Hodge structures.

11



Theorem 1. (Ehresmann’s Fibration Theorem [16]). Let f : Y → B be a proper submer-
sion between the manifolds Y and B. Then f fibers Y locally trivially i.e., for every point
b ∈ B there is a neighborhood U of b and a C∞-diffeomorphism φ : U × f−1(b) → f−1(U)
such that f ◦ φ = π1 = the first projection. Moreover if N ⊂ Y is a closed submani-
fold such that f |N is still a submersion then f fibers Y locally trivially over N i.e., the
diffeomorphism φ above can be chosen to carry U × (f−1(b) ∩N) onto f−1(U) ∩N .

The map φ is called the fiber bundle trivialization map. Ehresmann’s theorem can be
rewritten for manifolds with boundary and also for stratified analytic sets. In the last case
the result is due to R. Thom, J. Mather and J. L. Verdier (see [36, 53]).

Let λ be a path in B connecting b0 to b1 and defined up to homotopy. Ehresmann’s
Theorem gives us a unique map hλ : f−1(b0) → f−1(b1) defined up to homotopy. In partic-
ular, for b := b0 = b1 we have the action of π1(Y, b) on the homology group Hn(f−1(b),Z).
The image of π1(Y, b) in Aut(Hn(f−1(b),Z)) is called the monodromy group.

5.2 period map

Let us be given a holomorphic map between projective (compact) varieties f : X → S. Let
S′ be the locus of points t ∈ S such that f is not a submersion. According to Ehresmann’s
theorem the mapping f restricted to T := S\S′ is a C∞ fiber bundle. Fix a point t0 ∈ T
and identify (Hm(f−1(t0),Z), 〈·, ·〉) with the polarized Z-module in the definition of D.
Let

Γ = Im(π1(T, t0) 7→ ΓZ)

be the monodromy group associated to f . We have the well-defined period map

pm : T → Γ\D.

I believe that the monodromy group Γ for a complete f (see §7.1) is arithmetic but I do
not know any reference or proof for this fact. To avoid this problem we may use ΓZ\D
instead of Γ\D.

5.3 Griffiths transversality theorem

The Griffiths transversality theorem is originally stated using the Gauss-Manin connection
on the m-th cohomology bundle on T . It implies that the image of the derivation of the
period map is in the horizontal tangent space T h

pm(t)D of D.

6 Automorphic functions

Automorphic functions, from the point of view of this text, are connecting functions
between coefficient spaces of algebraic varieties and the corresponding space of inte-
grals/Hodge structures.

6.1 Positive line bundles and Kodaira embedding theorem

A line bundle L on a compact complex manifold A is called negative if the zero section
A0 of L can be contracted to a point in the context of analytic varieties, i.e there is an
analytic map from a neighborhood of A0 in L to a singularity (X, 0) such that it is a
biholomorphism outside A0 and the inverse image of 0 is A0. Naturally, a line bundle is
called positive if its dual is negative.

12



Theorem 2. Let L be a positive line bundle on a complex compact manifold A. Then
there is an integer n and global holomorphic sections s0, s1, . . . , sN of Ln such that the
mapping

A→ PN , x 7→ [s0(x); s1(x); · · · : sN (x)]

is an embedding.

As far as I know this is the only way for giving an algebraic structure to a complex
manifold. For further information the reader is referred to [19, 7].

6.2 Automorphy factors

Let D be a complex manifold and Γ be a subgroup of biholomorphism group of of D. A
holomorphic automorphy factor for Γ on D is a map j : D×Γ → C∗ which for fixed A ∈ Γ
is holomorphic in x ∈ D and which satisfies the identity

j(x,A ·B) = j(x,A)j(A · x,B), ∀A,B ∈ Γ, x ∈ D.

Two automorphic factors j1 and j2 are called equivalent if there is a group homomorphism
a : Γ → (C∗, ·) such that j1(x, ·) = a(·)j2(x, ·) for all x ∈ D. If both D and D′ := Γ\D
are smooth varieties then the equivalence class of an automorphy factor j corresponds to a
line bundle Lj on D′ . Conversely, every line bundle on D′ is obtained by an automorphy
factor. A global holomorphic section of Ln

j corresponds to a holomorphic function s in D
such that

(14) s(A · x) = j(x,A)ns(x),∀ x ∈ D, A ∈ Γ.

