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Introduction

The present text is the lecture notes of a mini-course given at Santiago-Chile, 17-25 July.
Its objective is to introduce the reader with some problems arising from the centennial
Hilbert 16-th problem, H16 for short. Our aim is not to collect all the developments and
theorems in direction of H16 (for this see for instance [9]), but to present a way of breaking
the problem in many pieces and observing the fact that even such partial problems are
extremely difficult to treat. Our point of view is algebraic and we want to point out that
the both real and complex algebraic geometry would be indispensable for a systematic
approach to the H16. Here is Hilbert’s announcement of the problem:

16. Problem der Topologie algebraischer Curven und Flächen

Die Maximalzahl der geschlossenen und getrennt liegenden Züge, welche eine ebene al-
gebraische Curve n ter Ordnung haben kann, ist von Harnack Mathematische Annalen,
Bd. 10 bestimmt worden; es entsteht die weitere Frage nach der gegenseitigen Lage der
Curvenzüge in der Ebene. Was die Curven 6ter Ordnung angeht, so habe ich mich -
freilich auf einem recht umständlichen Wege - davon überzeugt, daß die 11 Züge, die sie
nach Harnack haben kann, keinesfalls sämtlich außerhalb von einander verlaufen dürfen,
sondern daß ein Zug existiren muß, in dessen Innerem ein Zug und in dessen Aeußerem
neun Züge verlaufen oder umgekehrt. Eine gründliche Untersuchung der gegenseitigen
Lage bei der Maximalzahl von getrennten Zügen scheint mir ebenso sehr von Interesse zu
sein, wie die entsprechende Untersuchung über die Anzahl, Gestalt und Lage der Mäntel
einer algebraischen Fläche im Raume - ist doch bisher noch nicht einmal bekannt, wieviel
Mäntel eine Fläche 4ter Ordnung des dreidimensionalen Raumes im Maximum wirklich be-
sitzt. Vgl. Rohn, Flächen vierter Ordnung, Preisschriften der Fürstlich Jablonowskischen
Gesellschaft, Leipzig 1886

Im Anschlußan dieses rein algebraische Problem möchte ich eine Frage aufwerfen
die sich, wie mir scheint, mittelst der nämlichen Methode der continuirlichen Coeffi-
cientenänderung in Angriff nehmen läßt, und deren Beantwortung für die Topologie der
durch Differentialgleichungen definirten Curvenschaaren von entsprechender Bedeutung
ist - nämlich die Frage nach der Maximalzahl und Lage der Poincaréschen Grenzcykeln
(cycles limites) für eine Differentialgleichung erster Ordnung und ersten Grades von der
Form:

dy/dx = Y/X,

wo X, Y ganze rationale Funktionen nten Grades in x, y sind, oder in homogener Schreib-
weise

X(ydz/dt− zdy/dt) + Y (zdx/dt− xdz/dt) + Z(xdy/dt− ydx/dt) = 0

wo X, Y, Z ganze rationale homogene Functionen nten Grades von x, y, z bedeuten und
diese als Funktionen des Parameters t zu bestimmen sind.

16. Problem of the topology of algebraic curves and surfaces

The maximum number of closed and separate branches which a plane algebraic curve of the
n-th order can have has been determined by Harnack. There arises the further question as
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to the relative position of the branches in the plane. As to curves of the 6-th order, I have
satisfied myself-by a complicated process, it is true-that of the eleven branches which they
can have according to Harnack, by no means all can lie external to one another, but that
one branch must exist in whose interior one branch and in whose exterior nine branches
lie, or inversely. A thorough investigation of the relative position of the separate branches
when their number is the maximum seems to me to be of very great interest, and not less
so the corresponding investigation as to the number, form, and position of the sheets of an
algebraic surface in space. Till now, indeed, it is not even known what is the maxi mum
number of sheets which a surface of the 4-th order in three dimensional space can really
have.36

In connection with this purely algebraic problem, I wish to bring forward a question
which, it seems to me, may be attacked by the same method of continuous variation of
coefficients, and whose answer is of corresponding value for the topology of families of
curves defined by differential equations. This is the question as to the maximum number
and position of Poincar’s boundary cycles (cycles limites) for a differential equation of the
first order and degree of the form

dy/dx = Y/X,

where X and Y are rational integral functions of the n-th degree in x and y. Written
homogeneously, this is

X(ydz/dt− zdy/dt) + Y (zdx/dt− xdz/dt) + Z(xdy/dt− ydx/dt) = 0

where X, Y, and Z are rational integral homogeneous functions of the n-th degree in x, y,
z, and the latter are to be determined as functions of the parameter t.
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Preliminaries

Here some notations that we use:

• For a topological space X and x ∈ X we denote by (X, x) an small neighborhood of
x in X.

• We will use the fields K = R or C. We denote by K[x, y] the ring of polynomials in
x, y with coefficients in K.

• The set of polynomial differential 1-forms

Ω1
K2 := {Pdy −Qdx | P,Q ∈ K[x, y]},

and differential two forms

Ω2
K2 = {Pdx ∧ dy | P ∈ K[x, y]}.

One usually defines:
Ω0

K2 := K[x, y].

• The wedge product is defined in the following way:

(P1dx + Q1dy) ∧ (P2dx + Q2dy) = (P1Q2 − P2Q1)dx ∧ dy.

Exercise 0.1. Verify that for all ω1, ω2 ∈ Ω1
K2 we have ω1 ∧ ω1 = 0 and ω1 ∧ ω2 =

−ω2 ∧ ω1.

• We have the differential maps:

d0 : Ω0
K2 → Ω1

K2 , d0(P ) =
∂P

∂x
dx +

∂P

∂y
dy.

d1 : Ω1
K2 → Ω2

K2 , d1(Pdx + Qdy) = dP ∧ dx + dQ ∧ dy.

Exercise 0.2. Show that d1 ◦ d0 = 0.

We will usually drop the sub index 0 and 1 and simply write d = d0, d = d1.

