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This paper is devoted to the study of the simplest possible type of
foliations on surfaces. We consider a compact, smooth, holomorphic
curve inside a (holomorphic) surface and a holomorphic foliation by
discs transverse to it; the general problem is to classify such objects.
These foliations arise naturally when suspensions of groups of diffeo-
morphisms are constructed. In our specific case, we wish to know
whether the foliation (or the fibration over the curve) is equivalent to
the foliation by lines on the normal bundle to the curve. This is true
when the curve has a sufficiently negative self-intersection number, but
we are able to describe the obstructions that appear in the other cases.

Our study is related to the systematic study of neighborhoods of
analytic varieties started by H. Grauert in his celebrated article ([5]).
In this article negatively embedded submanifolds of codimension 1 are
considered. There is a geometric aspect, where formal equivalences of
neighborhoods are proven to be in fact holomorphic equivalences; the
main point is the vanishing of some special cohomology groups due to
the existence of holomorphically convex neighborhoods of the subman-
ifold. As for the formal side, the notion of n-neighborhood , for n ∈ N
is introduced and the obstruction to extend isomorphisms between n-
neighborhoods to (n + 1)-neighborhoods is described; it lies also in
certain cohomology groups which depends on the normal bundle to the
submanifold. The Kodaira Vanishing Theorem implies that for n ∈ N
sufficiently large this group vanishes, so that the germ of a complex
manifold along a negatively embedded submanifold depends only on a
finite neighborhood. In ([7]) the special case of curves is considered;
the use of Serre’s duality allows simpler proofs. A careful analysis leads
to the following linearisation result : a negatively embedded curve with
self-intersection number smaller than 4− 4g (g ∈ N is the genus of the
curve) has always a neighborhood equivalent to a neighborhood of the
zero section of the normal bundle.

Our main result states that, when the self-intersection number of the
curve is negative and smaller than 2 − 2g, the fibration is equivalent
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to the linear one that exists in the normal bundle. We use the same
cohomological property of a holomorphically convex neighborhood as in
[5] to solve a Cousin problem. We remark that the linearisation result
for neighborhoods, mentioned before, does not imply that a fibration is
equivalent to a linear one, even if the self-intersection number is smaller
than 4 − 4g. As for the obstructions to linearisation, the existence of
the fibration allows us to read them in the first cohomology group of
the sheaf of 1-forms along the curve that take values in the normal
bundle. We know then exactly when it is possible to linearise a fibered
embedding; it remains to be developed the classification of all fibered
embeddings with a given normal bundle. In the negative case, it is
likely that (2g − 1)-neighborhoods determine the embedding.

The paper is organized as follows. In Section 1 we state the results
and give some examples. Sections 2 and 3 are devoted to the for-
mal analysis of neighborhoods, and Sections 4 and 5 to the convergent
aspects. Section 6 presents a simple technique to generate examples
of fibered embeddings which are not linearisable. Finally, there is an
Appendix with an application to holomorphic foliations.

1. Statement of Results and Examples

Let S be a compact, smooth, holomorphic curve embedded in some
complex surface M in such a way that it has a neighborhood holomor-
phically fibered by a family G of transversal 1-dimensional discs (we
will say that S is fibered embedded in M). This means that there exist
a covering U of S by open sets {Uα} ⊂M and charts

ψα = (xα, yα) : Uα −→ C2

such that

(1) S ∩ Uα = y−1
α (0).

(2) whenever Uα ∩ Uβ 6= ∅ , the change of coordinates Fαβ = ψα ◦
ψβ

−1 is given by

xα = φαβ(xβ)
yα = ηαβ(xβ, yβ),

(1)

where φαβ and ηαβ are holomorphic functions. We remark that
Fβγ ◦Fγα ◦Fαβ = Id when Uα ∩Uβ ∩Uγ 6= ∅ and that Fαα = Id
for any α.

(3) in each set Uα the fibration G over S is given by dxα = 0.
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The normal bundle N to S, defined by the transition maps (xα, yα) =
Lαβ(xβ, yβ) given by

xα = φ(xβ)
yα = Aαβ(xβ)yβ

(2)

for Aαβ(xβ) := ∂ηαβ/∂yβ(xβ, 0), is in a natural way fibered by the lines
dxα = 0. Let us call Gp the fiber of G and Np the linear fiber in N
both passing through p ∈ S.

