
EMBEDDED CURVES AND FOLIATIONS

HOSSEIN MOVASATI AND PAULO SAD

Abstract. We prove the existence of regular foliations with a pre-
scribed tangency divisor in neighborhoods of negatively embedded
holomorphic curves; this is related to a linearization theorem due
to Grauert. We give also examples of neighborhoods which can
not be linearized.

We consider in this paper the problem of finding regular holomorphic
foliations in neighborhoods of smooth, compact, holomorphic curves
embedded in complex surfaces. More precisely, we fix a positive divisor
of a curve and ask whether there exists a holomorphic foliation whose
divisor of tangencies with the curve is exactly that divisor. Let us state
our main result:

Theorem. Let C ↪→ S be an embedding of the curve C into the surface
S such that C · C < 0.

• if C · C < 4 − 4g, there exists a regular foliation defined in a
neighborhood of C and transverse to C.
• let a divisor D =

∑l
k=1 nkpk be given in C, with nk ∈ N>0. If

C · C < 4− 4g +
l∑

k=1

(nk − 1)

there exists a regular foliation F defined in a neighborhood of
C which is transversal to C except at the points p1, · · · , pl ∈ C,
where tangpk(F , C) = nk for every k = 1, . . . , l.

In the statement C ·C stands for the self-intersection number of C in
S or, equivalently, the Chern class of the normal bundle of C in S; the
number g is the genus of C. Each number tangpk(F , C) is the order of
tangency at pk ∈ C between C and the leaf of F that passes through
the point pk.

Our method to prove this theorem consists in i) find a holomorphic
line field defined along the curve C with the prescribed set of tangencies
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and the prescribed order of tangencies; for this purpose we have no
need to assume that the curve is negatively embedded; ii) extend the
line field to a neighborhood of the curve; here we must work under
the hypothesis C · C < 0 in order to assure the annihilation of some
cohomology groups.

We should mention that our primary motivation stems from a Lin-
earization Theorem due to Grauert([3]): a curve possesses a neighbor-
hood diffeomorphic to a neighborhood of the zero section of its normal
bundle if the embedding is sufficiently negative (C ·C < min{0, 4−4g}).
A proof can be done in two steps. We start by guaranteeing the ex-
istence of a foliation transverse to the curve; this is the first case of
our Theorem. Once this is acomplished the rest of the proof goes as in
([1])by finding another holomorphic foliation in a neighborhood V of
C which has C as a leaf; this foliation and the transverse one are used
as a kind of coordinate system for V when the desired diffeomorphism
is constructed.

In this paper we discuss also how to produce examples of embeddings
such that there are no foliations with a given divisor of tangencies when
the negativity condition is violated. In particular, examples where
linearization is not possible are presented. All these examples depend
on properties of line fields defined along the curve.

1. Line Fields and Embeddings

Let us consider an embedding C ↪→ S of the compact, smooth,
holomorphic curve C into the surface S. In this Section we study
existence of line fields defined along C; we do not assume C ·C < 0.
Existence of a line field with a given divisor of tangencies is always
granted when the degree of the divisor is sufficiently bigger then C ·C.
On the other hand, uniqueness (but perhaps not the existence) follows
when this degree is not too big, and we will see later how this leads to
the construction of interesting examples.

A holomorphic subbundle Y ↪→ TS|C is a holomorphic line field
along C. Equivalently we may say that a line field is a section of the
P1-bundle P(TS|C) over C. Y has a tangency with C at the point p ∈ C

when the morphism of line bundles Y → NC =
TS|C
TC

has a zero at p;

the order of the zero is the order of tangency between Y and C. We
write the set of tangencies as an effective divisor D =

∑l
k=1 nkDk of

C; the point pk is a point of tangency of order nk.



EMBEDDED CURVES AND FOLIATIONS 3

In order to motivate the next Proposition, let us remark that when
Y is a line field along C whose divisor of tangencies with C is D then
Y ' O(−D) ⊗ NC as line bundles. In fact, the morphism Y → NC
seen as a section of H0(C, Y ∗ ⊗ NC) has D as its divisor of zeroes;
therefore Y ∗ ⊗ NC ' O(D). This allows us to confound a line field
along C having D as divisor of tangencies with an injective morphism
O(−D) ⊗ NC → TS|C. We will from now use c(NC) to denote the
Chern class of the normal bundle NC of C in S; it is well know that
C · C = c(NC).