Exercise 0.3. If dω = 0 for some ω ∈ Ω1
K2 then there is a f ∈ Ω0

K2 such that ω = df .

• Stokes formula. Let δ be a closed anti-clockwise oriented path in R2 which does not
intersect itself. Let also ∆ be the region in R2 which δ encloses. Then∫

δ
ω =

∫
∆

dω.

Exercise 0.4. Give a proof of Stokes formula using the classical books in calculus.
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• Let γ = (x(t), y(t)) : (K, 0) → K2 be an analytic map and ω = Pdx + Qdy ∈ Ω1
K2 .

The pull-back of ω by γ is defined to be

γ∗ω := (P (x(t), y(t))
∂x(t)

∂t
+ Q(x(t), y(t))

∂y(t)
∂t

)dt

Exercise 0.5. Show that γ∗ω = 0 is independent of the parametrization t, i.e if
a : (K, 0) → (K, 0) is an analytic map and γ∗ω = 0 then (γ ◦ a)∗ω = 0.

If γ∗ω = 0 then we say that ω restricted to the image of γ is zero.

• We denote by

K(x, y) := {P

Q
| P,Q ∈ K[x, y]}

the field of meromorphic functions in K2. The set of meromorphic differential i-forms
is denoted by Ωi

K2(∗)(instead of K[x, y] we have used K(x, y)).

Exercise 0.6. Show that if for ω1, ω2 ∈ Ω1
K2(∗) we have ω1 ∧ ω2 then ω2 = Rω1 for

some R ∈ K(x, y). Formulate the problem using polynomial forms and prove it.

• For Ω ∈ Ω2
K2 and ω ∈ Ω1

K2 we denote by Ω
ω any meromorphic differential 1-form α

such that
Ω = ω ∧ α.

Exercise 0.7. Show that such an α exists and is defined up to addition by an
element in K(x, y)ω.

• We will use XR and XC to distinguish between real and complex objects.

5



Chapter 1

Polynomial differential equation

In this chapter we introduce limit cycles of polynomial differential equations in R2 and
state the Hilbert 16-th problem.

1.1 Real foliations

What we want to study is the following ordinary differential equation:

(1.1)
{

ẋ = P (x, y)
ẏ = Q(x, y)

,

where P,Q are two polynomials in x and y with coefficients in R and ẋ = dx
dt . We will

assume that P and Q do not have common factors. Its solutions are the trajectories of
the vector field:

X := P (x, y)
∂

∂x
+ Q(x, y)

∂

∂y

(we will also write X = (P,Q)). Let us first recall the first basic theorem of ordinary
differential equations.

Theorem 1.1. For A ∈ R2 if X(A) 6= 0 then there is a unique analytic function

γ : (R, 0) → R2

such that
γ(0) = A, γ̇ = X(γ(t))

Proof. Let us write formally

γ =
∞∑
i=0

γit
i, γi ∈ R2, γ0 := A

and substitute it in γ̇ = X(γ). It turns out that if X(A) 6= 0 then γi can be written in
a unique way in terms of of γj , j < i. This guaranties the existence of a unique formal
γ.

Exercise 1.1. Recover the proof of convergence of γ from classical books on ordinary
differential equations.
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Figure 1.1: A limit cycle crossing (x, y) ∼ (−1.79, 0)

Exercise 1.2. Describe the trajectories of the following differential equations:{
ẋ = y
ẏ = −x

,

{
ẋ = x
ẏ = −y

,

{
ẋ = x
ẏ = y

Example 1.1. The trajectories of the differential equation

(1.2)
{

ẋ = 2y + x2

2
ẏ = 3x2 − 3 + 0.9y

are depicted in Figure (1.1).

The collection of the images of the solutions of (1.1) gives us us an analytic singular
foliation F = F(X)R = F(X) = FR in R2. Therefore, when we are talking about a
foliation we are not interested in the parametrization of its leaves(trajectories). It is left
to the reader to verify that:

Exercise 1.3. For a polynomial R ∈ R[x, y] the foliation associated to X and RX in
R2\{R = 0} are the same.

For this reason from the beginning we have assumed that P and Q have no common
factors. Being interested only on the foliation F(X), we may write (1.1) in the form

dy

dx
=

P (x, y)
Q(x, y)

,

ω = 0, where ω = Pdy −Qdx ∈ Ω1
R2 .

In the second case we use the notation F = F(ω)R = F(ω). In this case the foliation F is
characterized by the fact that ω restricted to the leaves of F is identically zero.

Definition 1.1. The singular set of the foliation F(Pdy−Qdx) is defined in the following
way:

Sing(F) = Sing(F)R := {(x, y) ∈ R2 | P (x, y) = Q(x, y) = 0}.

By our assumption Sing(F) is a finite set of points. The leaves of F near a point
A ∈ Sing(F) may be complicated.

Exercise 1.4. Using a software which draws the trajectories of vector fields, describe the
solutions of (1.2) near its singularities.
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By Bezout theorem we have

#Sing(F) ≤ deg(P ) deg(Q)

The upper bound can be reached, for instance by the differential equation F(Pdy−Qdx),
where

P = (x− 1)(x− 2) · · · (x− d), Q = (y − 1)(y − 2) · · · (y − d′).

1.2 Poincaré first return map

From topological point of view a leaf L of F = F(ω) is either homeomorphic to R or to
the circle S1 := {(x, y) ∈ R2 | x2 +y2 = 1}. In the second case L is called a closed solution
of F (but not yet a limit cycle).

Exercise 1.5. For a foliation F = F(ω)R the curve {R = 0}, where dω = Rdx ∧ dy,
intersects all closed leaves of F .