The problem we study in this paper is the existence of a fibered equiv-
alence between the embeddings of S in M and N , that is, whether there
exists a holomorphic diffeomorphism H, defined between neighborhoods
of S in M and N , that sends S to S and Gp into Np for all p ∈ S (we
say that the embedding is linearisable).

The following examples illustrate the situation.

Example 1. Take S as a rational curve with self-intersection number
S ·S = −1 inside M . We may blow down a neighborhood of S and get
near (0, 0) ∈ C2 a foliation with a singularity of radial type (obtained
from blowing down the fibration G). A theorem of Poincaré (see [1])
allows us do define a diffeomorphism that sends the foliation to the one
given by ydx−xdy = 0; such a diffeomorphism can be lifted to produce
the equivalence with the linear fibration of N .

Example 2 ([1]). The curve S will be in this example a complex torus
embedded with self-intersection number 0. Let

(z, w) −→ (αz, η(z, w)) = (αz, λw +
∑
k≥2

Ak(z)w
k)

define an embedding of the open set {1 − ε < |z| < 1 + ε} × D; here
0 < |α| < 1, λ ∈ C∗ and 0 < ε << |α|. The coordinates (z, w), (z

′
, w

′
)

for the surface M are settled as follows:

(1) (1 + 2ε)|α| < |z| < 1 + ε, |w| < 1.

(2) (1− ε)|α| < |z′| < 1− 2ε, w
′ ∈ C.

(3) the change of coordinates is given by z
′
= αz, w

′
= η(z, w) for

1 − ε < |z| < 1 + ε and z
′
= z, w

′
= w for |α| (1 + 2ε) < |z| <

1− 2ε.

As for the normal bundle, we have the coordinates (z, w) and (z
′
, w

′
);

z and z
′
are related as before, and w

′
= λw.

Now we look for a diffeomorphism H(z, w) = (z, h(z, w)), defined for
(1 − ε)|α| < |z| < 1 + ε and |w| small, that satisfies ∂h/∂w(z, 0) = 1
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and H(z
′
, w

′
) = (αz, λh(z, w)), or h(αz, η(z, w)) = λh(z, w). There

are formal obstructions to finding such an h. Let us write h(z, w) =
w +

∑
k≥2 hk(z)w

k and try to find h2; it has to satisfy the equation

A2(z) + λ2h2(αz) = λh2(z).

Expanding as power series both the functions h2(z) =
∑+∞

−∞ lnz
n in

(1 − ε)|α| < |z| < 1 + ε and A2(z) =
∑+∞

−∞ anz
n in a neighborhood of

S1, we get
λln(1− λαn) = an.

We demand |λαn − 1| 6= 0 for all n ∈ Z (since |α| < 1, this is a single
condition; it is easy to see that once is satisfied, the series defining h2

converges). Going further in the process of computing hk for k ≥ 3, we
see that to get at least a formal map h we need |λmαn − 1| 6= 0 for all
n ∈ Z and m ∈ N∗.

In [1], it is also presented a small denominator condition in order to
ensure the convergence of h; in the absence of this condition, we may
have divergence (see [2]).

Example 3. There are embedded curves without fibration by discs in
a neighborhood. For example, if the curve is plane of degree greater or
equal to 2, any fibration would be the restriction of a globally defined
foliation in P(2), by Levi’s extension theorem; but such a foliation has
necessarily tangency points with the curve.

Our main result in this paper is the following

Theorem 1. Let S be a compact Riemann surface of genus g ∈ N
fibered embedded in the surface M . Assume that S · S < 0. Then, if
S · S < 2− 2g, the embedding is fibered equivalent to the embedding of
S in the normal bundle N .

This statement can be seen as a generalization of Example 1. In order
to put Example 2 in a general perspective, we have to introduce some
notations and definitions. Let O(1,0)(Nk) be the sheaf of holomorphic
1-forms of S with coefficients in the fiber bundle Nk, for k ∈ N (when
k = 0, we use O(1,0) for simplicity). We refer to the notation in the
beginning of the section.