In an arbitrary case in which D′ may not be a complex manifold it is natural to say that
a holomorphic function on D is an automorphic function of weight n if it satisfies (14)
and a certain growth condition (depending on the situation). Usually, for a holomorphic
function s in D one defines the slash operator

s|nA(·) := j(·, A)−ns(·), A ∈ Γ

which satisfies
s|n(AB) = (s|nA)|B, A,B ∈ Γ

and one rewrites (14) in the form

(15) s|nA = s, ∀A ∈ Γ.

If we wish to find a canonical embedding of D′ in some projective space and we want
to use the idea behind Kodaira embedding theorem then we have to find an automorphy
factor j, a positive integer n and automorphic functions s0, s1, . . . , sN of weight n such
that the map

D → PN , x 7→ [s0(x); s1(x); · · · : sN (x)]

is an embedding.
If D is a domain in Cn then the determinant of the Jacobian of h ∈ Γ at x, denote

it by det jacob(x, h) is an automorphy factor. The corresponding line bundle in D′ is the
canonical line bundle in D′, i.e. the wedge product of the cotangent bundle of D′ n-times.
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6.3 Poincaré series

Let us consider a holomorphic function s in D which may not satisfy the equality (14).
To s one can associate the formal series

s̃(x) :=
∑
A∈Γ

s|nA.

It satisfies the property (15) but it may not be convergent. The Borel-Baily theorem
says that for D a Hermitian symmetric domains and for suitable s the above series is
convergent.

6.4 Borel-Baily Theorem

Let Hol(D)+ be the connected component of the group if biholomorphisms of a variety D
containg the identity.

Theorem 3. (Borel-Baily) Let Γ\D be the quotient of a Hermitian symmetric domain
by a torsion free arithmetic subgroup of Hol(D)+ then there is a positive integer n such
that the automorphic forms of weight n gives us an embedding of Γ\D in some projective
space.

The automorphy factor in the above theorem comes, as usual, from the canonical
bundle of Γ\D. The proof is mainly based on the study of automorphic functions and
convergence of the Poincaré series (see [3], §5).

Shimura Varieties are special cases of quotients Γ\D. They represent certain moduli
spaces in Algebraic geometry. For further information on this subject the reader is referred
to [37].

6.5 Final note on the moduli of polarized Hodge structures

Let D be the Griffiths domain and Γ be an arithmetic subgroup of ΓR. We have the
following vector bundle on D′ := Γ\D:

Hm := ∪α∈D′Hm(α,C).

For 0 ≤ i ≤ m it has the subbundle F i := ∪α∈D′F i(α,C). The wedge product of F i,
rank(F i) times, gives us a line bundle in D′ and hence an automorphic factor in D.
Except in the few cases mentioned in §4.7 these line bundles are not positive, in the sense
that they have not enough holomorphic sections in order to embed D′ in some projective
space.

7 A new point of view

In the construction of the Griffiths domain D, we have considered many Hodge structures
that may not come from geometry. In the simplest way we may define that a Hodge struc-
ture comes from geometry if it arises in the m-th cohomology of some smooth algebraic
variety. However, A. Grothendieck in [23] p. 260 gives an example in which a Hodge
structure comes in a certain way from geometry but it is not included in our premature
definition. In the case of Hodge structures arising from Riemann surfaces of genus g ≥ 2
the Griffiths domain is of dimension g(g+1)

2 and its subspace consisting of Hodge structures
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coming from Riemann surfaces is of dimension 3g− 3. The conclusion is that it would not
be a reasonable idea to look for certain algebraic structures for Γ\D. Instead, we propose
a point of view which is explained in this section. For simplicity, we explain it in the case
of hypersurfaces.

7.1 Kodaira-Spencer Theorem on deformation of hypersurfaces

For a given smooth hypersurface M of degree d in Pn+1 is there any deformation of M
which is not embedded in Pn+1? The answer to our question is no, except for some few
cases. It is given by Kodaira-Spencer Theorem which we are going to explain it in this
section. For the proof and more information on deformation of complex manifolds the
reader is referred to [35], Chapter 5.

Let M be a complex manifold and Mt, t ∈ B := (Cs, 0), M0 = M be a deformation of
M0 which is topologically trivial over B. We say that the parameter space B is effective
if the Kodaira-Spencer map

ρ0 : T0B → H1(M,Θ)

is injective, where Θ is the sheaf of vector fields on M . It is called complete if other
families are obtained from Mt, t ∈ B in a canonical way (see [35], p. 228).

Theorem 4. If ρ0 is surjective at 0 then Mt, t ∈ B is complete.

