
Hossein Movasati

An Advanced Course in Hodge
Theory

August 30, 2018

Publisher





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Cech cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Cech cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Covering and direct limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Acyclic sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 How to compute Cech cohomologies . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Resolution of sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.7 Cech cohomology and Eilenberg-Steenrod axioms . . . . . . . . . . . . . . . 10
2.8 Dolbeault cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.9 Cohomology of manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.10 Short exact sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Hypercohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Hypercohomology of complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Acyclic sheaves and hypercohomology . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Quasi-isomorohism and hypercohomology . . . . . . . . . . . . . . . . . . . . . 20
3.5 A description of an isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Filtrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Algebraic de Rham cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Atiyah-Hodge theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Algebraic De Rham cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Hodge filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Cup product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.6 Cup product for hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.7 The cohomological class of an algebraic cycle . . . . . . . . . . . . . . . . . . 32

v



vi Contents

4.8 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.9 Top cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
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Chapter 1
Introduction

The author’s search for a counterexample to the Hodge conjecture took more than
half of the book [Mov17b]. As Grothendieck’s method to solve a mathematical prob-
lem is to generalize it so much that a solution comes by itself, I belive that finding
a counterexample to the Hodge conjecture must take a completely different way.
Instead of generalizations, one has to study so many particular examples such that
it comes to mind automatically. Even if the Hodge conjecture is true, the belief that
it is false has made the Hodge theory more accessible to those who loves computa-
tional mathematics. The history of the Hodge conjecture from a computational point
of view is a sad one. Up to the time of writing the present text, there was no explicit
generators of the Neron-Severi group of the Fermat variety of degree 12. This job is
being done by N. Aoki, see [Aok15]. I belive that once a counterexample is found
it would be like a Colombus’ egg and there will be explosion of other counterexam-
ples. Once you are in the oceon without compass, all directions might lead you to a
land. In [Mov17b] the author thought himself few directions.

The emphasis of the first book [Mov17b] was mainly on hypersurfaces and the
study of the Hodge locus through the Fermat variety. This book intends to tell us
the Hodge theory of smooth projective varieties and their properties inside families.
This is the study of Cech cohomology, hypercohomology, Gauss-Manin connec-
tion, infinitesimal variation of Hodge structures, Hodge loci etc. A synopsis of each
chapter is explained below.

In Chapter 3 we present a minimum amount of material so that the reader get
familiar with Cech cohomologies and hypercohomologies. We always need to rep-
resent elements of cohomologies with concrete data and we do this using an acyclic
covering. In this chapter we also discuss quasi-isomorphisms and filtration, in a way
adopted for computations. This chapter is presented for general sheaves, however,
we only apply its content to the sheaf of differential forms.

Chapter 4 is fully dedicated to algebraic de Rham cohomology and the fact that it
is isomorphic to the classical de Rham cohomology. The main ingredient here is the
Atiyah-Hodge theorem on the de Rham cohomology of affine varieties. The objec-
tive in this chapter is to collect all necessary material for computing the integration
of elements of algebraic de Rham cohomologies over algebraic cycles.

1



2 1 Introduction

Chapters 5 is fully dedicated to the description of Gauss-Manin connection of
families of algebraic varieties. In this chapter we describe the general context of ar-
bitrary families of projective varieties, whereas in [Mov17b] focuses on the compu-
tation of Gauss-Manin connection for tame polynomials, and in particular families
of hypersurfaces. The Griffiths transversality is one of the main theorems. It relates
the Gauss-Manin connection to the underlying Hodge filtrations.

We do not give concrete applications of the Gauss-Manin connection in Al-
gebraic Geometry, however, its partial data, namely the infinitesimal variation of
Hodge structures (IVHS) has successful applications. This includes the famous
Noether-Lefschetz theorem which says that a generic surface in the projective space
of dimension three has Picard rank one. Chapter 6 is dedicated to this topic.

Most of the machineries in this book are introduced with one mission in mind.
We would like to study deformations of Hodge cycles in the moduli space of the
underlying variety. This results in the study of the so-called Hodge locus. There are
many open questions in this context, even in the case where the Hodge conjecture is
well-known.

