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MEROMORPHIC CONNECTIONS ON P
1

AND THE MULTIPLICITY OF ABELIAN INTEGRALS

H. MOVASATI

Dedicated to Professor César Camacho on his 60th birthday

Abstract. In this paper, we introduce the notion of Abelian integrals
in differential equations for an arbitrary vector bundle on P

1 with a
meromorphic connection. In this general context, we give an upper
bound for the maximum multiplicity of Abelian integrals.

1. Introduction

After a century, Hilbert sixteenth problem in differential equations is
not solved. Challenges to solve it have developed and develop new areas
of mathematics, such as holomorphic foliations, real algebraic geometry,
and Abelian integrals with their own problems which in many cases are
far from the original one. One of the problems arising in this direction is
the Arnold–Hilbert problem which asks for the maximum number of zeros
of certain Abelian integrals. Very large upper bounds are found, but they
do not seem to be realistic (see, e.g., the expository article [7]). Another
particular problem which can be considered is the maximum multiplicity
of zeros of Abelian integrals. P. Mardešić in [15] gives an upper bound
for the desired number in the case of a generic Hamiltonian differential
equation. This upper bound is a polynomial of degree 4 in n, where n is the
degree of the Hamiltonian system and 1-form of the integral. But again it
is not believed that so many limit cycles can be obtained by perturbing the
Hamiltonian system around a cycle with trivial holonomy. Since then many
authors have tried to give an effective answer to this problem. Here we
mention the works of Khovanski, Gabrielov, Bolibruch, Moura, and others.
In particular, the works [3, 17] have obtained the same upper bound for a
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linear system of differential equations using quite different methods. In [16],
the author approaches the problem in the case of hyperelliptic integrals.

The aim of this article is to put this problem in the context of meromor-
phic connections on vector bundles on P

1 and give an upper bound for the
multiplicity of zeros of Abelian integrals. Our upper bound (see Theorems 1
and 3) generalizes the result of Mardešić, Bolibruch, and Moura. In the par-
ticular case of a trivial vector bundle together with its trivializing section,
our upper bound is a polynomial of degree two in the rank of the vector
bundle. This kind of upper bounds has been already obtained by Bolibruch
and Moura. Note that we have not yet a direct relation in all cases between
the usual notion of Abelian integrals and the notion of Abelian integrals in
our context. Such relations are developed only for Lefschetz pencils with
some generic properties. In this new context, one can use the machinery of
meromorphic connections for studying Abelian integrals.

In Sec. 1, we recall the notion of meromorphic connections on vector
bundles on P

1 and, consequently, the notion of Abelian integrals in this
context. Theorems 1 and 3 give an upper bound for the maximum multi-
plicity of Abelian integrals in our context. Section 2 is devoted to the study
of linear equations of our Abelian integrals. Finally, in Sec. 3, we give the
connection of our notion of Abelian integrals with the usual one in the case
of a Lefschetz pencil.

Here I would like to express my thanks to Max-Planck Institute, Georg-
August-Universität, and IMPA for their hospitality. Thanks go also to
C. Hertling, Y. Holla, and S. Archava for many useful conversations. Finally,
I thank Prof. Camacho, for whom this work is dedicated, for encouraging
comments. I would like also to thank the referee of this article who drew
my attention to the works of Khovanski, Gabrielov, Bolibruch, and Moura.

2. Meromorphic connections

Let V be a locally free sheaf (vector bundle) of rank α on P
1 and D =

r∑

i=1

mici be a positive divisor in P
1, i.e., all mi are positive. We denote by

C ⊂ P
1 the set of ci. A meromorphic connection ∇ on V with the pole

divisor D is a C-linear homomorphism of sheaves

∇ : V → Ω1
P1(D) ⊗O

P1
V

satisfying the Leibniz identity

∇(fω) = df ⊗ ω + f∇ω, f ∈ OP1 , ω ∈ V,

where Ω1
P1(D) is the sheaf of meromorphic 1-forms in P

1 with poles on D
(the pole order of a section of Ω1

P1(D) at ci is less than mi). For any two
meromorphic connections ∇1 and ∇2 with the same pole divisor D, ∇1−∇2

is a OP1 -linear mapping.
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Let t be the affine coordinate of C = P
1 − {∞}, where ∞ is the point at

infinity in P
1. By the Leibniz rule and by composing ∇ with the holomorphic

vector field ∂/∂t we can define:

∇∂/∂t : H0(P1, V (∗∞)),→ H0(P1, V (D + ∗∞)),

where H0(P1, V (∗∞)) (respectively, H0(P1, V (D+∗∞))) is the set of mero-
morphic global sections of V with arbitrary poles at ∞ (respectively, and
poles of maximum multiplicity mi at ci). Since ∂/∂t is a holomorphic vec-
tor field in P

1 with a zero of multiplicity two at ∞, if ω ∈ H0(P1, V (∗∞))
has a pole (respectively, zero) of order m at ∞, then ∇∂/∂tω has a pole
(respectively, zero) of order m − 1 (respectively, max{2,m + 1}) at ∞. If
there is no confusion, we write ∇ = ∇∂/∂t.

For any point b ∈ P
1\C, we can find a frame {e1, e2, . . . , eα} of holo-

morphic sections of V in a neighborhood of b such that ∇ei = 0 for all i
and any other solution of ∇ω = 0 is a linear combination of ei. Analytic
continuations of this frame in P

1\C define the monodromy operator

T : π1(P1\C, b) → GL(Vb).

We say that ∇ is irreducible if the action of the monodromy on a nonzero
element of Vb generates the whole Vb.

Let V ∗ be the dual vector bundle of V . A natural dual connection

∇∗ : V ∗ → Ω1
P1(D) ⊗O

P1
V ∗

is defined on V ∗ as follows:

〈∇∗δ, ω〉 = d 〈δ, ω〉 − 〈δ,∇ω〉 , δ ∈ V ∗, ω ∈ V.

If {e1, e2, . . . , eα} is a base of flat sections in a neighborhood of b, then we
can define its dual as follows:

〈δi, ej〉 =

{
0 if i �= j,

1 if i = j.

We can easily verify that δi are flat sections. The associated monodromy
for ∇∗ with respect to this basis is just T ∗, where T ∗ is the composition of
T with the transpose operator. We can also define a natural connection on

∧k
V = {ω1 ∧ ω2 ∧ · · · ∧ ωk | ωi ∈ V }

with the pole divisor D as follows:

∇(ω1 ∧ ω2 ∧ · · · ∧ ωk) =
k∑

i=1

ω1 ∧ ω2 ∧ · · · ω̂i,∇ωi · · · ∧ ωk,

where ω̂i,∇ωi means that we replace ωi by ∇ωi.
Every line bundle L in P

1 is of the form La∞, where a is an integer
and La∞ is the line bundle associated with the divisor a∞. We define
c(L) = a (Chern class). According to the Grothendieck decomposition
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theorem, every vector bundle V on P
1 can be written as V =

α⊕

i=1

Li, where

Li are line bundles. We define c(V ) =
α∑

i=1

c(Li). In view of Theorem 1, the

following definition is natural.

Definition 1. For any meromorphic global section of V with poles at
C ∪ {∞} define its degree as the sum of its pole orders. For any natural
number n, let H∇(n) be the smallest number such that for all ω of degree
n the set {∇iω | i = 0, 1, 2, . . . ,H∇(n) − 1} generates each fiber Vb, b ∈
P

1\C ∪ {∞}.
Of course, we have

H∇(n) ≥ α.

Let V be a line bundle. In this case H∇(n) is the maximum multiplicity of
a zero of ω of degree n minus one and, therefore, H∇(n) = n+ c(V ) + 1. In
the general case, we can only give an upper bound for H∇(n). One of the
main results of this article is item 3 of the following theorem.