Proposition 1. Let D be an effective divisor of C, and assume

C · C < 4− 4g +
l∑

k=1

(nk − 1)

There exists an injective bundle morphism Y : O(−D)⊗NC → TS|C
which has D as divisor of tangencies with C.

Proof. Let us use L := O(−D)⊗NC for simplicity. Firstly we construct
Y locally, that is, in the restriction of the line bundle L to a small open
set U ⊂ C where it is isomorphic to U × C. More precisely, we have
i) an open subset U ′ of S with coordinates (z1, z2) ∈ C × C such that
U = U ′ ∩ C is {z2 = 0}; ii) a holomorphic function f of U such
D|U = {f = 0} and iii) trivialization coordinates (z1, t) for L|U ; then
we may define

Y (z1)(t) = (z1, t, f(z1)t).

This can be done in each set of an open covering {Ui}i∈I of C, so we get
morphisms Yi : L|Ui → TS|Ui with the desired property; we assume
that the support of each D|Ui

consists of a point at most and that there
are no points of tangency in the intersections Ui ∩ Uj when i 6= j. Let

Ỹi denote the composition L|Ui → TS|Ui → NC|Ui. As Ỹi = aijỸj,

where {aij} ∈ H1(C,O∗(C)) defines a line bundle J , {Ỹi} is a section
of J ⊗Hom(L,NC) ' J ⊗ L∗ ⊗NC having D as divisor of zeroes, so
that J ⊗ L∗ ⊗NC ' O(D). Consequently J is the trivial line bundle
and we may suppose aij = 1, or Ỹi = Ỹj.

Now we have that

{Yij} := {Yi − Yj} ∈ H1(C,Hom(L, TC)) ' H1(C,L∗ ⊗ TC);

Let D̃ =
∑l

k=1 pk and s = {si} ∈ H0(C,O(D̃)) whose divisor of zeroes

is D̃. Therefore

(Yi − Yj)⊗ s−1 ∈ H1(C,O(−D̃)⊗ L∗ ⊗ TC)
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and by Serre’s duality

H1(C,O(−D̃)⊗ L∗ ⊗ TC) ' H0(C,KC2 ⊗O(D̃)⊗O(−D)⊗NC)

(KC stands for the canonical bundle of C). By hypothesis the Chern
class of the line bundle KC2 ⊗O(D̃) ⊗O(−D) ⊗ NC is negative; we
conclude that (Yi−Yj)⊗s−1 = Xi−Xj for Xi ∈ H0(Ui,O(−D̃)⊗L∗⊗
TC), and therefore Yi − Yj = (Xi −Xj)⊗ s = siXi − sjXj. We define
Y := Yi− siXi in each Ui. Clearly Y is injective outside the support of
D̃; at each pi, it is equal to Yi, so it is also injective. As for the order
of tangency at a point pi, it coincides with the order of tangency of Yi,
which is ni by construction. �

Consequently, there exists always a holomorphic line field along any
curve if we admit a number of tangencies sufficiently big. We see also
that there exists always a holomorphic line field with any number of
tangencies if C · C < 4− 4g.

Proposition 2. Assume that C ·C < 4− 4g. There exists an injective
bundle morphism Y : NC → TS|C which has no tangencies with C.

Proof. We just have to repeat the arguments applied above without
the presence of tangencies. We see that the condition in the statement
implies that Yi − Yj = Xi −Xj for Xi ∈ H0(Ui, NC

∗ ⊗ TC). �

In the next section we will analyse how to extend this holomorphic
line field to a neighborhood of the curve. For the moment, let us state
a general result concerning uniqueness.

Proposition 3. Let D be an effective divisor of C and assume

c(NC) > 2− 2g +
∑

ni

There exists at most one line field along C having D as divisor of
tangencies.

Proof. Let us consider two such line fields Y1 and Y2 as bundle mor-
phisms from O(−D) ⊗ NC into TS|C . The induced morphisms Ỹi :
O(−D)⊗NC → NC seen as sections of O(D)⊗NC∗ ⊗NC = O(D)
have the same divisor D of zeroes, so that Ỹ1 = aỸ2 for some a ∈ C∗.
It follows that Y1 − aY2 is a bundle morphism from O(−D) ⊗ NC to
TC; the hypothesis tells us that O(D)⊗NC∗ ⊗ TC is a negative line
bundle and so Y1 − aY2 = 0. �
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2. Neighborhoods of Negatively Embedded Curves

Before proving the Theorem stated in the Introduction, we collect
some properties due to Grauer that are verified in the case of a nega-
tively embedded curve C ↪→ S ([2],[3]).

