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Abstract

In the present text we give a geometric interpretation of quasi-modular forms
using moduli of elliptic curves with marked elements in their de Rham cohomology.
Meanwhile, we prove that the problem of finding differential and polynomial equations
for modular forms is equivalent to the problem of constructing such moduli of elliptic
curves and calculating its Gauss-Manin connection.

1 Introduction

In an algebraic geometric context modular forms are interpreted in two ways: First, a
modular form is a section of tensor products of the canonical bundle of moduli spaces of
elliptic curves. Second, one can interpret a modular form as a function from the pairs
(F, ω), where F is an elliptic curve and ω is a regular differential form on F , to the base
field which has a functional property with respect to the multiplication of ω by a constant.
Quasi modular forms arises in different topics (see [1] and the references within there),
but still they are analytic functions on the Poincaré upper half plane and no geometric
interpretation is available in the literature. It seems to me that there is no way to generalize
the first interpretation of modular forms to the context of quasi modular forms, however,
the second interpretation generalizes well to the context of quasi modular forms. The
objective of the present text is to explain this generalization. For simplicity, we work with
modular groups, Γ(N),Γ0(N) and Γ1(N).

Let k be any algebraically closed field of characteristic 0. 2 An enhanced elliptic curve
for Γ0(N) is a 4-tuple (F,C, ω1, ω2, ), where F is an elliptic curve over k, C is a cyclic
subgroup of F (k) of order N and ω1 and ω2 are two elements in the algebraic de Rham
cohomology of F , namely H1

dR(F ), such that

1. ω1 is a differential form of the first kind,

2. ω1, ω2 form a basis of the k-vector space H1
dR(F ),

3.
TrdR(ω1 ∪ ω2) = 1,

(see [2] for the definition of algebraic de Rham cohomology and TrdR). An enhanced elliptic
curve for Γ1(N) is a 4-tuple (F,Q, ω1, ω2), where F, ω1 and ω2 are as before and Q is a point
of F (k) of order N . An enhanced elliptic curve for Γ(N) is a 4-tuple (F, (P,Q), ω1, ω2),
where F, ω1 and ω2 are as before and P and Q are a pair of points of F (k) that generates

1The text is under construction. Any comment is wellcome.
2Most probably, the arguments of the present text can be addapted to the characteristic 6= 2, 3
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the N -torsion subgroup F [N ] with Weil pairing e(P,Q) that is a primitive root of unity
of order N .

Let Γ be one of the Γ0(N),Γ1(N) and Γ(N) and TΓ be the set of enhanced elliptic
curves for Γ modulo canonical isomorphisms. The algebraic group

G =
{(

k k′

0 k−1

)
| k′ ∈ k, k ∈ k− {0}

}
acts in a canonical way on TΓ:

(∗, ∗, ω1, ω2) • g = (∗, ∗, kω1, k
′ω1 + k−1ω2), g ∈ G, (∗, ∗, ω1, ω2) ∈ TΓ.

A quasi modular form f of weight m and differential order n for Γ is a function TΓ → k
with the following properties: there are functions fi : TΓ → k, i = 0, 1, 2, . . . , n such that

(1) f • g = k−m
n∑

i=0

(
n

i

)
k′

i
kifi, ∀g =

(
k k′

0 k−1

)
∈ G.

It satisfy also another condition which has to do with the degeneration of elliptic curves
and we describe it after giving an algebraic structure to TΓ. For n = 0 we recover the
definition of modular forms of weight m.

Now assume that k is a subfield of C. In the present text we prove that TΓ has a canocial
structure of an affine variety such that the action of G becomes algebraic. We construct
another affine variety AΓ and the action of G on AΓ such that AΓ − TΓ is an invariant
divisor under G and TΓ/G is the modular curve for Γ and AΓ/G is its compactification.
We further construct a vector field RΓ on AΓ which sends quasi modular forms of weight
m and order n to quasi modular forms of weight m+2 and order n+1. The second part in
the definition of a quasi modular form is that it extends to a regular function on AΓ. For
k = C we prove that the function filed of AΓ and its differential algebra structure given
by the vector field RΓ is isomorphic to the classical differential algebra of quasi modular
forms availble in the the literature.

I would like to thank Joseph Oesterlé for many useful discssions during the preparation
of the present text.