We consider a point p ∈ L and a transversal section Σ to F at p. For any point q in Σ
near enough to p, we can follow the leaf of F in the anti-clockwise direction and since L
is closed we will encounter a new point h(q) ∈ Σ. We have obtained an analytic function

h : Σ → Σ,

which is called the Poincaré first return map. Later in the context of holomorphic foliations
we will call it the holonomy map. Usually we take a coordinate system z in Σ with z(p) = 0
and write the power series of h at 0:

h(z) =
∞∑
i=0

h(n)(0)
n!

zn

Definition 1.2. h′(0) is called the multiplier of the closed solution L. If the multiplier is
1 then we say that h is tangent to the identity. In this case the tangency order is n if

h(i)(0) = 0, h(n)(0) 6= 0.

A closed solution L of F is called a limit cycle if its Poincaré first return map is not
identity. In case the Poincaré first return map is identity then the leaves of F near L
are also closed. In this case we can talk about the continuous family of cycles δz, z ∈ Σ,
where δz is the leaf of F through z.

Exercise 1.6. Prove that the multiplier and order of tangency do not depend on the
coordinate system z in Σ.

Proposition 1.1. In the above situation, we have

h′(0) = exp(−
∫

δ

dω

ω
).
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1.3 Hilbert 16-th problem

It is natural to ask whether a foliation F(Pdy −Qdx) has a finite number of limit cycles.
This is in fact the first part of Hilbert 16-th problem:

Theorem 1.2. Each polynomial foliation F(Pdy − Qdx) has a finite number of limit
cycles.

The above theorem was proved by Yu. Ilyashenko and J. Ecalle independently around
80’s. We have associated to each foliations F the number N(F) of its limit cycles of F .
It is natural to ask how N(F) depends on the ingredient polynomial P and Q of F .

Problem 1.1. (Hilbert 16’th problem) Fix a natural number n ∈ N. Is there some natural
number N(n) ∈ N such that each foliation F(Pdx − Qdy) with deg(P ),deg(Q) ≤ n has
at most N(n) limit cycles.

Of course, it would be of interest to give an explicit description of N(n) and more
strongly determine the nature of

N(n) := max{N(F(ω)) | ω = Pdy −Qdx, deg(P ),deg(Q) ≤ n}.

One of the objective of the present text is to explain the fact that Hilbert 16’th problem
is a combination of many unsolved difficult problems. We note that even the case n = 2
is open.

1.4 Stable and unstable limit cycle

For a foliation F = F(Pdy −Qdx) let us define the affine degree

deg(F) = max{deg(P ),deg(Q)}.

We denote by F(d) the space of degree d foliations. As we remarked before, for a constant
number c ∈ R the foliations F(cω) and F(ω) are the same. Therefore, F(d) is some open
set in the projectivization of the coefficients space of P and Q.

We take a point F ∈ F(d) and ask what happens to the limit cycles of F if perturb
the coefficients of F .

Definition 1.3. A limit cycle δ of F ∈ F(d) is called to be stable if any perturbation of
F ′ ∈ F(d) of F has a limit cycle near to δ. Otherwise, it is called unstable.

Let us take a perturbation Ft ∈ F(d), t ∈ (Rn, 0), F0 = F . Here, t can be chosen
from the coefficient space of P and Q.

Example 1.2. For our example (1.2) we will use the following perturbation:

(1.3) Ft :
{

ẋ = 2y + εx2

2
ẏ = 3x2 − 3 + εsy

, t := (ε, s− 1) ∈ (R2, 0).

We take again a transversal section Σ to F in p ∈ δ. It turns out that Σ is also
transversal to the perturbed foliations Ft, t ∈ (Rn, 0). Therefore, we can follow a leaf of
Ft through z ∈ Σ in the anti-clockwise direction and then return to Σ in a new point. In
this way, we obtain the perturbed Poincaré return map

h : Σ× (Rn, 0) → Σ× (Rn, 0), h(z, t) = (ht(z), t).
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Proposition 1.2. For a limit cycle δ if

1. the multiplier δ of F is not equal to one or;

2. the multiplier δ of F is equal to one and its tangency order is odd,

then δ is stable.

Exercise 1.7. It seems to be classical that the inverse of the above proposition is also
true. This is equivalent to say that if the multiplier of a limit cycle δ of F is equal to one
and its tangency order is even then there is a perturbation Ft ∈ F(d) of F in which δ
disappears. In general there must be a perturbation Ft ∈ F(d) of F with m limit cycles
near δ. Prove or disprove all these.

Hilbert 16th problem makes sense only in the polynomial context (in general in the
analytic context with compact ambient space). In the C∞ context one can easily construct
differential equations with infinite number of limit cycles: The function

f(x, y) = sin(
1

x2 + y2
) exp(− 1

x2 + y2
)

is C∞ at 0 ∈ R2 and analytic elsewhere. The ordinary differential equation{
ẋ = −y + xf(x, y)
ẏ = x + yf(x, y)

has the limit cycles x2 + y2 = 1
nπ , n ∈ N. Those limit cycles accumulate in 0 ∈ R2. If

we use sin(x2 + y2) instead of sin( 1
x2+y2 ) in the definition of f we obtain a differential

equation which has an infinite number of limit cycles accumulating at infinity.

Exercise 1.8. Verify the details of the above discussion.
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Chapter 2

Holomorphic foliations

In this chapter we will do two main things. First, we will consider the foliation F(ω) in
C2 instead of R2. Second, we will compactify the ambient space C2 into P2. This will be
the beginning of the theory of holomorphic foliations on complex manifolds.

2.1 Complexification

The basic theorem of ordinary differential equations in the complex context can be written
in the following way:

Theorem 2.1. Let P,Q ∈ C[x, y] and X = (P,Q). For A ∈ C2 if X(A) 6= 0 then there is
a unique holomorphic function

λ : (C, 0) → C2

such that
γ(0) = A, γ̇ = X(γ(t))

The proof is similar to the real case. The images of the complex solutions of the vector
field X give us a holomorphic foliation F = F(ω)C = FC in C2. The leaves of FC are two
dimensional real manifolds embedded in a real four dimensional space. If P,Q ∈ R[x, y]
we will denote by FR = F(ω)R the corresponding real foliation in R2. Note that R2 ⊂ C2

and
FR = R2 ∩ FC

i.e. the intersection of a leaf of FC with R2 is a union of leaves of FR. Note that FC may
has more singularities.