Theorem 1. If the connection ∇ over V is irreducible, then for any
global meromorphic nonzero section of V with poles at C ∪ {∞}, say ω, the
following assertions hold :

1. {∇iω | i = 0, 1, 2, . . .} generates each fiber Vb, b ∈ P
1\C ∪ {∞};

2. {∇iω | i = 0, 1, 2, . . . , α− 1} generates a generic fiber Vb;
3. finally, we have

H∇(n) ≤ α(α− 1)
2

∑
mi + α(n+ 1) − α(α− 1)

2
+ c(V ).

Proof. Let us prove item 1. If there exists ω ∈ H0(P1, V (∗∞)) such that
{∇iω | i = 0, 1, 2, . . .} does not generate Vb, then there exists nonzero
δb ∈ V ∗

b such that
〈
δb,∇iω

〉
= 0, i = 0, 1, 2, . . . .

Consider the flat section δ passing through δb. Since

∂i 〈δ, ω〉
∂it

∣
∣
∣
b

=
〈
δb,∇iω

〉
= 0,

we conclude that 〈δ, ω〉 is identically zero. Since ∇ is irreducible, we con-
clude that ω is the zero section.

Now let us prove item 2. Let k be the largest number such that for all
nonzero ω ∈ H0(P1, V (∗∞)), A = ω∧∇ω∧· · ·∧∇kω is not identically zero.
We prove that k = α−1. Fix a nonzero ω with the property A∧∇k+1ω = 0.
LetB = P

1−C∪{∞}∪zero(A) and V ′ be the vector bundle overB generated
by ω,∇ω, · · · ,∇kω. Since A ∧ ∇k+1ω = 0, ∇ induces on V ′ a well-defined
holomorphic connection. But this means that V ′

b is invariant with respect
to the monodromy. ∇ is irreducible and, therefore, k + 1 = dim(V ′

b ) = α.
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The proof of item 3 is as follows. For any global meromorphic section ω
of V with poles at C ∪ {∞}, we define

A = ω ∧∇ω ∧ · · · ∧ ∇α−1ω.

According to item 2, A is a nonzero global meromorphic section of ∧αV .
Let m be the order of the pole of ω at ∞. Then the sum of poles of ω at
C is at most n −m. Since ∇ increases the pole order from ai to ai + mi

at each ci, we conclude that the sum of pole orders of A at C is at most
α(α− 1)

2
∑
mi +α(n−m). Each ∇iα has a pole (respectively, zero if m− i

is positive) of order m− i at ∞ and, therefore, A has order

m+m− 1 +m− 2 + · · · +m− (α− 1) = mα− α(α− 1)
2

at infinity. We conclude that the multiplicity of a zero of A in P
1\C ∪ {∞}

is less than
α(α− 1)

2

∑
mi + α(n−m) +mα− α(α− 1)

2
+ c(V ).

If b ∈ P
1\C ∪ {∞} is a point such that ω, ∇ω, . . . , ∇iω, i ≥ α− 1, do not

generate Vb, then A has a zero of multiplicity i − (α − 2). The theorem is
proved.

The author does not think that this upper bound is the best one. More
precisely, for any vector bundle V and divisor D on P

1, can we find a
meromorphic connection ∇ on V with pole divisor D such that H∇(n) is
the above number?

Let δ be a flat section of V ∗ in a small open set U around b and ω be a
global meromorphic section of V with poles at C ∪ {∞}. From now on, we
use the notation

∫
δ
ω instead of 〈δ, ω〉. Later we will see the justification of

this notation by usual Abelian integrals.
We fix the number n and suppose that the degree of ω is less than n.

What is the maximum multiplicity of
∫

δ
ω at t ∈ U , say H∇(n, δ)? Let S(n)

be the vector space of meromorphic sections of V with poles at C ∪ {∞}
and degree less than n. Since S(n) is a finite-dimensional vector space,
H∇(n, δt) is a finite number.

Theorem 2. If ∇ is irreducible, then for all t ∈ U

H∇(n, δ) ≥ dimC S(n) − 1.

The equality occurs except for a finite number of points in U .