• C has a fundamental system of strictly pseudoconvex neighbor-
hoods in S.
• if G is a coherent sheaf defined in one of these neighborhoods,

say V , and IC is the ideal sheaf of C in V then

∃k > 0 such that H i(V, IkC · G) = 0, i = 1, 2.

Lemma 1. We have H2(V, IC · G) = 0. Moreover if

H0(C,KC ⊗NCν ⊗ G∗|C) = 0

for all ν ≥ 1 then H1(V, IC · G) = 0.

Proof. From H i(V, IνC/Iν+1
C · G) ' H i(C, (NC∗)ν ⊗G|C) we get imme-

diately H2(V, IνC/Iν+1
C · G) = 0. As

H1(C, (NC∗)ν ⊗ G|C) ' H0(C,KC ⊗NCν ⊗ G∗|C)

(by Serre’s duality) we get H1(V, IνC/Iν+1
C · G) = 0 as well.

Let us consider the short exact sequence

0→ Iν+1
C · G → IνC · G → IνC/Iν+1

C · G → 0

which leads to

· · · → H i(V, Iν+1
C · G)→ H i(V, IνC · G)→ H i(V, IνC/Iν+1

C · G)→ · · ·

Therefore the maps H i(V, Iν+1
C · G) → H i(V, IνC · G), i = 1, 2, are

always surjective. Consequently H i(V, IkC · G) = 0 for some k > 0
implies H i(V, IC · G) = 0, i = 1, 2. �

The next Lemma allows us to extend any line bundle over C to a
line bundle over V . Of course there are certain line bundles which are
extendible regardless of the negativity of the embedding C ↪→ V . For
example, KC = KV |C ⊗ NC = KV |C ⊗ [C]|C, so that KC always
has an extension to V . Below in our Theorem we find this situation
when no tangencies are present.

Lemma 2. The restriction H1(V,O∗V )→ H1(C,O∗C) is surjective.

Proof. Let J be the subsheaf of O∗V defined as

• Jq = (O∗V )q if q /∈ C.
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• Jq = {φ ∈ (O∗V )q;φ|C ' 1} if q ∈ C.

We have then the short exact sequence

1→ J → O∗V → O∗V /J → 1;

we remark that O∗V /J can be taken as O∗C .
In order to have the surjectivity stated above, we need H2(V, J) = 0.

Since the exponencial map gives an isomorphism between IC and J , it
is enough to have H2(V, IC) = 0. �

3. Constructing Foliations

We are able now to prove the Theorem stated in the Introduction.

Let Y : C → TS|C be the line field constructed in Corollary 1. Let
{Ui} be a covering of C and Ũi be an open set such that Ũi ∩ C = Ui.
In each Ũi we choose a 1-form ωi satisfying ker(ωi(p)) = Y (p) when
p ∈ Ui. We may take coordinates (xi, yi) ∈ Ũi as to have Ui = {yi = 0}
and ωi = dyi−xni

i dxi(remember that the possibility ni = 0 is allowed).
We remark that ωi|Ui∩Uj

= fij ωj|Ui∩Uj
whenever Ui ∩ Uj 6= ∅, fij ∈

Z1({Ui},O∗C). We denote by L = {Fij} the line bundle over V whose
restriction to C is defined by the transition functions {fij} (Lemma 2);
we have

L|C = O(D)⊗KC∗,
where D =

∑l
i=1 nipi. The boundary δ{ωi} computed in Z1(S,Ω1

S⊗L)
belongs effectively to Z1(S, IC ·Ω1

S⊗L), where Ω1
S is the sheaf of germs

of holomorphic 1-forms of S.

We claim that H1(S, IC ·Ω1
S ⊗L) = 0. As discussed before, we need

that ∀ν ≥ 1

H0(C,KC ⊗NCν ⊗ (Ω1
S ⊗ L)∗|C) = 0

which depends on

H0(C,KC2 ⊗NCν ⊗O(−D)⊗ TC) = 0 ∀ν ≥ 1

and

H0(C,KC2 ⊗NCν ⊗O(−D)⊗NC) = 0 ∀ν ≥ 1;

both equalities are true since the Chern classes of the line bundles

KC2 ⊗ NCν ⊗ O(−D) ⊗ TC and KC2 ⊗ NCν ⊗ O(−D) ⊗ NC are
negative due to the hypothesis.