Example 2.1. The holomorphic foliation Fd defined in C2 by the 1-form

ω := (yd − xd+1)dy − (1− xdy)dx

is called the Jouanolou foliation of degree d. Consider the group

G := {ε ∈ C | εd2+d+1 = 1}.

It acts on C2 discontinuously in the following way:

(ε, (x, y)) → (εd+1x, εy) ε ∈ G, (x, y) ∈ C2
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It has a fixed point p1 = (0, 0) at C2 (and two other fixed points p2 = [0 : 1 : 0], p3 = [1 :
0 : 0] at infinity). For each ε ∈ G we have ε∗(ω) = εd+1ω and so G leaves Fd invariant.
We have

Sing(Fd)C = {(ε, ε−d) | ε ∈ G}

(there is no singularity at infinity) and G acts on Sing(Fd) transitively.

2.2 Compactification

In differential and algebraic geometry many theorems are stated for compact varieties and
so it would be of interest to compactify the ambient space of our foliations.

The projective space of dimension n is defined as follows:

Pn = (Cn+1 − {0})/ ∼

where
a, b ∈ Cn+1 − {0}, a ∼ b ⇔ a = kb, for some k ∈ C− {0}.

It turns out that Pn is a complex manifold. We will mainly use P1 and P2. The projective
space of dimension one P1 is covered by two charts x, x′ biholomorphic to C and the
transition map is given by

x′ =
1
x

.

The projective space of dimension two P2 is covered by three charts (x, y), (u, v), (u′, v′)
biholomorphic to C2 and the transition maps are given by

v =
y

x
, u =

1
x

, v′ =
x

y
, u′ =

1
y
.

Considering the chart (C2, (x, y)), P2 becomes a compactification of C2. A foliation
F(ω), ω = Pdy − Qdx extends to a holomorphic foliation in P2 in a unique way. For
instance, in the chart (u, v) we have

ω = P (
1
u

,
v

u
)d(

v

u
)−Q(

1
u

,
v

u
)d(

1
u

) =
P̃ (u, v)dv − Q̃(u, v)du

ud+2
, P̃ , Q̃ ∈ C[x, y].

Another compactification of C2 = C × C is P1 × P1 which is useful for studying the
Ricatti foliations given by:

ω = q(x)dy − (p0(x) + p1(x)y + p2(x)y2)dx, p0, p1, p2, q ∈ C[x].

Substituting y = 1
y′ we have

ω =
1

y′2
(−q(x)dy − (p0(x)y2 + p1(x)y + p2(x))dx)

and so all the projective lines {a ∈ C | q(a) 6= 0}×P1 are transversal to the foliation. This
will be later used to define the global holonomy of Ricatti foliations.
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2.3 Holonomy

A leaf L of a holomorphic foliation F in P2 is a Riemann surface which in principle may
has infinite genus, i.e the homotopy group π1(L, p), p ∈ L may not be finitely generated.
We take a transversal to F section Σ at p. This is the image of an embedding of (C, 0)
to P2 such that it maps 0 to p and is transverse to the leaves of F . For instance one can
take Σ a pieces of line which crosses p and is not tangent to L. For γ ∈ π1(L, p) we can
define the holonomy

hγ : Σ → Σ

of F along γ in the same way that we have done it for the Poincaré first return map.

2.4 Projective degree

Working with foliations in P2 it is useful to use the projective degree. It can be proved
that a line in P2 which does not cross any singularity of F has a fixed number d (counted
with multiplicity) of tangency points with the foliation F . In particular, for a generic
line we have exactly d simple tangency points. The number d is called the the projective
degree of F . A foliation of projective degree d in the affine coordinate C2 ⊂ P2 is given
by the differential form:

Pdx + Qdy + g(xdy − ydx)

where either g is a non-zero homogeneous polynomial of degree d and deg(P ), deg(Q) ≤ d
or g is zero and max{deg(P ),deg(Q)} = d. In the first case the line at infinity is not
invariant by F and in the second case it is invariant by F .

We may redefine F(d) to be the set of holomorphic foliations of projective degree d in
P2. The spaces F(d) corresponding to two different definitions of the degree have different
aspects. For instance, a generic foliation of projective degree d does not have an algebraic
solution and a generic foliation of (affine) degree leaves the line at infinity invariant.

2.5 Algebraic solutions and algebraic limit cycles

Let K = R or C. For a reduced polynomial f ∈ K[x, y] we consider the situation in which
the curve

Lf,K = {f = 0} := {(x, y) ∈ K2 | f(x, y) = 0}

is invariant under a foliation F(ω). We will use the notation Lf := Lf,C and F = FC and
etc..

Example 2.2. For various values of t ∈ R the set

Lf−t,R, f =:
y2

2
+

(x2 − 1)2

4

is depicted in 3.1. All of these curves are invariant by F(df)R.

Let us find an algebraic statement for the mentioned fact. For a smooth point a ∈ Lf ,
ω restricted to the tangent space of Lf at a is zero. Since df has also the same property,
we conclude that ω∧df restricted to the curve Lf is zero. But ω∧df = Pdx∧dy for some
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polynomial P ∈ C[x, y] and so P restricted to Lf is zero. Since f is reduced we conclude
that

ω ∧ df = fθ, θ ∈ Ω2
C2 .

Conversely, if the above equality holds the curve Lf is invariant under F(ω). We call Lf

an algebraic leaf of F(ω).

Definition 2.1. A holomorphic foliations F(ω) has a (meromorphic) first integral if there
is a rational function F

G , F, G ∈ C[x, y] such that F = F(GdF − FdG). F
G is called the

first integral of F . All the algebraic curves F
G = t, t ∈ C are invariant by F .

Theorem 2.2. (Darboux) A holomorphic foliation F(ω) has either a finite number of
algebraic leaves or a meromorphic first integral.