Some words of philosophy. The truth in mathematics is a state of satisfaction
but not vice versa. The classical way of doing mathematics is to prove, and hence
to feel, the truth and then to enjoy the consequent satisfaction. However, with the
rapid development of mathematics it seems to be very difficult to transfer to an
student all the details leading to a truth and then satisfaction. Manytimes we need
to use an object and in order to construct it explicitly we spend a lot of time so
that the student lose all his/her interest on the subject. In this situation, I think, it
is crucial to invest on inducing the state of satisfaction in new learners rather than
using the classical methodology of doing mathematics which is defining and proving
every thing precisely. In the present text I will try to follow this method in order to
introduce one of the main conjectures in Algebraic Geometry, namely the Hodge
conjecture.



Chapter 2
Cech cohomology

Il faut faisceautiser. (The motto of french revolution in algebraic and complex ge-
ometry, see [Rem95], page 6).

2.1 Introduction

In Chapter 4 [Mov17b] we discussed the axiomatic approach to singular homology
and cohomology. These are the first examples of cohomology theories constructed
in the first half of 20th century. Almost in the same time, other cohomolgy the-
ories, such as De Rham and Cech cohomologies, and their properties were under
construction and intensive investigation.

In this chapter we aim to introduce sheaf cohomologies and its explicit construc-
tion using Cech cohomologies. Similar to the case of singular homology and coho-
mology, the categorical approach to sheaf cohomology and the way that it is used
in mathematics, shows that in most of occasions we only need to know a bunch of
properties of the sheaf cohomology and not its concrete construction. However, in
some other occasions, mainly when we want to formulate some obstructions, we
obtain elements in some sheaf cohomologies and so just axioms of Cech cohomol-
ogy would not work. Therefore, we introduce some properties of sheaf chomology
which can be taken as axioms and we also explain its explicit construction using
Cech cohomology. We assume that the reader is familiar with sheaves of abelian
groups on topological spaces. The reader who is interested in a more elaborated
version of this section may consult other books like [BT82], Section 10, [Voi02]
Section 4.3.

3



4 2 Cech cohomology

2.2 Cech cohomology

A sheaf S of abelian groups on a topological space X is a collection of abelian
groups

S (U), U ⊂ X open

with restriction maps which satisfy certain properties. In particular, S (X) is calledComplete this.

the set of global sections of S . Some other equivalent notations for this are

S (X) = Γ (X ,S ) = H0(X ,S )

It is not difficult to see that for an exact sequence of sheaves of abelian groups

0→S1→S2→S3→ 0. (2.1)

we have
0→S1(X)→S2(X)→S3(X)

and the last map is not necessarily surjective. In this section we want to construct
abelian groups H i(X ,S ), i = 0,1,2 . . . , H0(X ,S ) = S (X) such that we have the
long exact sequence

0→H0(X ,S1)→H0(X ,S2)→H0(X ,S3)→H1(X ,S1)→H1(X ,S2)→H1(X ,S3)→

H2(X ,S1)→ ···

that is in each step the image and kernel of two consecutive maps are equal.
Let us explain the basic idea behind H1(X ,S1). The elements of H1(X ,S1) are

considered as obstructions to the surjectivity of H0(X ,S2)→H0(X ,S3). This map
is not surjective, however, we can look at an element f ∈S3(X) locally and use the
surjectivity of S2→S3. We fix a covering U = {Ui, i∈ I} of X such that the exact
sequences corresponding to global section of (2.1) over Ui hold, that is,

0→S1(Ui)→S2(Ui)→S3(Ui)→ 0.

This covering is taken so that we have exactness at S2(Ui) and for the exactness at
S3(Ui) we need to assume that the set of small open sets giving exactness at S2
and S3 in (2.1) is not emprty. This is the case for all examples of the short exact
sequence (2.1) in this text (one may also justify this by assuming that H1(Ui,S1) =
0).