Definition 1. Let m ∈ N∗. A fibered embedding of S into M is m-
linearisable when there are adapted charts with changes of coordinates
Fαβ = (φαβ, ηαβ) satisfying ∂jηαβ/∂y

j
β(xβ, 0) = 0 for all 2 ≤ j ≤ m

(whenever Uα ∩ Uβ 6= ∅ ). The embedding is formally linearisable if it
is m-linearisable for all m ∈ N∗.
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We want to state a condition to guarantee that a fibered embedding
is (m+1)-linearisable once it is alreadym-linearisable. So let us assume

xα = φαβ(xβ)
yα = yβ{Aαβ(xβ) + Cαβ(xβ)ym

β + · · · } (3)

We associate to ω ∈ H0(S,O(1,0)(Nm)) , represented as the collection
{ωα} in the covering U , the 1-cochain

θαβ := CαβA
−1
αβωβ (4)

The cocycle relations satisfied by the change of coordinates {Fαβ}
imply immediately that {CαβA

−1
αβ} ∈ H1(U , N−m). It follows that

Lemma 1. {θαβ} ∈ H1(U ,O(1,0)).

As a consequence of Serre duality, as we will explain in Section 2,
any element of H1(U ,O(1,0)) is a 1-coboundary once we allow poles in
the open sets Uα (in fact, the poles can be selected independently of
the holomorphic 1-cocycle and outside all possible intersections of type
Uα ∩ Uβ ). We have then a collection of meromorphic 1- forms {θα}
associated to ω such that θα − θβ = θαβ whenever Uα ∩ Uβ 6= ∅.

Definition 2. Let ω ∈ H0(S,O(1,0)(Nm)). Then r(ω) =
∑

αRes(θα).

It can be proven that these numbers do not depend neither on the
choice of the adapted charts nor on the choice of the meromorphic 1-
forms involved. Also, the 1-cocycle {θαβ} defined in (4) represents an
element of H1(S,O(1,0)) in the covering U .

Theorem 2. Consider a fibered embedding of S into M which is m-
linearisable. If r(ω) = 0 for all ω ∈ H0(S,O(1,0)(Nm)), then the em-
bedding is also (m+ 1)-linearisable.

All vector spaces H0(S,O(1,0)(Nk)) are finite dimensional, so that we
have to check a finite number of conditions in order to apply the above
theorem.

Since H0(S,O(1,0)(Nk)) = {0} if the Chern class of O(1,0)(Nk) is neg-
ative, or equivalently (S · S)k < 2− 2g, it follows that when S · S < 0
only a finite number of conditions have to be verified in order to ensure
that the fibered embedding is formally linearisable. Furthermore, we
are able to state: if S ·S < 0 and the fibered embedding is formally lin-
earisable, then it is also holomorphically linearisable. is a consequence
of this principle.
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Let us go back to Example 2 and use the tools involved in the for-
mulation of Theorem 2.

Example 2 bis. Let us take λ = 1 for simplicity; the normal bun-
dle to the elliptic curve is therefore trivial. We wish to see whether
the embedding is 2-linearisable. The vector space H0(S,O(1,0)(N))
is simply H0(S,O(1,0)), which is 1-dimensional; we choose the 1-form
z−1dz as its generator. Take the covering U corresponding to the open
sets {(1 − ε)|α| < |z′| < 1 − 2ε} and {(1 + 2ε)|α| < |z| < 1 + ε}
and the holomorphic 1-cocycle θ12 defined as θ12 = A2(z)z

−1dz in
V

′
= {1−ε < |z| < 1+ε} and θ12 = 0 in V = {(1+2ε)|α| < |z| < 1−2ε}.

Now we look for meromorphic 1-forms θ1 and θ2 such that θ1−θ2 = θ12.
Due to vanishing of θ12 in V , we see that θ1 = θ2 in that set. We

conclude that there exists a global meromorphic 1- form θ = f(z)dz
defined in a neighborhood of the annulus which satisfies the relation

f(αz)αdz − f(z)dz = A2(z)z
−1dz

for z ∈ V ′
. Since

Res(θ) =

∫
|z|=1

θ −
∫
|z|=|α|

θ

and taking into account the above relation, we arrive at

Res(θ) = −
∫
|z|=1

A2(z)z
−1dz = −a0.