2 Moduli spaces of elliptic curves I

Recall the notations introduced in Introduction. In this section we consider Γ = SL(2, Z).
For simplicity we drop the subscript Γ from our data associated to Γ.

Let T be the moduli space of the triples (F, ω1, ω2), where F is an elliptic curve over
k and ω1, ω2 ∈ H1

dR(F ) are as described in Introduction. Let also π : E → T be the
corresponding universal family of elliptic curves, where

E = ∪t=(F,ω1,ω2)∈T F

and
A := Spec(k[t1, t2, t3]).

Many of the following statements are classical. They can be found in [3]. We have

T ∼= Spec(k[t1, t2, t3,
1
∆

]) ⊂ A, ∆ := 27t23 − t32,
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and under this isomorphy the action of the algebraic group G is given by

t • g := (t1k−2 + k′k−1, t2k
−4, t3k

−6), t = (t1, t2, t3), g =
(

k k′

0 k−1

)
∈ G.

Let Ẽ be the affine subvariety of Spec(k[x, y, t1, t2, t3]) given by:

(2) Ẽ : y2 − 4(x− t1)3 + t2(x− t1) + t3 = 0,

One can realize E in an affine coordinates (x, y, t1, t2, t3) as a variety given by Ẽ−{∆ 6= 0}.
In this way π : E → T is the projection in (t1, t2, t3) and associated to t ∈ T one has the
triple (π−1(t), [dx

y ], [xdx
y ]).

In A we consider the Ramanujan vector field:3

(3) R = (t21 −
1
12

t2)
∂

∂t1
+ (4t1t2 − 6t3)

∂

∂t2
+ (6t1t3 −

1
3
t22)

∂

∂t1

It is characterized uniquely and up to a multiplication by a constant in k by the proprty

∇R(ω2) = 0,

where∇ is the Gauss-Manin connection of the family π : E → T . For an explicit expression
of ∇ in the coordinates t1, t2, t3 and associated to the the basis [dx

y ], [xdx
y ] of the de Rham

cohomology H1
dR(E/T ) see [3], (29).

3 Moduli of elliptic curves II

In this section we assume that k ⊂ C. Recall also that k is an algebraically closed field.
Let us fix b ∈ T (k) and δ1, δ2 ∈ H1(Eb, Z) such that 〈δ1, δ2〉 = 1. We obtain a morphism
of groups

Mon : π1(T (C), b)→ SL(2, Z)

which corresponds to the monodromy group of the family of elliptic curves π : E → T , see
[3].

Proposition 1. Let Γ be a normal subgroup of finite rank of SL(2, Z) and k be a subfield
of C. There is an affine variety AΓ, an action of G from the right on AΓ, a morphisim
β : AΓ → A, a vector field RΓ in AΓ, all of them defined over k, and a k-point 0Γ of AΓ

such that

1. The induced map TΓ → T , where TΓ := β−1(T ), is étale.

2. The image of the composition

π1(TΓ(C), b̃) ↪→ π1(T (C), b) Mon→ SL(2, Z)

is Γ, where b̃ is any point in β−1(b).
3After an affine transformation (t1, t2, t3) 7→ ( 1

12
t1,

1
12

t2,
2

3(12)2
t3) one gets a vector field for which the

corresponding ordinary differential equation is the Ramanujan relation between Eisenstein series, see [5],
p. 4.
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3. There is an integer n depending only on Γ such that

β(x) • gn = β(x • g), g ∈ G, x ∈ AΓ,

4. We have β(0Γ) = 0 ∈ A(k), the stablizer of 0Γ is G, and (AΓ − {0Γ}) /G is a
complete variety.

5. β maps RΓ to R,

Sketch of the proof. Let M be the universal covering of T (C). Define

M̃ := M/ ∼,

where

a, b ∈M, a ∼ b⇔ a and b have the same end point and Mon(ab−1) ∈ Γ.

We have a canonical finite covering map M̃ → T (C). This map can be realized as mor-
phism of algebraic varieties over k, i.e there is an algebraic variety TΓ and a morphisim
TΓ → T , both defined over k, such that TΓ(C) is biholomorphic to M̃ and under this
biholomorphism the induced map MΓ(C)→ T (C) is our finite covering map, see [?].

In the definition of Mon if we choose another basis δ̃1, δ̃2 ∈ H1(Eb, Z) with 〈δ̃1, δ̃2〉 = 1
then the new monodromy map is A ·Mon ·A−1, where(

δ̃1

δ̃2

)
= A

(
δ1

δ2

)
, A ∈ SL(2, Z).