We take fi ∈S2(Ui), i ∈ I such that fi is mapped to f under S2(Ui)→S3(Ui).
This means that the elements f j− fi, which are defined in the intersections Ui∩U j’s,
are mapped to zero and so there are elements fi j ∈ S1(Ui ∩U j) such that fi j is
mapped to f j− fi. It is easy to check that different choices of fi’s lead us to elements

fi j + f̃ j− f̃i, (2.2)
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where f̃i ∈S1(Ui). This lead us to define H1(U ,S1) to be the set of ( fi j, i, j ∈ I)
modulo those of the form (2.2).

2.3 Covering and direct limit

Let X be a topological space, S a sheaf of abelian groups on X and U = {Ui, i ∈
I} a covering of X by open sets. In this paragraph we want to define the Cech
cohomology of the covering U with coefficients in the sheaf S . Let U p denotes
the set of (p+1)-tuples σ = (Ui0 , . . . ,Uip), i0, . . . , ip ∈ I and for σ ∈U p define

|σ |= ∩p
j=0Ui j .

A p-cochain f = ( fσ )σ∈U p is an element in

Cp(U ,S ) := ∏
σ∈U p

H0(|σ |,S )

Definition 2.3.1 Let π be the permutation group of the set {0,1,2, . . . , p}. It acts
on U p in a canonical way and we say that f ∈ Cp(U ,S ) is skew-symmetric if
fπσ = sign(π) fσ for all σ ∈ U p. The set of skew-symmetric cochains form an
abelian subgroup Cs(U ,S ).

For σ ∈ U p and j = 0,1, . . . , p denote by σ j the element in U p−1 obtained by
removing the j-th entry of σ . We have |σ | ⊂ |σ j| and so the restriction maps from
H0(|σ j|,S ) to H0(|σ |,S ) is well-defined. We define the boundary mapping

δ : Cp
s (U ,S )→Cp+1

s (U ,S ), (δ f )σ =
p+1

∑
j=0

(−1) j fσ j ||σ |

We have to check that

Proposition 2.3.1 The above map is well-defined, that is, if f ∈Cp(U ,S ) is skew-
symmetric then δ f is also skew-symmetric.

Proof. For simplicity, and without loss of generality we can assume that π is per-
mutation of 0 and 1.

From now on we identify σ with i0i1 · · · ip and write a p-cochain as f =( fi0i1···ip , i j ∈
I). For simplicity we also write

(δ f )i0i1···ip+1 :=
p+1

∑
j=0

(−1) j fi0i1···i j−1 î j i j+1···ip+1

where î j means that i j is removed.
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Proposition 2.3.2 We have
δ ◦δ = 0.

Proof. Let f ∈Cp
s (U ,S ). We have

(δ 2 f )i0i1·ip+2 =
p+2

∑
j=0

(−1) j(δ f )i0i1···î j ·ip+2

=
p+2

∑
j=0

p+2

∑
k=1, k 6= j

(−1) j(−1)k̃ fi0i1···îk···ip+2
= 0

where k̃ = k if k < j and k̃ = k−1 if k > j. See [BT82] Proposition 8.3.

Now

0→C0
s (U ,S )

δ→C1
s (U ,S) δ→C2

s (U ,S )
δ→C3

s (U ,S )
δ→ ···

can be viewed as cochain complexes, i.e. the image of a map in the complex is inside
the kernel of the next map.

Definition 2.3.2 The Cech cohomology of the covering U with coefficients in the
sheaf S is the cohomology groups

H p(U ,S ) :=
Kernel(Cp

s (U ,S) δ→Cp+1
s (U ,S ))

Image(Cp−1
s (U ,S) δ→Cp

s (U ,S ))
.

The above definition depends on the covering and we wish to obtain cohomologies
H p(X ,S ) which depends only on X and S . We recall that the set of all coverings
U of X is directed:

Definition 2.3.3 For two coverings Ui = {Ui, j, j ∈ Ii}, i = 1,2 we write U1 ≤U2
and say that U1 is a refinement of U2, if there is a map from φ : I1 → I2 such that
U1,i ⊂U2,φ(i) for all i ∈ I1.

For two covering U1 and U2 there is another covering U3 such that U3 ≤ U1 and
U3 ≤U2. It is not difficult to show that for U1 ≤U2 we have a well-defined map

H p(U2,S )→ H p(U1,S )

which is obtained by restriction from U2,φ(i) to U1,i. For details see [BT82], Lemma
10.4.1 and Lemma 10.4.2.