Proof. Let ω1, ω2, . . . , ωb be a basis for the vector space S(n). Consider the
determinant

Wb(t) = det
[
∂i

∂ti

∫

δ

ωj

]

b×b

.
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It suffices to prove that Wb(t) is not identically zero. Let a ≤ b be the
smallest number such that Wa(t) is identically zero. There exist holomor-
phic functions pi, i = 1, 2, . . . , a, in U such that

Aa −
a−1∑

i=1

Ai
pi

pa
= 0,

where Ai is the ith column of the matrix
[
∂i

∂ti

∫

δ

ωj

]

a×a

.

We have a equalities. If we apply ∂/∂t to the ith equation and subtract the
(i+ 1)th equation, we conclude that

[
∂i

∂ti

∫

δ

ωj

]

b−1×b−1

×
[
∂(pi/pb)

∂t

]

b−1×1

= 0.

By the hypothesis, this implies that
[
∂(pi/pb)

∂t

]

b−1×1

≡ 0

or, equivalently,
a∑

i=1

ci

∫

δ

ωi = 0,

where ci are constant. Since ∇∗ is irreducible, we have
a∑

i=1

ciωi = 0,

is a contradiction.

The following is complementary to our main theorem.

Theorem 3. If ∇ is irreducible, then

H∇(n) − 1 = sup{H∇(n, δ)},
where δ runs through all flat sections of V ∗ in P

1\C ∪ {∞}.
Proof. If there exists a degree n section ω such that

{∇iω | i = 0, 1, 2, . . . , p− 1}
does not generate Vb, then there exists δb ∈ V ∗

b such that
∫

δb

∇iω = 0, i = 0, 1, 2, . . . , p− 1.

Consider the flat section δ passing through δb. We conclude that
∫

δ
ω has

the multiplicity p at b and hence H∇(n, δb) < H∇(n). The proof of the
other part is similar.



MEROMORPHIC CONNECTIONS ON P
1 223

3. Regular connections and linear equations

Consider the connection ∇∗ on V ∗ as before and fix a trivialization map-
ping for V ∗ around a singular point ci. ∇∗ is called regular at ci if each
flat section of V ∗ in a sector with the vertex ci has at most a polynomial
growth near ci (see [12, p. 36] or [1, p. 8]). ∇ is called regular if it is regular
at all ci.

Let ω1, ω2, . . . , ωα be global meromorphic sections of V with poles at C∪
{∞}. Also, let δ1, . . . , δα be a base of flat sections of V ∗ in a neighborhood
of b. The Wronskian function is defined as follows:

W (t) = W (ω1, . . . , ωα)(t) = det

[∫

δj

ωi

]

α×α

.

The quotient of two such functions is a meromorphic function in P
1\C and

by regularity of ∇∗, we conclude that it is extended meromorphically to the
whole P

1. Fix ω. By a similar argument as stated in Theorem 2 and by
irreducibility of ∇, we know that W (ω,∇ω, . . . ,∇α−1ω) is not identically
zero. The set {∫

δ

ω | δ is a flat section of V ∗
}

is a base for the space of solutions of the following linear equation:

ψ :

∣
∣
∣
∣
∣
∣
∣
∣
∣

Y
∫

δ
ω

Y ′ ∫
δ
∇ω

...
...

Y (α)
∫

δ
∇αω

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0, (1)

which can be written in the other form

ψ : Y (α) +
α∑

i=1

(−1)iPiY
(i) = 0, (2)

where

Pi =
W (ω,∇ω, . . . , ∇̂α−iω, . . . ,∇αω)

W
, W = W (ω,∇ω, . . . ,∇α−1ω).

Since
∫

δi
ω̃ has a polynomial growth at the points of C, ψ is regular and,

therefore, it must be Fuchsian, i.e., Pi has poles of order at most i (see [1]).
The union of poles of Pi is the singular set of the Picard–Fuchs equation ψ.
It has three types of singularities:

1. C. At ci ∈ C, the solutions of (2) branch;
2. Z, the zeros of W . In these singularities, like regular points, we have

a space of solutions of dimension α. Note that

P1 =
∂W/∂t

W
.
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For this reason, in [1] these are called apparent singularities. For a
zero b of W we can find a flat section δ of V ∗ such that

∫
δ
ω has a

multiplicity greater than α at b;
3. ∞. Let m be the order of the pole of ω at ∞. The solutions of (2) in

a neighborhood of ∞ are meromorphic functions with poles of order
at most m at ∞.