Since Γ is a normal subgroup of SL(2, Z), we conclude that the definition of M̃ does not
depend on the choice of δ1, δ2. Moreover, different choices of the base point b yields to
biholomorphic complex manifolds M̃ . The fact that Γ is normal in SL(2, Z) implies that
the property in item 2 does not depend on the choice of b̃.

Now, we want to construct the following commutative diagram of affine varieties:

E → T ↪→ A ← Ẽ
↑ ↑ ↑ ↑
F → TΓ ↪→ AΓ ← F̃

Since all the varieties we want to construct are affine, it is enough to work in the ring level.
For an affine variety V let OV be the ring of regular functions on V , i.e V = Spec(OV ).
Therefore we want to construct

OE ←↩ OT ←↩ OA ↪→ OẼ
↓ ↓ ↓ ↓
OF ←↩ OTΓ

←↩ OAΓ
↪→ OF̃

We have OA = k[t1, t2, t3] and OT = k[t1, t2, t3, 1
∆ ] and we define

OF := OE ⊗OT
OTΓ

We also define OAΓ
to be:

OAΓ
:= {f ∈ OTΓ

| f satisfy a monic polynomial with coefficient in OA}.
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Note that OTΓ
is an integral extension of OT , i.e. any element of OTΓ

satisfy a monic
polynomial with coefficients in OT . Finaly we define

OF̃ := OẼ ⊗OA
OAΓ

All the morphisims in the above diagram are canonicals. The items 1,2,3 follows from the
above construction. Since OTΓ

is an integral extention of OT , the item 4 follows from [?],
and hence by definition G acts on OAΓ

.
Since the stablizer of 0 is the whole G and β commutes with β, G acts on the finite set

β−1(0). Since there is no non trivial algebraic subgroup H of G such that H/G is finite,
we conclude that β−1(0) consists of one point, namely 0Γ.

A vector field on an affine variety V is a map v : OV → OV which satisfies the additivity
v(a + b) = v(a) + (b) and the Leibniz rule, v(ab) = v(a)b + av(b) for all a, b ∈ OV . v is
called also a derivation. Item 5 follows from the following well-known facts: Let R be an
integral extension of a ring S. Any derivation in R extends in a unique way to a derivation
on S, see [?].

Proposition 2. Let Γ be one of Γ0(N),Γ1(N) and Γ(N). The affine variety TΓ is the
moduli of enhanced elliptic curves for Γ.

For a proof see [?].

4 Quasi modular form

In this section we recall the definition of quasi/differential modular forms. For more details

see [1, 3]. We use the notations A =
(

aA bA

cA dA

)
∈ SL(2, R) and

I =
(

1 0
0 1

)
, T =

(
1 1
0 1

)
, Q =

(
0 −1
1 0

)
,

When there is no confusion we will simply write A =
(

a b
c d

)
. We denote by H the

Poincaré upper half plane and

j(A, z) := cAz + dA.

For A ∈ GL(2, R) and m ∈ Z we use the slash operator

f |mA = (det A)m−1j(A, z)−mf(Az).

Let Γ be a subgroup of SL(2, Z). We define the notion of an Mn
m(Γ)-function, a

differential modular form of weight m and differential order n for Γ. For simplicity we
write Mn

m(Γ) = Mn
m. For n = 0 an M0

m-function is a classical modular form of weight
m on H (see bellow). A holomorphic function f on H is called Mn

m if the following two
conditions are satisfied:

1. There are holomorphic functions fi, i = 0, 1, . . . , n on H such that

(4) f |mA =
n∑

i=0

(
n

i

)
ci
Aj(A, z)−ifi, ∀A ∈ Γ.
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2. fi |m A, i = 0, 1, 2, . . . , n have finite growths when Im(z) tends to +∞ for all A ∈
SL(2, Z).