Proof. Let us assume that F(ω) has an infinite number of algebraic irreducible leaves
{fi = 0}, i ∈ N, fi ∈ C[x, y]. Then

ω ∧ dfi = fiPidx ∧ dy, Pi ∈ C[x, y]

and so

deg(Pi) + deg(fi) ≤ deg(fi)− 1 + deg(ω) or equiv.ly deg(Pi) ≤ deg(ω)− 1.

Since the space of polynomials of degree less that deg(ω)− 1 is finite dimensional, we can
assume without loss of generality that P2, . . . , Ph form a basis for the C vector space gener-
ated by Pi, i = 1, 2, . . .. Therefore, there are λi ∈ C, i = 1, . . . , h such that

∑h
i=1 λiPi = 0

and so

ω ∧ η1 = 0, η1 :=
h∑

i=1

λi
dfi

fi
.

In the same way there are µi ∈ C, i = 2, . . . , h + 1 such that
∑h+1

i=2 µiPi = 0 and so

ω ∧ η2 = 0, η2 :=
h+1∑
i=2

µi
dfi

fi
.
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Let Gi ∈ C[x, y], i = 1, 2 be such that ηi = Gi
ω

f1f2···fh+1
. We have

0 = dηi = dGi ∧
ω

f1f2 · · · fh+1
+ Gid(

ω

f1f2 · · · fh+1
).

It follows that G1
G2

is not a constant and it is a meromorphic first integral of F(ω):

d(
G1

G2
) ∧ ω =

G2dG1 ∧ ω −G2dG1 ∧ ω

G2
2

= 0.

The above proof shows that for a foliation F(ω) either all the leaves are algebraic or
the number of its irreducible algebraic leaves is less than

d(d + 1)
2

+ 2

where d := deg(ω).

Problem 2.1. The above upper bound seems to be far from the real one. Find an N(d)
such that every F with deg(F) ≤ d has at most N(d) irreducible algebraic leaf and there
is an F with deg(F) ≤ d and such that F has exactly N(d) algebraic leaves.

Now let us come back to the real context, f ∈ R[x, y], ω ∈ Ω1
R2 . The real curve Lf,R

may have many connected components and in particular it may have many ovals. Take
one of them an call it δ. If F leaves Lf invariant then δ is a leaf of FR and so it has a
holonomy:

Definition 2.2. If the holonomy of δ is not the identity map then it is called an algebraic
limit cycle.

By Darboux theorem and Harnack theorem1 it follows that a foliation F(ω)R has a
finite number of algebraic limit cycles. However, the second part of the Hilbert 16-th
problem for algebraic limit cycles is not yet solved.

Problem 2.2. (Hilbert 16’th problem for algebraic limit cycles) Fix a natural number
n ∈ N. Is there some natural number N(n) ∈ N such that each foliation F(Pdx −
Qdy)R, P,Q ∈ R[x, y] with deg(P ),deg(Q) ≤ n has at most N(n) algebraic limit cycles.

We note that the above problem even for the case n = 2 is open.

Example 2.3. The foliation

F(nxdy + mydx), n,m ∈ N

has the first integral xmyn. This example shows that the degree of a foliation can be small
but the degree of its algebraic solutions can be big.

1A real curve of degree d in RP 2 has at most (d−1)(d−2)
2

+ 1 ovals.
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2.6 Lins-Neto’s examples

It is a classical fact in real algebraic geometry that a real algebraic curve of genus g has at
most g+1 ovals in the real plane R2. In order to prove the algebraic Hilbert 16-th problem
we may try to prove that the genus of algebraic leaves of holomorphic foliations of degree
is uniformly bounded. Unfortunately, this affirmation is wrong. The first examples may
be derived from

Exercise 2.1. There is a Hurwitz-Zeuthen genus formula for calculating the genus of
singular algebraic curves. Apply this formula for

xnym(x + y − 1)k = t, n, m, k ∈ N, t ∈ C

and conclude that its genus can go to the infinity.

The pencils Fi,t = F(ωi + tηi), i = 1, 2, t ∈ P1, where

ω1 = (4x− 9x2 + y2)dy − 6y(1− 2x)dx, η1 = 2y(1− 2x)dy − 3(x2 − y2)dx,

ω2 = y(x2− y2)dy− 2x(y2− 1)dx, η2 = (4x−x3−x2y− 3xy2 + y3)dy +2(x+ y)(y2− 1)dx

are studied by A. Lins Neto in [10]. They satisfy

dωi = αi ∧ ωi, i = 1, 2,

where
αi := λi

dQi

Qi
, λ1 =

5
6
, λ2 =

3
4
,

Q1 = −4y2 +4x3 +12xy2−9x4−6x2y2−y4, Q2 = (y2−1)(x+2+y2−2x)(x2 +y2 +2x).

Theorem 2.3. (Lins Neto) The set

Ei = {t ∈ P1 | Fi,t has a meromorphic first integral}

is Q + Qe2πi/3 for i = 1 and is Q + iQ for i = 2. Moreover, for any natural number n the
set of points t in Ei such that the algebraic solutions of F(ωi + tηi) are of degree (resp.
genus) less than n, is finite.

Problem 2.3. Find an algorithm whit the input ωi + tηi, t ∈ Ei and the output which is
the meromorphic first integral of Fi(ωi + tηi).

Problem 2.4. Using Lins Neto’s examples construct explicitly a family Fn, n ∈ N of
holomorphic foliation in P2

R with a fixed degree d and all of them with a meromorphic first
integral such that each Fn has a leaf with Nn ovals and Nn tends to infinity when n →∞.
Discuss the problem in the case d = 2, 3, 4.