Since P1 =
∂W/∂t

W
, we have

Res(P1dt, t = c) = mul(W, t = c), c ∈ C ∪ Z.
Now we consider a regular linear equation ψ with singularities at C ∪ Z ∪
{∞} and suppose that it has apparent singularities in Z and a singularity
of type 3 at ∞. Furthermore, assume that ψ has the same monodromy
representation as ∇∗.

Proposition 1. ψ is obtained by a meromorphic global section of V with
poles at C ∪ {∞}.
Proof. In a neighborhood of b, we consider a base of flat sections δi of V ∗

and a base ei, i = 1, 2, . . . , α, for solutions of ψ such that the monodromy
representation of the both ∇∗ and ψ with respect to these bases is the same.
Define a section of V = (V ∗)∗ as follows:

ω(δt) = ei(t).

This is a single-valued holomorphic section of V in P
1\C ∪ {∞}. Since ψ

and ∇∗ are regular, ω can be extended meromorphically to C.

Let φb be the maximum multiplicity of solutions of ψ at b. If b is a regular
point of ψ, then φb = α − 1 and if it is an apparent singularity of ψ, then
φb ≥ α. In the last case, by the definition of W , we can see that W has a

zero of order at least φb − (α− 1) at b and by P1 =
∂W/∂t

W
, we have

φb ≤ Res(P1 dt, t = b) + (α− 1).

Remark 1. Let us choose a trivialization of V in a small disk D around
a singular point ci of the connection ∇, V |D ∼= D×C

α, and a coordinate z
in D. In this coordinate, we can write

∇v =
∂v

∂z
+

mi∑

j=1

Cj

zj
v +A(z)v,

where v is a holomorphic vector in D, Cj , 1 ≤ j ≤ mi (respectively, A(z)) is
a constant (respectively, holomorphic in z) matrix. C1 is called the residue
of the connection at ci. Now we can apply the Levelt theory (see [1, Sec. 1,
2.2]) to understand the local theory of this connection.
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4. The Lefschetz pencil

Let M be a projective compact complex manifold of dimension two,
{Mt}t∈P1 be a pencil of hyperplane sections of M , and f be the mero-
morphic function on M whose level sets are Mt (see [13]). Let R be the set
of indeterminacy points of f , Lt = Mt −R, C = {c1, c2, c3, . . . , cr} be the
set of critical values of f , β = dim(H1(Lt,C)) for t ∈ P

1 − C, and C[t] be
the ring of polynomials in t. Since f |M−R is a C∞-fibration over P

1 − C
(see [13]), β is independent of t. We assume the following:

1. the axis of the pencil intersects M transversally. This is equivalent to
the fact that in a coordinate system (x, y) around each indeterminacy
point of f , we can write f = x/y;

2. the critical points of f are isolated;
3. the pole divisor D = M∞ of f is a regular fiber, i.e., ∞ �∈ C.
We define Ωi(∗D) to be the set of meromorphic i-forms in M with poles

of arbitrary order along D. The set H̃ =
⋃

t∈B

H1(Lt,C), where B = P
1 −C,

has a natural structure of a complex manifold and the natural projection
H̃ → B is a holomorphic vector bundle which is called the cohomology
vector bundle. The sheaf of holomorphic sections of H̃ is also denoted
by H̃. In what follows, when we consider f as a holomorphic function,
we mean its restriction to M − R. Let CM−R be the sheaf of constant
functions in M − R and R1f∗CM−R be the first direct image of the sheaf
CM−R (see [6]). Any element of R1f∗CM−R(U), where U is an open set in
B, is a holomorphic section of the cohomology fiber bundle mapping. It is
easy to verify that

H̃ ∼= R1f∗CM−R ⊗C OP1 in B.