Finally we observe that S · S = 0, since N is trivial. Once again we
arrive at the conclusion that a0 = 0 is the condition for the embedding
to be 2-linearisable.

We observe that H0(S,O(1,0)(N)) = {0} when N is not trivial.

2. The Residues

In this section we make two remarks about Definition 2 (notation as
in Section 1).

First of all, we used that the 1-cocycle {θαβ} is a coboundary if we
use meromorphic 1-forms. To see this, consider {θαβ} ∈ H1(U ,O(1,0));
clearly we have also {θαβ} ∈ H1(U ,O(1,0)(D)) for any effective divisor
D. But H1(U ,O(1,0)(D)) and H0(U ,O(−D)) have the same dimension,
by Serre Duality ([6],pg. 76). It follows then that H1(U ,O(1,0)(D)) =
{0}, and {θαβ} is a coboundary for the cohomology with coefficients in
O(1,0)(D).
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The second remark is a proof that the residues r(ω) of Definition 2 do
not depend on the way we write the cocycle {θαβ} as a coboundary (see
Remark 1). Let us take adapted coordinates {(xα, yα)} and {(xα, zα)}
for a m-linearisable embedding, as in (3); we assume

yα = yβ + Cαβ(xβ)ym+1
β + · · ·

zα = zβ + C
′

αβ(xβ)zm+1
β + · · ·

zα = yα + (· · · ) + Cα(xα)ym+1
α + · · ·

It is easy to see that

A−1
αβC

′

αβ = A−1
αβCαβ + Am

αβCα − Cβ. (5)

Given {ωβ} ∈ H0(U ,O(0,1)(Nm)), we choose appropriate meromorphic
1-forms as to have

θα − θβ = A−1
αβCαβωβ

θ
′
α − θ

′

β = A−1
αβC

′

αβωβ
(6)

Combining (5) and (6) gives

θ
′

α − θ
′

β = θα − θβ + Cαωα − Cβωβ

Therefore
θ

′

α − θα − Cαωα = θ
′

β − θβ − Cβωβ

and the meromorphic 1-form ζ given as ζα = θ
′
α−θα−Cαωα in each Uα

is globally defined. We apply the Residue Theorem to conclude that∑
αRes(θα) =

∑
αRes(θ

′
α).

3. Proof of Theorem 2

Let us consider adapted coordinates as in (3) for the m-linearisable
embedding of S into M , and replace the coordinates (xα, yα) by new
coordinates (xα, zα):

zα = yα − cα(xα)ym+1
α (7)

where cα is a holomorphic function for each α. The new changes of
coordinates are given by the maps

F
′

αβ(xβ, zβ) = (xβ, η
′
(xβ, zβ))

where
η

′
(xβ, zβ) = Aαβ(xβ)zβ + C

′

αβ(xβ)zm+1
β + · · ·

and
A−1

αβC
′

αβ = A−1
αβCαβ + cβ − Am

αβcα
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In order to prove that M is (m + 1)-linearisable, it is enough then
to verify that {A−1

αβCαβ} ∈ H1(U , N−m) is a co-boundary. Let us then
start by writing

A−1
αβCαβ = Am

αβtα − tβ

where tα ∈ C∞(Uα). The collection of 1-forms να = ∂̄tα clearly defines
an element ν ∈ H0(S, E (0,1)(N−m)), a C∞(0, 1)-form with coefficients
in N−m. By Serre duality (see [6], pg.76), if we are able to prove that∫

S

ν ∧ ω = 0

for all ω ∈ H0(S,O(1,0)(Nm)), then ν = ∂̄h for h ∈ H0(S, E (0,0)(N−m)).
Thus, each tα − hα is a holomorphic function and

A−1
αβCαβ = Am

αβ(tα − hα)− (tβ − hβ)

Let us then fix ω = {ωα} ∈ H0(S,O(1,0)(Nm)). From the existence of
meromorphic 1-forms {θα} such that

θα − θβ = A−1
αβCαβωβ

we get

θα − θβ = (Am
αβtα − tβ)ωβ = tαωα − tβωβ

Finally, an application of Stokes’ theorem to the 1-form δ defined in
each Uα as θα − tαωα gives

r(ω) =
∑

α

Res(θα) = (2iπ)−1

∫
S

ν ∧ ω.