If one finds an effective deformation of M with dimB = dimCH
1(M,Θ) then ρ0 is

surjective and so by the above theorem it is complete.
Let us now M be a smooth hypersurface of degree d in the projective space Pn+1. Let

T be the projectivization of the coefficient space of smooth hypersurfaces in Pn+1. In the
definition of M one has already dimT =

(
n+1+d

d

)
− 1 parameters, from which only

m :=
(
n+ 1 + d

d

)
− (n+ 2)2

are not obtained by linear transformations of Pn+1.

Theorem 5. Assume that n ≥ 2, d ≥ 3 and (n, d) 6= (2, 4). Then there exists a germ at
M of m-dimensional (m = dimCH

1(M,Θ)) smooth subvariety of T , say B, such that the
Kodaira-Spencer map on B is injective and so the corresponding deformation is complete.

For the proof see [35] p. 234. Let us now discuss the exceptional cases. For (n, d) =
(2, 4) we have 19 effective parameter but dimH1(M,Θ) = 20. The difference comes from
a non algebraic deformation of M (see [35] p. 247). In this case M is a K3 surface. For
n = 1, we are talking about the deformation theory of a Riemann surface. According
to Riemann’s well-known formula, the complex structure of a Riemann surface of genus
g ≥ 2 depends on 3g − 3 parameters which is again dimH1(M,Θ) ([35] p. 226).

7.2 Tame polynomials

Let α = (α1, α2, . . . , αn+1) ∈ Nn+1 and assume that the greatest common divisor of
all αi’s is one. We consider a parameter ring R := C(t), t = (t1, t2, . . . , ts). We also
consider the polynomial ring R[x] := R[x1, x2, . . . , xn+1] as a graded algebra with deg(xi) =
αi. A polynomial f ∈ R[x] is called a quasi-homogeneous polynomial of degree d with
respect to the grading α if f is a linear combination of monomials of the type xβ :=
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xβ1
1 x

β2
2 · · ·xβn+1

n+1 , α.β :=
∑n+1

i=1 αiβi = d. For an arbitrary polynomial f ∈ R[x] one can
write in a unique way f =

∑d
i=0 fi, fd 6= 0, where fi is a quasi-homogeneous polynomial

of degree i. The number d is called the degree of f .
Let us be given a polynomial f ∈ R[x]. We assume that f is a tame polynomial. In

this text this means that there exist natural numbers α1, α2, . . . , αn+1 ∈ N such that the
Milnor vector space

Vg := R[x]/ <
∂g

∂xi
| i = 1, 2, . . . , n+ 1 >

is a finite dimensional R-vector space, where g = fd is the last quasi-homogeneous piece
of f in the graded algebra R[x], deg(xi) = αi.

We choose a basis xI = {xβ | β ∈ I} of monomials for the Milnor R-vector space and
define the Gelfand-Leray n-forms

(16) ωβ :=
xβdx

df
, β ∈ I,

where dx = dx1 ∧ · · · ∧ dxn ∧ dxn+1 (see [1]). Let U0 = Cs, ∆ ∈ C(t) be the discriminant
of f and T := U0\(Zero(∆) ∪ Pole(∆)). It turns out that Lt := {ft = 0}, t ∈ T is a
topologically trivial family of affine hypersurfaces, where ft is obtained from f by fixing
the value of t. The differential forms ωβ, β ∈ I defined in (16) restricted to Lt, t ∈ T form
a basis of Hn

dR(Lt). The reader is referred to [44, 41] for all unproved statements in this
section. In these articles we have also given algorithms which calculate a basis of the de
Rham cohomology compatible with the mixed Hodge structure of the affine variety Lt.
Mixed Hodge structures generalize the classical Hodge structures for arbitrary varieties
which may be non compact and singular. The reader is referred to [12, 14] on this subject.

The reader may have already noticed that the main reason for us to use arbitrary
weights αi, is to put the example (1) and the hypersurfaces discussed in §7.1 into one
context.

7.3 Poincaré series

Despite the fact that the differential forms ωβ, β ∈ I may not have any compatibility with
the mixed Hodge structure of Lt, we may still ask for the convergence of Poincaré type
series explained bellow. Define the period matrix

pm(t) =


∫
δ1
ω1

∫
δ1
ω2 · · ·

∫
δ1
ωµ∫

δ2
ω1

∫
δ2
ω2 · · ·

∫
δ2
ωµ

...
...