Problem 2.5. Prove or disprove the following statement: A foliation with a meromorphic
first integral has a finite number of families of ovals depending only on the degree of the
foliation and not the degree of the first integral. If this statement is true then in the
situation of the previous problem there is a natural number k independent of n such that
all the ovals of Fn are nested in k families.
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2.7 Minimal set

For a holomorphic foliation in P2 one may formulate many problems related to the accu-
mulation of its leaves. The most simples one which is still open is the following:

Problem 2.6. Is there a foliation F in P2 with a leaf L which does not accumulate in the
singularities of F .

For instance the above problem for Jouanolou foliation is proved numerically for d ≤ 4
and it is still open for general d.

Let us suppose that such an F and L exist and set M := L̄, where the closure is taken
in P2. It follows that M is a union of leaves of F . We may suppose that M does not
contain a proper F-invariant subset. In this case we call M a minimal set.

Proposition 2.1. A foliation in P2 with algebraic leaf has not a minimal set.

For many other useful statement on minimal sets see [1]. For local theory of holomor-
phic foliations see [2].
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Chapter 3

Abelian integrals

The objective of this section is to introduce abelian integrals in the context of holomorphic
foliations. The main problem in this direction is Arnold-Hilbert infinitesimal problem.

3.1 Continuous family of cycles

Let us be given a polynomial f ∈ R[x, y] of degree d. We consider f as a function from
R2 to R. The set of critical points and critical values of f are defined to be

PR = {(a, b) ∈ R2 | fx(a, b) = fy(a, b) = 0}, CR := f(PR).

Let us take two consecutive elements of C, namely c1 < c2, and assume that the real affine
variety

Lt,R := f−1(t), c1 ≤ t ≤ c2

contains a connected component δt, namely an oval, such that it is a closed cycle in R2,
varies continuously with respect to the parameter t and for t = c1, c2 it is either a point
or a closed polygon of paths.

Example 3.1. To carry an example in mind, take the polynomial f = y2 − x3 + 3x in
two variables x and y. We have C = {−2, 2}. For t a real number between 2 and −2 the
level surface of f in the real plane R2 has two connected pieces which one of them is an
oval and we can take it as δt. In this example as t moves from −2 to 2, δt is born from
the critical point (−1, 0) of f and end up in the α-shaped piece of the fiber f−1(2) ∩ R2

(See Figure 3.1).

Example 3.2. Another good example is

f =
y2

2
+

(x2 − 1)2

4

The set of critical values of f is C = {0, 1
4} and we can distinguish three family of ovals.

3.2 Abelian integrals

Let f : R2 → R be a polynomial mapping and δt
∼= S1, t ∈ (R, 0) be a continuous family

of ovals in the fibers of f . The level surfaces of f are the images of the solutions of the

18
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Figure 3.1: Elliptic curves: y2 − x3 + 3x− t, t = −1.9,−1, 0, 2, 3, 5, 10

Hamiltonian ordinary differential equation

(3.1) F0 :
{

ẋ = fy

ẏ = −fx
.

We make a perturbation of F0

(3.2) Fε :
{

ẋ = fy + εP (x, y)
ẏ = −fx + εQ(x, y)

, ε ∈ (R, 0),

where P and Q are two polynomials with real coefficients.
Usually one expects that in the new ordinary differential equation the cycle δ0 breaks

and accumulates, in positive or negative time, in some part of the real plane or infinity.
Let us take a transversal section Σ to F0. We assume that Σ is parameterized by the

image t of f . Let hε(t) : Σ → Σ be the deformed holonomy along δ0. Note that h0(t) ≡ t.
We write the Taylor series if hε(t) in ε:

hε(t) := t + εM1(t) + ε2M2(t) + · · ·

Proposition 3.1. If M1 is not identically zero and M1(t0) = 0 for some t0 ∈ Σ then for
ε small enough there is a limit cycle of Fε near δt0.

It is natural to calculate M1 in terms of the polynomial ingredients of Fε.

Proposition 3.2. We have

M1(t) = −
∫

δt

(Pdy −Qdx)

Proof. The deformed foliation (3.2) cab be written in the form

(3.3) df + εω = 0, ω := Pdy −Qdx.

Let δt,hε(t) be a path in the leaf of Fε through t which connects t to hε(t) along the path δ.
Since Σ is parameterized by t = f |Σ, by integrating the 1-form (3.3) over the path δt,hε(t)

we have
hε(t)− t + ε(

∫
δt

ω) + O(ε2) = 0
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The coefficient of ε in the above equality gives us

M1(t) = −
∫

δt

ω.

We conclude that

Proposition 3.3. If the Abelian integral

M1(t) =
∫

δt

(Pdy −Qdx)

is zero for t = 0 but not identically zero then for any small ε there will be a limit cycle of
Fε near enough to δ0.

If the Abelian integral is identically zero (for instance if δt is homotopic to zero in the
complex fiber of f) then the birth of limit cycles is controlled by iterated integrals (see for
instance [6, 15]). In our main example take the ordinary differential equation

(3.4) Fε :
{

ẋ = 2y + εx2

2
ẏ = 3x2 − 3 + εsy

, ε ∈ (R, 0).

If
∫
δ0

(x2

2 dy − sydx) = 0 or equivalently

s :=
−

∫
∆0

xdx ∧ dy∫
∆0

dx ∧ dy
=

Γ( 5
12)Γ(13

12)
Γ( 7

12)Γ(11
12)

∼ 1.2636

where ∆0 is the bounded open set in R2 with the boundary δ0, then for ε near to 0, Fε

have a limit cycle near δ0. In fact for ε = 1 and s = 0.9 such a limit cycle still exists and
it is depicted in Figure (1.1).

Exercise 3.1. Formulate the material of this section for foliations with meromorphic first
integrals.

3.3 Arnold-Hilbert Problem

A weaker version of H16, known as the infinitesimal Arnold-Hilbert problem asks for a
reasonable bound for the number of zeros of real Abelian integrals when the degrees of f
and P,Q are bounded.

Problem 3.1. (Infinitesimal Arnold-Hilbert problem) Determine the number

Z(m,n) := max#{
∫

δt

ω = 0 | f ∈ R[x, y] ω ∈ Ω1
R2 , deg(f) ≤ m, deg(ω) ≤ n},

where δt is a continuous family of ovals in the real level surfaces of f .