We will also denote by Mn
m the set of Mn

m-functions and we set

M :=
∑

m∈Z,n∈N0

Mn
m

For an f ∈ Mn
m we have f |mI = f0 and so f0 = f . Note that for an Mn

m-function f the
associated functions fi are unique. If f is Mn

m-function with the associated functions fi

then fi is an Mn−i
m−2i-function with the associated functions fij := fi+j . The set M is a

bigraded differential C-algebra:

d

dz
: Mn

m →Mn+1
m+2

If n ≤ n′ then Mn
m ⊂Mn′

m and

Mn
mMn′

m′ ⊂Mn+n′

m+m′ , Mn
m + Mn′

m = Mn′
m

It is useful to define

(5) f ||mA := (det A)m−n−1
n∑

i=0

(
n

i

)
ci
A−1j(A, z)i−mfi(Az), A ∈ GL(2, R), f ∈Mn

m.

The equality (4) is written in the form

(6) f = f ||mA,∀A ∈ Γ

One can prove that

f ||mA = f ||m(BA), ∀A ∈ GL(2, R), B ∈ Γ, f ∈Mn
m.

Using this one can prove that the growth at infinity condition on f is a finite number of
conditions for f ||mα, α ∈ Γ\SL(2, Z).

The relation of ||m with d
dz is given by:

(7)
d(f ||mA)

dz
=

df

dz
||m+2A, ∀A ∈ GL(2, R).

Let A ∈ SL(2, Z). If f ∈ Mn
m(Γ) with the associated functions fi then f ||mA ∈

Mn
m(A−1ΓA) with the associated functions fi||mA ∈Mn−i

m−2i(A
−1ΓA).

From now on we assume that there is h ∈ N such that

Th :=
(

1 h
0 1

)
∈ Γ

Take h the smallest one. Recall that Γ is a normal subgroup of SL(2, Z). For an f ∈Mn
m(Γ)

and A ∈ SL(2, Z) with [A] = α ∈ Γ\SL(2, Z) we have (f ||mA)|mTh = f and so we can
write the Fourier expansion of f ||mA at α

(f ||mA) =
+∞∑
n=0

anqn
h , an ∈ C, qh := e2πihz.

We have used the growth condition on f to see that the above function in qh is holomorphic
at 0.
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5 Main theorem

Let OAΓ
be the ring of regular functions on AΓ. Our main theorem in this article is:

Theorem 1. The differential algebras (M, d
dz ) and (OAΓ(C), RΓ) are isomorphic.

In order to prove this theorem we need the notion of period domain and period map.

6 Period domain

In this section k is the field of complex numbers. Differential modular forms are best
viewed as holomorphic functions on the period domain

(8) P :=
{(

x1 x2

x3 x4

)
∈ SL(2, C) | Im(x1x3) > 0

}
,

We let the group SL(2, Z) (resp. G) act from the left (resp. right) by usual multiplication
of matrices. The Poincaré upper half plane H is embedded in P in the following way:

z → z̃ =
(

z −1
1 0

)
.

We denote by H̃ the image of H under this map. For α ∈ SL(2, Z) we also define H̃α to
be the image of H̃ under the action of α from the left on P.

A differential modular form f ∈ Mn
m is in a one to one correspondance with a holo-

morphic function F = φ(f) : P → C with the following properties:

1. The function F is Γ-invariant.

2. There are holomorphic functions Fi : P → C, i = 0, 1, . . . , n such that

(9) F (x · g) = k−m
n∑

i=0

(
n

i

)
k′

i
kiFi(x), ∀x ∈ P, g ∈ G,

3. For all α ∈ SL(2, Z) the restriction of Fi to H̃α has finite growth at infinity..

In fact we have Fi = φ(fi).
It is a mere calculation to see that the vector field

(10) X := x2
∂

∂x1
+ x4

∂

∂x3

is invariant under the action of SL(2, Z) and hence it induces a vector field in the quo-
tient Γ\P. Now, viewing differential modular forms as functions on Γ\P, the differential
operator is given by the vector field X.

7 Period map

The period map is defined by

pm : TΓ(C)→ Γ\P, t 7→

[
1√
2πi

(∫
δ1

dx
y

∫
δ1

xdx
y∫

δ2
dx
y

∫
δ2

xdx
y

)]
.
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where δ1, δ2 is a basis of the Z-module H1(Eβ(t), Z) with 〈δ1, δ2〉 = 1. It is well-defined
and is a biholomorphic map. Further it satisfies

(11) pm(t • g) = pm(t) · g, t ∈ TΓ(C), g ∈ G.

and
dpm(t)(RΓ) = X

where X is the vector field given by (10) in the quotient Γ\P.