It follows that there exists a 0-cocycle {ηi} ∈ H0(Ũi, IC ·Ω1
S⊗L) = 0

such that
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Figure 1

ωi − Fij ωj = ηi − Fij ηj

and the foliation we look for is defined by the 1-form

{ωi − fij ηi} ∈ H0(V,Ω1
S ⊗ L).

�

Corollary 1. Let C ↪→ S be an embedding of the curve C into the
surface S such that C ·C < 0. Then there exists a regular holomorphic
foliation defined in a neighborhood of C.

4. Examples

Example 1. A plane smooth projective curve C different from the
projective line does not have a transverse holomorphic line field (this is
a particular case of a theorem of Van de Ven ([4])). In fact, suppose Y
is a transverse holomorphic line field defined along C. We consider a
holomorphic automorphism A of the plane close to the Identity which
fixes some point p ∈ C and such that (A∗Y )(p) 6= Y (p); the line field
YA = A∗Y is of course transverse to A(C). Given q ∈ A(C), we denote
as lq the projective line tangent to YA(q) at q. We may therefore induce
along C a new holomorphic line field Z 6= Y in the following way:
given q ∈ A(C) take q′ = lq ∩ C (the intersection is taken in a small
neighborhoood of C); then Z(q′) is the tangent line to lq at the point
q′, see Figure 1. Since Z(p) = YA(p) 6= Y (p) and Z is transverse to C,
we get a contradiction with the Proposition 3 (notice that c(NC) = d2

is greater than 3d− d2 = 2− 2g when d = degree(C) > 1).
A different, ”foliated” argument goes as follows: suppose that there

exists a holomorphic line field transverse to C; this is a line bundle
L over C, as we have seen in Section 1 For each p ∈ C the line l(p)
of L is associated to a projective line lp of the projective plane (this
projective line passes through p with direction given by l(p)). We take
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some Riemannian metric in P2; since there are neighborhoods of C in
L and of C in P2 which are C∞ diffeomorphic (as line bundles) , for a
small η the discs centered at the points of C of radius η and contained
in the projective lines {lp}p∈C are disjoint, so they form a holomorphic
fibration. We pick up a non-constant meromorphic function in C and
extend it to a neighborhood of C as a constant along each fiber. This
is a meromorphic function that can be extend to all of P2 since the
complement of C is a Stein surface. We observe that the extension is
constant along each projective line lp. The only possibility is that these
projective lines form a pencil issued from some point of the plane.

Proposition 3 implies that for a curve with sufficiently positive self-
intersection we have at most one transverse holomorphic line field. The
above example shows that such a line field may not exist at all. Note
that the construction of transverse line fields presented in Proposition
2 is done under the hypothesis that the curve has sufficiently negative
self-intersection.

Example 2. The Proposition 3 is useful to get examples of non-
existence of certain regular foliations when the self-intersection of C
is not sufficiently negative. In order to see this, let us consider a pair
C ↪→ S obtained by the following procedure:

(1) we blow up the origin 0 of the polydisc ∆ ⊂ C2, introducing an
exceptional divisor; we choose the point in this divisor which
belongs to the strict transform of {y = 0} and blow up again.
We keep doing this in order to get a chain of projective lines
E1, ..., Em−1 of self-intersection −2 and a last projetive line Em
of self-intersection −1; there is a holomorphic projection π from
the resulting surface ∆̃ to ∆, which collapses E1 ∪ · · · ∪ Em to
0, and which is an isomorphism from the complement of this
divisor to ∆ \ {(0, 0)}. Denote by q ∈ Em the point which
belongs to the strict transform of {y = 0} and take the u-
coordinate along Em in order to have π(x, u) = (x, uxm). We
take also a polydisc V = {x, u); |x| < 1, |u| < ε}, for a small ε,
around (x, u) = (0, 0) = q ∈ Em.

(2) let us consider a line bundle over a compact, holomorphic,
smooth curve C̃ whose self-intersection satisfies C̃ · C̃ > 2− 2g;
we select some point in C̃ and introduce coordinates (x̃, ũ) in a
neighborhood W of this point as to have {x̃ = const} contained
in the linear fiber through (x̃, 0) ∈ C̃ for every x̃.

(3) finally we glue W to V by means of a holomorphic diffeomor-
phism Φ : W → V in order to get a holomorphic surface S̃
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containing E1 ∪ · · · ∪ Em ∪ C̃ as a divisor whose components
have the self-intersection numbers described above; Φ must send
(x̃, ũ) = (0, 0) to (x, u) = (0, 0) = q, the x̃-axis into the x-axis
and the ũ-axis transversely to the u-axis. We remark that C̃
has a unique field L̃ of transversal lines because C̃ · C̃ > 2− 2g;
by construction the line L̃q is different from TqEm.