There are some partial solutions to this problem but it is still open in its generality
(see [9, 5]). Using the the theory of fewnomials Khovanski has proved that Z(m,n) is
a finite number. It is proved by Ilyasheno, Yakovenko and others that Z(m,n) has an
exponential growth.

Theorem 3.1. (Gavrilov-Horozov-Iliev, [5])

N(3, 2) = 2.
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3.4 Arnold-Hilbert problem in dimension zero

Even the zero dimensional version of Arnold-Hilber problem, in which Abelian integrals
are algebraic functions, is not completely solved(see [7]).

Let us be given a degree d polynomial f(x) ∈ R[x] in one variable x. Let c1 and c2

be two real critical values of f such that between c1 and c2 there is no more critical value
of f and f−1(t) for t between c1 and c2 contains two real points x1 and x2 such that for
t near c1 they collapse into each other in a critical point p1 with f(p1) = c1. In another
word we have a zero dimensional cycle which vanishes at p1.

Definition 3.1. The zero dimensional abelian integral is defined to be∫
δt

ω := ω(x2)− ω(x1), δt := [x2]− [x1], ω ∈ R[x].

We define N0(m,n) in a similar way as we have defined in the previous section.

Proposition 3.4. We have

(3.5) n− 1− [
n

m
] ≤ Z(m,n) ≤ (m− 1)(n− 1)

2
.

The lower bound in this inequality is given by the dimension of the vector space of
Abelian integrals

Vn = {
∫

δt

ω, deg ω ≤ n}

where f is a fixed general polynomial of degree m, while the upper bound is a reformulation
of Bezout’s theorem. When m = 3 we get Z(m,m−1) = 1. The space of Abelian integrals
Vn is Chebishev, possibly with some accuracy.

Definition 3.2. Recall that Vn is said to be Chebishev with accuracy c if every I ∈ Vn

has at most dim Vn − 1 + c zeros in the domain D.

Problem 3.2. Give an exact description of the number N0(d, d− 1).

If we do not put any restriction on x1 and x2 the sharp upper bound is (d−1)(d−2)/2.
For instance take f(x) = (x− 1)(x− 2)...(x− d) and g = (x− 1)(x− 2)...(x− d + 1). In
the image of f we can find d− 1 intervals with mentioned property and the main problem
is: How many of those zeros can be grouped in one of such intervals.
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Chapter 4

Center problem

In this chapter we consider the space of holomorphic foliation in P2 which have at least one
center singularity (consequently we will use the projective degree). It turns out that such
a space is algebraic. The classification of all irreducible components of such an algebraic
variety is known as the center (or center-focus) problem in the literature. The main source
for the content of this chapter is [13]

4.1 Center singularity

Let F be a germ of singular foliation at (C2, 0). We say that 0 ∈ C2 is a center singularity of
F or simply a center of F , if there exists a germ of holomorphic function f : (C2, 0) → (C, 0)
which has non-degenerate critical point at 0 ∈ C2, and the leaves of F near 0 are given
by f = const.. The point 0 is also called a Morse singularity of f . Morse lemma in
the complex case implies that there exists a local coordinate system (x, y) in (C2, 0) with
x(0) = 0, y(0) = 0 and such that f(x, y) = x2 + y2. Near the center the leaves of F are
homeomorphic to a cylinder, therefore each leaf has a nontrivial closed cycle that will be
called the Lefschetz vanishing cycle.

4.2 Center variety

Let F(d) be the space of degree d holomorphic foliations in P2 and M(d) the closure of the
set of foliations of degree d and with at least one center in F(d). The following example
gives us a huge number of these foliations:

Example 4.1. Let τ : P2 → M be a holomorphic map between P2 and a complex compact
manifold M with dim(M) ≥ 3. Let also F be a holomorphic codimension one singular
foliation in M . We say that τ has a tangency point a ∈ P2 of order two with F if τ(a) is
a regular point of the foliation F , F in a coordinate (x, y) ∈ (Cn−1, 0) × (C, 0) around a
is given by y = const. and a is a non-degenerate critical point of y ◦ τ . This says that the
pullback foliation τ∗(F) has a center at the point a.

I have learned the statement and proof of the following proposition from A. Lins Neto.

Proposition 4.1. M(d) is an algebraic subset of F(d).
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Proof. Let M0(d) be the set of all foliations in M(d) with a center at the origin (0, 0) ∈
C2 ⊂ P2 and with a local first integral of the type

(4.1) f = xy + f3 + f4 + · · ·+ fn + h.o.t.

in a neighborhood of (0, 0). Let us prove that M0(d) is an algebraic subset of F(d).
Let F(ω) ∈M0(d) and ω = ω1 + ω2 + ω3 + . . . + ωd+1 be the homogeneous decomposition
of ω, then in a neighborhood around (0, 0) in C2, we have

ω ∧ df = 0 ⇒ (ω1 + ω2 + ω3 + · · ·+ ωd+1) ∧ (d(xy) + df3 + df4 + · · · ) = 0

Putting the homogeneous parts of the above equation equal to zero, we obtain

(4.2)


ω1 ∧ d(xy) = 0 ⇒ ω1 = k.d(xy), k is constant
ω1 ∧ df3 = −ω2 ∧ d(xy)
. . .
ω1 ∧ dfn = −ω2 ∧ dfn−1 − · · · − ωn−1 ∧ d(xy)
. . .