But r(ω) = 0 by hypothesis. The proof is complete.

4. An Adapted Cousin Problem

Let us go back to the setting introduced in Section 1. We assume
hereafter that S · S < 0.

We define an (almost) global system of coordinates for the normal
bundle N to S as follows. The first coordinate is the projection over
S. As for the second one, consider the coordinates given by (2) and a
meromorphic section s = {sα(xα)}; clearly lN = {lα(xα) = yαs

−1
α (xα)}

is a well defined meromorphic function of N . We may consider this
function as giving the second coordinate for the points of N , with
the exception of the fibers which pass through the zeroes and poles
of S. If the divisor associated to s is

∑k
i=1 nipi (where ni ∈ Z and

pi ∈ S, i = 1, . . . , k), then lN has divisor S −
∑k

i=1 niNpi
. We want a
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similar structure for M (in fact, in some neighborhood of S in M; this
will be our understanding from now on).

Theorem 3. Assume the embedding of S into M is m-linearisable
for some m > 2g − 2. Then the divisor S −

∑k
i=1 niGpi

is a principal
divisor of M .

The proof of this theorem relies heavily on some results of Complex
Analysis, which we now recall. First of all, the curve S has a fun-
damental system of strong Levi-pseudoconvex neighborhoods (see [7],
Theorem 4.9). Let us consider:

(1) a neighborhood U ⊂M of S which is a strong Levi-pseudoconvex
domain; OU is its structural sheaf.

(2) the subsheaf M⊂ OU of germs of holomorphic functions on U
which vanish along S.

We may state the crucial property ( [5], pg.357):

Theorem 4. H1(U,Mq) = {0} for all q > max{0, 2g − 2}.

We may now give the proof of Theorem 3. Let us write the divisors
S −

∑k
i=1 niGpi

and S −
∑k

i=1 niNpi
in the coordinate systems given

by (3) and (2) as yix
−ni
i = 0, 1 ≤ i ≤ k. We define the multiplicative

cocycle {yix
−ni
i /(yjx

−nj

j ) ◦F−1
ij } associated to the first divisor; our aim

is to prove it is multiplicatively trivial. We have then:

yix
−ni
i

(yjx
−nj

j ) ◦ F−1
ij

=
yix

−ni
i

(yjx
−nj

j ) ◦ L−1
ij

·
(yjx

−nj

j ) ◦ L−1
ij

(yjx
−nj

j ) ◦ F−1
ij

Since S−
∑k

i=1 niNpi
is principal (in the surface N), the multiplicative

cocycle
{yix

−ni
i /(yjx

−nj

j ) ◦ L−1
ij }

is trivial: there exist nonvanishing functions {ti} such that

yix
−ni
i /(yjx

−nj

j ) ◦ L−1
ij = ti/(tj ◦ L−1

ij ).

It follows that

yix
−ni
i

(yjx
−nj

j ) ◦ F−1
ij

=
ti

tj ◦ F−1
ij

·
tj ◦ F−1

ij

tj ◦ L−1
ij

·
(yjx

−nj

j ) ◦ L−1
ij

(yjx
−nj

j ) ◦ F−1
ij

As for the cocycle {(tj ◦F−1
ij /tj ◦L−1

ij ) ·((yjx
−nj

j )◦L−1
ij /(yjx

−nj

j )◦F−1
ij )},

let us define uij in order to have

1 + uij =
tj ◦ F−1

ij

tj ◦ L−1
ij

·
(yjx

−nj

j ) ◦ L−1
ij

(yjx
−nj

j ) ◦ F−1
ij
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and vij := log(1+uij) (log1 = 0); clearly {vij} belongs (via the system
of coordinates of M) to H1(U ,Mm). Theorem 4 implies that this
additive cocycle is trivial, and consequently 1+uij = evij = ci/(cj)◦F−1

ij

for nonvanishing functions {ci}. Finally we may write

yix
−ni
i

(yjx
−nj

j ) ◦ F−1
ij

=
tici

(tjcj) ◦ F−1
ij

,

so that {yix
−ni
i /(yjx

−nj

j ) ◦ F−1
ij } is trivial.