Now we introduce the Gauss–Manin connection on H̃. Consider a holo-
morphic coordinate (t, 0) in a small open disk U in P

1. The Gauss–Manin
connection is defined as follows:

∇ : H̃(U) → Ω1
P1 ⊗OU

H̃(U),

∇(g ⊗ c) = dg ⊗ c, c ∈ R1f∗CM−R(U), g ∈ OP1(U).

The sheaf of flat sections of ∇ is R1f∗CM−R. Let ∂/∂t be a vector field in
U . We write

∇∂/∂t =
∂

∂t
◦ ∇, ∇∂/∂t(g ⊗ c) =

∂g

∂t
⊗ c.

In the same way, we can define the cohomology fiber bundle H̃c of com-
pact fibers Mt. Since H̃c is a ∇-invariant vector subbundle of H̃, we have
the restriction of ∇ to H̃c which we denote again by ∇.

Let ω be a meromorphic 1-form in M with poles along some fibers of f .
Also, let {δt}t∈P1−C , δt ⊂ Lt, be a continuous family of cycles. The Abelian
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integral
∫

δt
ω appears in the deformation df + εω of df inside holomorphic

foliations (differential equations) and it is related to the number of limit
cycles born from the cycles δt (see [10]). The pair (H̃,∇) is defined in
P

1−C and in order to be in the context of this paper, we prove the following
proposition.

Proposition 2. Under assumptions 1–3, there exist a vector bundle V ,
a vector subbundle V̄ ⊂ V , and a meromorphic connection on V with poles
in C

∇ : V → Ω1
P1(D) ⊗O

P1
V, D =

∑
mici,

such that :
1. V̄ is ∇-invariant ;
2. (V,∇) (respectively, (V̄ ,∇)) coincides with (H̃,∇) (respectively, with

(H̃c,∇)) in P
1 − C;

3. the Brieskorn lattice (Petrov module in the context of differential equa-
tions) of f

H ′ =
Ω1(∗D)

df ∧ Ω0(∗D) + dΩ0(∗D)
is a C[t]-isomorphism to the module of global sections of V with poles
of arbitrary order at ∞.

This is a task which is done in detail in [11]. If the singularities of f are
nondegenerate, i.e., in a holomorphic coordinate (x, y) around a singularity
pi we can write f = f(pi) + x2 + y2, then all mi are equal to one. In other
words, ∇ is logarithmic.

The pair (V,∇) is not irreducible but if H1(M,C) = 0 and f satisfies
conditions 1–3 and has nondegenerate singularities with distinct images then
(V̄ ,∇) is irreducible (see [13, 7.3]). The following proposition justifies the
use of (V̄ ,∇) instead of (V,∇).

Proposition 3. For a meromorphic 1-form ω in M with poles of order at
most n along D, the integral

∫
δt
ω is a polynomial of degree n. ∇i

∂/∂tω, i >
n, restricted to each fiber has no residues in R and hence is a meromorphic
section of V̄ .

Proof. We have

p(t) :=
∫

δt

ω = tn
∫

δt

ω

fn
.

Since the 1-form ω/fn has no poles along D, p(t)/tn has finite growth at
t = ∞. Since p(t) is holomorphic in C (even in the points of C), we conclude
that p(t) is a polynomial of degree at most n. The second part is a direct
consequence of the first one and the fact that

∂

∂t

∫

δt

ω =
∫

δt

∇∂/∂tω.
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The proposition is proved.

I tried to study the maximum multiplicity of Abelian integrals in the
context of meromorphic connections. My motives were the paper [15] and
also a paper of mine, where the extension of cohomology vector bundles
and their connections to the critical values of a meromorphic function is
discussed. The upper bound obtained in Theorem 1 seems to be far from the
best one (at least for Gauss–Manin connections). Some works in differential
equations (see [9]) suggest that the number H∇(n) must be very sensitive
with respect to ∇.
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