Definition 2.3.4 The Cech cohomology of X with coefficients in S is defined in
the following way:

H p(X ,S ) := dir limU H p(U ,S ).

We may view H p(X ,S ) as the union of all H p(U ,S ) for all coverings U , quo-
tiented by the following equivalence relation. Two elements α ∈ H p(U1,S ) and
β ∈ H p(U2,S ) are equivalent if there is a covering U3 ≤ U1 and U3 ≤ U2 such
that α and β are mapped to the same element in H p(U3,S ).
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2.4 Acyclic sheaves

Definition 2.4.1 A sheaf S of abelian groups on a topological space X is called
acyclic if

Hk(X ,S ) = 0, k = 1,2, . . .

The main examples of acyclic sheaves that we have in mind are the following:

Proposition 2.4.1 Let M be a C∞ manifold. The sheaves Ω i
M∞ of C∞ differential

i-forms on M are acyclic.

Proof. The proof is based on the partition of unity and is left to the reader.

Definition 2.4.2 A sheaf S is said to be flasque or fine if for every pair of open
sets V ⊂U , the restriction map S (U)→S (V ) is surjective.

Proposition 2.4.2 Flasque sheaves are acyclic.

See [Voi02], p.103, Proposition 4.34.

2.5 How to compute Cech cohomologies

Definition 2.5.1 The covering U is called acyclic with respect to S if U is locally
finite, i.e. each point of X has an open neighborhood which intersects a finite number
of open sets in U , and H p(Ui1 ∩·· ·∩Uik ,S ) = 0 for all Ui1 , . . . ,Uik ∈U and p≥ 1.

Theorem 2.5.1 (Leray lemma) Let U be an acyclic covering of a variety X. There
is a natural isomorphism

Hµ(U ,S )∼= Hµ(X ,S ).

See [Voi02] Theorem 4.41 and Theorem 4.44. A full proof can be found in the book
of Godement 1958. See also [GH94] page 40. For a sheaf of abelian groups S
over a topological space X , we will mainly use H1(X ,S ). Recall that for an acyclic
covering U of X an element of H1(X ,S ) is represented by

fi j ∈S (Ui∩U j), i, j ∈ I

fi j + f jk + fki = 0, fi j =− f ji, i, j,k ∈ I

It is zero in H1(X ,S ) if and only if there are fi ∈S (Ui), i∈ I such that fi j = f j− fi.

Remark 2.5.1 For sheaves of abelian groups Si, i = 1,2, . . . ,k over a variety X we
have:

H p(X ,⊕iSi) =⊕iH p(X ,Si), p = 0,1, . . . .
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2.6 Resolution of sheaves

A complex of abelian sheaves is the following data:

S • : S 0 d0→S 1 d1→ ·· ·
dk−1→ S k dk→ ·· ·

where S k’s are sheaves of abelian groups and S k → S k+1 are morphisms of
sheaves of abelian groups such that the composition of two consecutive morphism
is zero, i.e

dk−1 ◦dk = 0, k = 1,2, . . . .

A complex S k,k ∈ N0 is called a resolution of S if

Im(dk) = ker(dk+1), k = 0,1,2, . . .

and there exists an injective morphism i : S →S 0 such that Im(i) = ker(d0). We
write this simply in the form

S →S •

For simplicity we will write d = dk; being clear in the text the domain of the map d.

Definition 2.6.1 A resolution S →S • is called acyclic if all S k are acyclic.

Theorem 2.6.1 Let S be a sheaf of abelian groups on a topological space X and
S →S • be an acyclic resolution of S then

Hk(X ,S )∼= Hk(Γ (X ,S •),d), k = 0,1,2, . . . . (2.3)

where
Γ (X ,S •) : Γ (S 0)

d0→ Γ (S 1)
d1→ ···

dk−1→ Γ (S k)
dk→ ···

and

Hk(Γ (X ,S •),d) :=
ker(dk)

Im(dk−1)
.