5. Consequences

Let us present now some consequences of Theorem 3. We continue
with the hypothesis S ·S < 0 and keep the notation of the last section.

Theorem 5. Assume the embedding of S into M is m-linearisable for
some m > 2g − 2. Then the embedding is linearisable.

Proof: Consider a neighborhood U ⊂ M of S; a holomorphic diffeo-
morphism from U to a neighborhood of S in the normal bundle N will
be now defined. Let g : U −→ S and gN : M −→ S be the projections
associated to the fibrations in U and N ; the meromorphic functions
introduced in the last section are denoted by l and lN . Take Ψ(p) ∈ N
as the point such that (gN(Ψ(p)), lN(Ψ(p)) = (g(p), l(p)); in fact, this
map is defined outside ∪k

i=1Gpi
, the support of the divisor of the func-

tion l. In order to prove that it extends to a fiber Gpi
, we take local

coordinates ψ and ψN around pi such that l ◦ ψ = lN ◦ ψN = yx−ni

and x(ψ(q)) = x(ψN(Ψ(q)) (this last condition comes from the fact
that Ψ preserves the fibrations). It follows immediately that y(ψ(q)) =
y(ψN(Ψ(q)). �

A short way of expressing this proof is that we have constructed a
holomorphic diffeomorphism Ψ that carries the 1-form ldg into lNdgN :
ψ∗(lNdgN) = ldg. In fact, the proof consists in finding local expressions
for the map Ψ, which turn out to be unique; this property allows us to
glue all the local diffeomorphisms.

Theorem 1 is a corollary to Theorem 5; it is enough to remark that
if S · S < 2− 2g then H0(S,O(1,0)(Nm)) = {0} for all m ∈ N∗; conse-
quently the embedding is m-linearisable for any m ∈ N∗, and we just
apply Theorem 2.

Finally we remark that if the embedding is formally linearisable, it
is m-linearisable for any m ∈ N∗(by Definition 1), and again we may
apply Theorem 5 to get that the embedding is actually linearisable.
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Remark 3. There is a nice fact about Theorem 4 when S ·S < 2−2g:
H1(U,Mq0) = 0 for some q0 > max{0, 2g− 2} implies H1(U,Mq) = 0
for all q > max{0, 2g − 2}.

The proof is standard. Let us consider the short exact sequence

0 −→Mq+1 −→Mq −→Mq/Mq+1 −→ 0

It is easy to check that Mq/Mq+1 is isomorphic to O(N−q). By
Serre’s duality, we have that H1(S,O(N−q)) ∼= H0(S,O(1,0)⊗N q). But
H0(S,O(1,0)⊗N q) = 0 if S ·S < 2− 2g, so that H1(S,O(N−q)) = 0 as
well. The long exact sequence associated to the above sequence gives

· · · −→ H1(U,Mq+1) −→ H1(S,Mq) −→ 0

It follows that there is a surjective map H1(U,Mq0) −→ H1(S,Mq)
for any 2 − 2g < q < q0; consequently, H1(S,Mq) = 0 in the case
q > max{0, 2g − 2}.

6. Examples

In this Section we construct examples of fibered embeddings that are
not linearisable. We use the notations of Section 3.

Consider a fibered embedding of a curve S which is m-linearisable;
it is easy to prove the converse to Theorem 2: if r(ω) 6= 0 for some
ω ∈ H0(S,O(1,0)(Nm)), then the embedding is not (m+1)-linearisable.

We start by selecting a non-trivial linear bundle N over a curve S
such that H0(S,O(1,0)(N)) 6= {0}, fix a nonzero ω ∈ H0(S,O(1,0)(N))
and take some meromorphic section s of N . The goal is to construct
a fibered embedding of S into some surface which is not 2-linearisable
and which has associated normal bundle N (m = 1 was chosen just for
simplicity).