8 Proof of Theorem 1

The period map which is a biholomorphism gives us the desired isomorphism of algebras.
Under the period map an Mn

m-function corresponds to a regular function p ∈ OAΓ(C) with
the following property: There are fi ∈ OAΓ(C) such that (1) in Introduction is valid.

9 Fundamental differential/functional equations for modu-
lar forms

Let us take a basis s1, s2, . . . , sm of the k-algebra OAΓ
. This gives an embedding of A in

Am
k . Let also

I = ker(k[x1, x2, . . . , xm]→ OAΓ
), xi 7→ si

and take a set of generators {p1, p2, . . . , pn} of the ideal I.
For k = C Theorem 1 implies that there is a finite set f1, f2, . . . , fm of generators of

the C-algebra of quasi modular forms such that they satisfy the functional relations

pi(f1, f2, . . . , fm) = 0, i = 1, 2, . . . , n

and the ordinary differential equation

dF

dz
(z) = RΓ(F (z)), F = (f1, f2, . . . , fm) : H→ Cm

Example 1. Γ = SL(2, Z). This case is discussed in detail in [3]. The algebra of quasi
modular forms for Γ is freely generated by the Eisenstein series

(12) gk(z) = ak

(
1 + (−1)k 4k

Bk

∑
n≥1

σ2k−1(n)e2πizn
)
, k = 1, 2, 3, z ∈ H,

where Bk is the k-th Bernoulli number (B1 = 1
6 , B2 = 1

30 , B3 = 1
42 , . . .), σi(n) :=

∑
d|n di,

(13) (a1, a2, a3) = (
2πi

12
, 12(

2πi

12
)2, 8(

2πi

12
)3),

The differential equation between gi’s are given by the Ramanujan relations:

(14)
dg1

dz
= g2

1 −
1
12

g2,
dg2

dz
= 4g1g2 − 6g3,

dg3

dz
= 6g1g3 −

1
3
g2
2
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Example 2. Γ = Γ(2). The affine variety AΓ in this case is Spec(k[t1, t2, t3]) and the
discriminant variety is given by (t1 − t2)(t2 − t3)(t3 − t1) = 0. The differential equation
corresponding to the vector field RΓ is:

(15) H :


ṫ1 = t1(t2 + t3)− t2t3
ṫ2 = t2(t1 + t3)− t1t3
ṫ3 = t3(t2 + t3)− t1t2

which is called also the Halphen equation, becuase he expressed a solution of the system
(15) in terms of the logarithmic derivatives of the null theta functions; namely,

u1 =
1
2
(ln θ4(0|z))′, u2 =

1
2
(ln θ2(0|z))′, u3 =

1
2
(ln θ3(0|z))′

where 
θ2(0|z) :=

∑∞
n=−∞ q

1
2
(n+ 1

2
)2

θ3(0|z) :=
∑∞

n=−∞ q
1
2
n2

θ4(0|z) :=
∑∞

n=−∞(−1)nq
1
2
n2

, q = e2πiz, z ∈ H.

u1, u2, u3 form a basis of the C-algebra of quasi-modular forms for Γ.

Example 3. Γ = Γ(3). Let

η(z) := q
1
24

∞∏
n=1

(1− qn), q = e2πiz

be the Dedekind’s η-function. In [4] Y. Ohyama has found that

W = (3 log η(
z

3
)− log η(z))′(16)

X = (3 log η(3z)− log η(z))′(17)

Y = (3 log η(
z + 2

3
)− log η(z))′(18)

Z = (3 log η(
z + 1

3
)− log η(z))′(19)

satisfy the equations:
t′1 + t′2 + t′3 = t1t2 + t2t3 + t3t1
t′1 + t′3 + t′4 = t1t3 + t3t4 + t4t1
t′1 + t′2 + t′4 = t1t2 + t2t4 + t4t1
t′2 + t′3 + t′4 = t2t3 + t3t4 + t4t2
ζ2
3 (t2t4 + t3t1) + ζ3(t2t1 + t3t4) + (t2t3 + t4t1) = 0.

where ζ3 = e
2πi
3 . We write the first four lines of the above equation as a solution to

a vector field V in C4 and let F (t1, t2, t3, t4) be the polynomial in the fifth line. Using
a computer, or by hand if one has a good patience for calculations, one can verify the
equality dF (V ) = 0 and so V is tangent to F = 0. This discussion suggest that AΓ is
given by F = 0 and RΓ = V |{F=0}.
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