...
...∫

δµ
ω1

∫
δµ
ω2 · · ·

∫
δµ
ωµ

 ,

where δ = (δi, i = 1, 2, . . . , µ) is a basis of the freely generated Z-module Hn(Lt,Z) and
{ωi | i = 1, 2, . . . , µ} = {ωβ | β ∈ I}. Assume that the intersection matrix in the basis δ is
Ψ. Different choices of the basis δ will lead to the action of

ΓZ := {A ∈ Mat(µ× µ,Z) | AΨAt = Ψ}

from the left on pm(t). For a meromorphic function P : Mat(µ× µ,C) → C define

ΓP = {A ∈ ΓZ | P (Ax) = P (x), ∀x ∈ Mat(µ× µ,C)}.
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The Poincaré series of P in the context of this section is defined to be

P̌ (t) :=
∑

A∈ΓP \ΓZ

P (A · pm(t)).

If P̌ is convergent then by definition it is one valued in T . The main question we pose in
this text is the convergence of P̌ and the description of the sub algebra of C(t) generated
by those convergent P̌ which extend meromorphically to U0. For the discussion of these
problems in the case

(17) f = y2 − 4t0(x− t1)3 + t2(x− t1) + t3, t ∈ C4

the reader is referred to [42, 43].

7.4 A convergence criterion

In this section we describe a method which is used to prove that certain Poincaré series
are convergent. Similar methods can be found in [17] Satz 4.3, [18] Lemma 5.1 p. 55
and [3] Theorem 5.3 p. 49. In the third reference the authors associate their convergence
theorem to Harish-Chandra.

Let M be a complex manifold and ds2 be a Hermitian-Kählerian metric in M and let
dz be the associated volume form. Let K ⊂ U ⊂ M , where K is a compact set and U is
an open set. There is a real positive constant C depending only on (M,ds2) and K such
that for all holomorphic functions f : M → C we have:

|f(a)|2 < C

∫
U
|f(z)|2dz, ∀a ∈ K,

(see [17] Satz 4.3, Hilfsatz 2, [18] Lemma 5.1). Note that every Hermitian-Kählerian form
can be written in a local holomorphic coordinates system (z1, z2, . . . , zn) as dz1 ⊗ dz̄1 +
· · ·+ dzn ⊗ dz̄n.

Let Γ ⊂ Aut(M) such that Γ acts discontinuously on M . This implies that for an
arbitrary a ∈ M the stabilizer Γa := {A ∈ Γ | Aa = a} of a is finite and there exists an
open neighborhood U of a such that

A ∈ Γ, A(U) ∩ U 6= ∅ ⇒ A ∈ Γa,

A ∈ Γa ⇒ A(U) = U.

We assume that the Hermitian metric of M is invariant under the action of Γ. Let us take
a holomorphic function f on M . We claim that if∫

M
|f |2dz <∞

then the Poincaré series f̌(z) =
∑

A∈Γ f(Az) converges uniformly in z. This follows from
the equalities:∑

A∈Γ

|f(Az)|2 ≤ C
∑
A∈Γ

∫
U
|f(Az)|2dz = C

∑
A∈Γ

∫
A−1U

|f(z)|2dz ≤ C ·#Γa

∫
M
|f |2dz <∞.
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7.5 References for further investigation

In this section I give a list of articles and books which may be useful for further development
of the ideas explained in the present text. Of course the reader will find much more
literature, if he/she looks for the reference citation or review citations of the mentioned
works in Mathematical Review or Zentralblatt Mathematik.

For the literature on arithmetic and algebraic groups the book [5] is a good source
of information. We have also the book [51] on algebraic groups. The original paper of
Baily and Borel [3] can be served as a source for Poincaré/Eisenstein series on Hermitian
symmetric domains. Some simplifications are done in [8]. An explicit construction of
resolutions of the Borel-Baily compactification is given in [2, 33]. Further developments in
the compactification problem is sketched in [6]. For the arithmetic point of view for the
quotients of Hermitian symmetric domains by arithmetic groups the reader is referred to
the original papers of Shimura [48, 49] and Deligne’s papers [13, 15]. For the study of the
cohomology of Shimura varieties one can mention the article [26] and two other papers
with the same title. The text [37] can be served as an up-to-date exposition of the subject.

In the Hodge theory side of the subject the expository article of Griffiths [23] is still
a good source of information. See also [22] for Deligne’s report on Griffiths works. The
compactification problem in Hodge theory can be seen as the determining the limit of
Hodge structures. For this problem see [52, 47, 10, 11, 27, 9]. Recently, there have been
attempts to look at the compcatification problem from log-geometry point of view (see
[31, 32]). For the literature on log geometry the reader is referred to [28, 30, 29]
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