Step 0. Let E denote the sheaf over S of germs of biholomorphisms
of the form (x, y) −→ (x, g(x, y)) where x belongs to an open subset
of S, y ∈ C and g(x, 0) = 0. The elements of H1(S, E) correspond
to the fibered embeddings of S into surfaces. In order to see this, an
element of H1(S, E) is represented (in some covering of S by discs {Vα})
as a collection {Gαβ} of biholomorphisms of the form Gαβ(x, yβ) =
(x, gαβ(x, yβ)), x ∈ Vα ∩ Vβ which satisfy

Gαα = Id,Gγβ = Gγα ◦Gαβ

whenever Vα ∩ Vβ ∩ Vγ 6= ∅.
Once we get these maps, we may define a surfaceM as the quotient of

∪αVα×D under the equivalence relation (xα, yα) ∼ (xβ, yβ) iff (xα, yα) ∈
Vα×D, (xβ, yβ) ∈ Vβ×D and (xα, yα) = (xβ, gαβ(xβ, yβ)); the curve S is



12 C. CAMACHO, H. MOVASATI & P. SAD

fibered embedded since Gαβ(xβ, 0) = 0. The associated normal bundle
is given by the cocycle {Lαβ = ∂gαβ/∂yβ(xβ, 0)}. The surface M has
automatically a system of coordinate charts such that the changes of
coordinates are given by the maps in Gαβ.

Given {Gαβ} ∈ H1(S, E), we may construct another element of
H1(S, E) in the following way: 1) we take a section s = {sα} of N ,
which can be supposed without zeroes or poles in the intersections
Vα ∩Vβ; 2) we consider the collection of local biholomorphisms {Ĝαβ}
given by

(xα, yα) = Ĝαβ(xβ, yβ) = (xβ, ĝαβ(xβ, yβ)) = (xβ, s
−1
α gαβ(xβ, sβyβ)).

It is easy to see that {Ĝαβ} ∈ H1(S, E); but the associated normal
bundle L to {Gαβ} changes to L ⊗ N∗. In particular, applying this
construction to elements of E which have fixed associated normal bun-
dle N produces embeddings with trivial normal bundles.

We have therefore a way of replacing an embedding of S into a surface
M with associated normal bundle N by a different embedding of S into
a surface M̂ with associated trivial normal bundle, and vice-versa.

Step 1. Suppose now that we have a holomorphic surface M̂ (where
S is fibered embedded with trivial normal bundle) which is not 2-
linearisable. There exists in S a 1-form σ ∈ O(1,0) such that Res(σ) 6=
0; we choose the section s as the quotient ω/σ. The covering {Vα} for

M̂ can be selected in order that no zeroes or poles of s appear in the
intersections Vα∩Vβ. Let the change of coordinates between coordinate

charts of M̂ be

F̂αβ(x, yβ) = (x, yβ +
∞∑

m=2

ζ
(m)
αβ (x)ym

β ).

We write as {Aαβ} the transition functions for N . We put σ = {σα}
and ω = {ωα} and define M as in Step 0 to have change of coordinates

Fαβ(x, yβ) = Aαβ(x)yβ +
∞∑

m=2

η
(m)
αβ (x)ym

β

where
A−1

αβs
m−1
β η

(m)
αβ = ζ

(m)
αβ .

In particular, Res(ω) = Res({A−1
αβη

(2)
αβωβ}) = Res({A−1

αβη
(2)
αβsβσβ}) =

Res({ζ(2)
αβ σβ}) = Res(σ) 6= 0, and M is not 2-linearisable.

Step 2. At this point we have just to exhibit examples of fibered em-
beddings of S with associated trivial normal bundle which are not
2-linearisable. This is straightforward: we take a suspension of a
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special representation of the fundamental group of S into Diff0(C),
the group of germs of holomorphic diffeomorphisms of C which fix
0 ∈ C. Suppose the fundamental group is presented with the genera-
tors a1, b1, . . . , ag, bg (where g ∈ N is the genus of S) and the relation
a1.b1.a

−1
1 .b−1

1 . . . ag.bg.a
−1
g .b−1

g = 1. We represent a1 by the local holo-
morphic diffeomorphism l(t) = t+

∑∞
m=2 lnt

n, a2 by another local dif-
feomorphism which commutes with l(t), and the remaining generators

by the identity map. Let M̂ be the suspension of such a representation;
then M̂ is not 2-linearisable if l2 6= 0, since this property persists under
holomorphic changes of coordinates.