We blow down E1 ∪ · · · ∪ Em to p = (0, 0) ∈ ∆ and get a surface S
with an embedded curve C such that C · C > m+ 2− 2g and p ∈ C.

We claim that there exists no regular foliation F in S transverse to
C \ {p} with order of tangency 0 ≤ n ≤ m − 1 at p . Otherwise after

blowing up a times as explained before starting at p, we would get
a foliation F̃ transverse to C̃ and having Em as a leaf. Each leaf F̃s
through s ∈ C̃ has L̃s as tangent line at s ∈ C̃; but this property is
not verified at the point q ∈ C̃ ∩ Em.

We remark that the particular case m = 1 gives examples of embed-
dings C ↪→ S such that C · C > 3 − 2g without transversal foliations
to C; in particular, there is no neighborhood of C in S which is (holo-
morphically) diffeomorphic to a neighborhood of C in the total space
of its normal bundle.

5. Plane curves and line fields

We develop here Example 1 in order to understand the role of tan-
gencies. Let us consider in P2 a smooth algebraic curve C of degree d
and a holomorphic line field X along C. We have then a holomorphic
map φX : C −→ P̌2 defined as φX(p) = X(p) ∈ P̌2; its image is an
algebraic curve X̌ ⊂ P̌2. Let us denote by l ∈ N the degree of φ as a
map from C onto X̌.

For instance, let us suppose that X is induced by a pencil of lines
issued from some point b ∈ P2. Then X̌ is a line in P̌2 and φX has
degree d or d − 1 according to b ∈ C or b /∈ C (in this last case, X(b)
is the tangent line to C at b ∈ C). We have then tang(X,C) = d2 − d
or tang(X,C) = d2 − d− 1.

Proposition 4. tang(X,C) = l.deg(X̌) + d 2 − 2d.

Proof. We consider P(TP2|C), which is a P1-bundle over C with the
section P(TC). The vector bundle TP2|C may be described by the
following transition maps:

xα = ξαβ(zβ)xβ + ηαβ(zβ)yβ, yα = cαβ(zβ)yβ
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where (xβ, yβ) are coordinates for TP2|C at the point of C of coordinate
zβ, zα = gαβ(zβ), ξαβ(zβ) = g′αβ(zα) and {cαβ} defines the normal

bundle to C in P2.
In order to get the transition functions of P(TP2|C), we put uβ =

xβ/yβ and tβ = yβ/xβ; then

uα =
ξαβ(zβ)

cαβ(zβ)
uβ +

ηαβ(zβ)

cαβ(zβ)

and

tα =
cαβ(zβ)tβ

ξαβ(zβ) + ηαβ(zβ)tβ

Let us consider the line field X as a section of P(TP2|C); we choose
also a generic pencil of lines P . In the u-coodinates, we have

Xα =
ξαβ(zβ)

cαβ(zβ)
Xβ +

ηαβ(zβ)

cαβ(zβ)

and

Pα =
ξαβ(zβ)

cαβ(zβ)
Pβ +

ηαβ(zβ)

cαβ(zβ)

The intersection number of both sections X and P with P(TC)
will be denoted by Poles(X) and Poles(P ); of course tang(X,C) =
Poles(X) and Poles(P ) = d2 − d.

¿From the formulae above we see that {Xα − Pα} is a section of

the linear bundle given by the cocycle {ξαβ(zβ)

cαβ(zβ)
}, which is TC ⊗NC∗.

Consequently:

Zeroes(X − P )− Poles(X − P ) = −2d2 + 3d

Therefore Poles(X) = Zeroes(X − P )− Poles(P ) + 2d2 + 3d. Now
since Poles(P ) = d2−d and Zeroes(X−P ) = l.deg(X̌), we get finally

tang(X,C) = l.deg(X̌) + d2 − 2d.

�

Corollary 2. tang(X,C) ≥ (d− 1)2

This Corollary gives another explanation why a a smooth, plane alge-
braic curve C of degree greater than one has no transversal holomorphic
line field; consequently a neighborhood of C can not be linearized.
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We see also that if we blow up at d2 − 2d different points of C, the
resulting curve Ĉ has not a linearizable neighborhood as well. In fact,
a tranversal holomorphic line field to Ĉ corresponds to a holomorphic
line field along C with at most d2 − 2d points of ordinary tangency,
which is not possible.
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