Dividing the 1-form ω by k, we can assume that k = 1. Let Pn denote the set of homoge-
neous polynomials of degree n. Define the operator :

Sn : Pn → (Pndx ∧ dy)

Sn(g) = ω1 ∧ d(g)

We have

Si+j(xiyj) = d(xy) ∧ d(xiyj) = (xdy + ydx) ∧ (xi−1yj−1(jxdy + iydx))

= (j − i)xiyjdx ∧ dy

This implies that when n is odd Sn is bijective and so in (4.2), fn is uniquely defined by
the terms fm, ωm’s m < n, and when n is even

Im(Sn) = Andx ∧ dy

where An is the subspace generated by the monomials xiyj , i 6= j. When n is even the
existence of fn implies that the coefficient of (xy)

n
2 in

−ω2 ∧ dfn−1 − · · · − ωn−1 ∧ d(xy)

which is a polynomial, say Pn, with variables

coefficients of ω2 . . . ωn−1, f2, . . . , fn−1

is zero. The coefficients of fi, i ≤ n − 1 is recursively given as polynomials in coefficients
of ωi, i ≤ n− 1 and so the algebraic set

X : P4 = 0 & P6 = 0 & . . .& Pn = 0 . . .

consists of all foliations F in F(d) which have a formal first integral of the type 4.1 at
(0, 0). From a result of Mattei and Moussu (theorem A, [11]), it follows that F has a
holomorphic first integral of the type (4.1). This implies that M0(d) = X is algebraic.
Note that by Hilbert zeroes theorem, a finite number of Pi’s defines M0(d). The set M(d)
is obtained by the action of the group of automorphisms of P2 on M0(d). Since this group
is compact we conclude that M(d) is also algebraic.
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4.3 Components of holomorphic foliations with a first inte-
gral

Let Pd+1 be the set of polynomials of maximum degree d + 1 in C2 and f ∈ Pd+1. The
leaves of the foliation F(df) are contained in the level surfaces of f . Let I(d) be the set
of the mentioned holomorphic foliations in F(d).

Theorem 4.1. ([8]) I(d), d ≥ 2 is an irreducible component of M(d).

We can restate the above result as follows: Let F ∈ I(d), p one of the center singular-
ities of F and Ft a holomorphic deformation of F in F(d) such that its unique singularity
pt near p is still a center.

Theorem 4.2. In the above situation, there exists an open dense subset U of I(d), such
that for all F(df) ∈ U , there exists polynomial ft ∈ Pd+1 such that Ft = F(dft).

This theorem also says that the persistence of one center implies the persistence of all
other centers.

Let F be a foliation in C2 given by the polynomial 1-form

(4.3) ω(f, λ) = ω(f1, . . . , fr, λ1, . . . , λr) = f1 · · · fr

r∑
i=1

λi
dfi

fi

where the fi’s are irreducible polynomials in C2 and di = deg(fi). F is called a logarithmic
foliation and it has the multi-valued first integral f = fλ1

1 · · · fλr
r in U = C2\(∪r

i=1{fi =
0}). We can prove that generically, the degree of F is d =

∑r
i=1 di − 1.

Let L(d1, d2, . . . , dr) be the set of all logarithmic foliations of the above type.

Theorem 4.3. ([14]) The set L(d1, d2, . . . , dr) is an irreducible component of M(d), where
d =

∑r
i=1 di − 1.

The classification of degree two polynomial differential equations was done by Dulac in
[4]. Going to the language of holomorphic foliations in P2, instead of using the language
of polynomial differential equations, this classification was completed in [3] for degree two
holomorphic foliation in P2. Deformation of real Hamiltonian equations with a center
singularity, generating limit cycles from the Lefschetz vanishing cycles of the center, has
been one of the methods of approach to Hilbert sixteen problem, for this see Roussarie’s
book [16] and its reference. Yu.S. Ilyashenko in [8] shows that the persistence of a center
after deformation of a generic Hamiltonian equation implies that the deformed equation is
also Hamiltonian. He uses this fact to get a certain number of limit cycles after deformation
of Hamiltonian equations.

4.4 Some results using the projective degree

In this section we use the projective degree and redefine M(d) and F(d). Let Pd be the
set of polynomials of maximum degree d in C2 and

(F,G) ∈ Pa+1 × Pb+1,
a + 1
b + 1

=
q

p
, g.c.d.(p, q) = 1, R := {F = 0, G = 0} ⊂ P2
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The foliation F = F(pGdF − qFdG) has the first integral:

f : P2\R → S, f(x, y) =
F (x, y)p

G(x, y)q

i.e., the leaves of the foliation F are contained in the level surfaces of f . Let I(a, b) be
the closure of the set of the mentioned holomorphic foliations in F(d).

Theorem 4.4. ([13, 12]) I(a, b), a + b > 2 is an irreducible component of M(d), where
d = a + b.

We can restate our main theorem as follows: Let F ∈ I(a, b), p one of the center
singularities of F and Ft a holomorphic deformation of F in F(d), where d = a + b, such
that its unique singularity pt near p is still a center.

Theorem 4.5. In the above situation, if a+b > 2 then there exists an open dense subset U
of I(a, b), such that for all F(pGdF −qFdG) ∈ U , Ft admits a meromorphic first integral.
More precisely, there exist polynomials Ft and Gt such that Ft = F(pGtdFt − qFtdGt),
where Ft and Gt are holomorphic in t and F0 = F and G0 = G.

This theorem also says that the persistence of one center implies the persistence of all
other centers and dicritical singularities (the points of {F = 0} ∩ {G = 0}).

4.5 The center variety and Limit cycles

Let X be an irreducible component of M(d), F ∈ X − sing(M(d)) be a real foliation,
i.e. its equation has real coefficients, p be a real center singularity and δt, t ∈ (R, 0) be
a family of real vanishing cycles around p. The cyclicity of δ0 in a deformation of F
inside F(d) is greater than codimF(d)(X) − 1. Roughly speaking, the cyclicity of δ0 is
the maximum number of limit cycles appearing near δ0 after a deformation of F in F(d).
The proof of this fact and the exact definition of cyclicity can be found in [16]. We have
codimF(d)(L(d + 1))− 1 = (d+2)(d+1)

2 and this is the number obtained by Yu. Ilyashenko
in [8]. One can state similar results for the components obtained in Theorem 4.4 and 4.3.
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