Remark 4. Examples of linear bundles over compact Riemann sur-
faces such that the space of holomorphic 1-forms (with coefficients in
the bundle) has positive dimension can be found in ([6]), pg. 111. For
example, if the Chern class c of the bundle is positive, the dimension
is c+ (g− 1), where g ∈ N is the genus of the curve. If c = 2− 2g then
the dimension is 1 when the bundle is the anticanonical one.

7. Appendix: The Index Theorem for Foliations

Let us take a fibered embedding of S into M as before (the notation
is taken from Sections 1 and 2). Consider in M a holomorphic line
field I. In coordinates, one has a collection of meromorphic functions
{Iα(xα, yα)} such that the line field is defined as dyα−I(xα, yα)dxα = 0;
we assume that there are no poles in the intersections Uα ∩ Uβ. The
compatibility condition when Uα ∩ Uβ 6= ∅ is

Iα(xα, yα)dxα = Uαβ(xβ, yβ)Iβ(xβ, yβ)dxβ + V (xβ, yβ)dxβ, (8)

where Uαβ = ∂ηαβ/∂yβ and Vαβ = ∂ηαβ/∂xβ. The function Iα can be
regarded as the slope of the line field in the coordinates (xα, yα). The
restriction of the condition above to S gives

Iα(xα, 0)dxα = Aαβ(xβ)Iβ(xβ, 0)dxβ.

The line field along S defines a meromorphic slope 1-form

IS = {Iα(xα, 0)dxα}
with coefficients in N .

Let us apply the derivation ∂
∂yβ

to both sides of (8) and restrict to

S. We obtain:

∂Iα/∂yα(xα, 0)dxα − ∂Iβ/∂yβ(xβ, 0)dxβ =
2Cαβ(xβ)A−1

αβ(xβ)Iβ(xβ, 0)dxβ + A−1
αβ(xβ)A

′

αβ(xβ)dxβ
(9)
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Theorem 6. Suppose the embedding of S is 2-linearisable. Then∑
α

Res(∂Iα/∂yα(xα, 0)dxα) = S · S.

in any of the following situations:

(1) the slope 1-form IS is holomorphic.
(2) the coordinate system is adapted (see Definition 1).

Proof: 1) Let us suppose that the slope is holomorphic. From Lemma
1 we know that {θαβ = CαβA

−1
αβIβ(xβ, 0)dxβ} belongs to H1(U ,O(1,0));

we may write then (as in Definition 2) θα − θβ = θαβ and therefore
r(IS) =

∑
αRes(θα). We claim that the forms θα may be chosen as

holomorphic 1-forms.
In fact, let us replace the coordinates {yα} by the coordinates {zα}

given as

zα = yα +Bαy
2
α

where {Bα} are holomorphic functions to be chosen. The changes of
coordinates of the embedding are now given as

zα = Aαβzβ + (Cαβ − AαβBβ + A2
αβBβ)z2

β + · · ·
Since the embedding is 2-linearisable, one can choose the functions
{Bα} in order to have A−1

αβCαβ = Bβ − AαβBα, or

A−1
αβCαβIβ(xβ, 0)dxβ = BβIβ(xβ, 0)dxβ − AαβBαIα(xα, 0)dxα.

It follows that r(IS) = 0. From ([6]), pg. 102 and (9) we get that

S · S =
∑

α

Res(∂Iα/∂yα(xα, 0)dxα)− r(IS).

2) In the case of an adapted coordinate system we have already that
Cαβ = 0. The proof follows immediately from (9). �

The numbers Res(∂Iα/∂yα(xα, 0)dxα) are the indices for the line
field introduced in ([3]). We observe that Theorem 6 holds true without
the hypothesis on the embedding if S is invariant for the line field. The
case of foliations on line bundles was treated in ([4]).
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