Proof. Let U = {Ui}i∈I be an acyclic covering of X and let

S i
j :=C j

s (U ,S i), S j :=C j
s (U ,S ), Γ (S i) := Γ (X ,S i)

Consider the double complex
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↑ ↑ ↑ ↑
0→ Sn → S 0

n → S 1
n → S 2

n → ·· · → S n
n →

↑ ↑ ↑ ↑ ↑
0→ Sn−1 → S 0

n−1 → S 1
n−1 → S 2

n−1 → ·· · → S n
n−1 →

↑ ↑ ↑ ↑ ↑
...

...
...

...
...

↑ ↑ ↑ ↑ ↑
0→ S2 → S 0

2 → S 1
2 → S 2

2 → ·· · → S n
2 →

↑ ↑ ↑ ↑ ↑
0→ S1 → S 0

1 → S 1
1 → S 2

1 → ·· · → S n
1 →

↑ ↑ ↑ ↑ ↑
0→ S0 → S 0

0 → S 1
0 → S 2

0 → ·· · → S n
0 →

↑ ↑ ↑ ↑
Γ (S 0)→ Γ (S 1)→ Γ (S 2)→ ·· · → Γ (S n)→
↑ ↑ ↑ ↑
0 0 0 0

(2.4)

The up arrows are δ and the left arrow at S p
q is (−1)qd, that is, we have multiplied

the map d with (−1)q, where q denotes the index related to Cech cohomology. Let
us define the map A : Hk(Γ (X ,S •),d)→ Hk(X ,S ). It sends a d-closed global
section ω of S n to a δ -closed cocycle α ∈Cn

s (U ,S ) and the receipie is sketched
here:

0
↑

α → ω0 → 0
↑ ↑

η0 → ω1 → 0
↑

η1 . . . . . .
. . . ωn−1 → 0

↑ ↑
ηn−1 → ωn → 0

↑
ω

(2.5)

An arrow a→ b means that a is mapped to b under the corresponding map in (5.2).
ωn is the restriction of ω to opens sets Ui’s etc. The same diagram 2.5 can be used
to explain the map B : Hk(X ,S )→ Hk(Γ (X ,S •),d). In this case we start from α

and we reach β . We have to check that

Exercise 1 Show that

1. A and B are well-defined.
2. A◦B and B◦A are identity maps.
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If we do not care about using d or (−1)qd we will still get isomorphisms A and B,
however, they are defined up to multiplication by −1. The mines sign in (−1)qd is
inserted so that D := δ +(−1)qd becomes a differential operator, that is, D◦D = 0.
For further details, see [?] Chapter 2. Another way to justify (−1)q is to see it in the
double complex of differential (p,q)-forms in a complex manifold. ut

Let us come back to the sheaf of differential forms. Let M be a C∞ manifold. The
de Rham cohomology of M is defined to be

H i
dR(M) = Hn(Γ (M,Ω i

M∞),d) :=
global closed i-forms on M
global exact i-forms on M

.

Theorem 2.6.2 (Poincaré Lemma) If M is a unit ball then

H i
dR(M) =

{
R if i = 0
0 if i = 0

The Poincaré lemma and Proposition 2.4.1 imply that

R→Ω
•
M

is the resolution of the constant sheaf R on the C∞ manifold M. By Proposition 2.6.1
we conclude that

H i(M,R)∼= H i
dR(M), i = 0,1,2, . . .

where H i(M,R) is the Cech cohomology of the constant sheaf R on M.

2.7 Cech cohomology and Eilenberg-Steenrod axioms

Let G be an abelian group and M be a polyhedra. We can consider G as the sheaf of
constants on M and hence we have the Cech cohomologies Hk(X ,G), k = 0,1,2, . . ..
This notation is already used in Chapter 4 of [Mov17b] to denote a cohomology
theory with coefficients group G which satisfies the Eilenberg-Steenrod axioms.
The following theorem justifies the usage of the same notation.

Theorem 2.7.1 In the category of polyhedra the Cech cohomology of the sheaf of
constants in G satisfies the Eilenberg-Steenrod axioms.

Therefore, by uniqueness theorem the Cech cohomology of the sheaf of constants
in G is isomorphic to the singular cohomology with coefficients in G. We present
this isomorphism in the case G = R or C.

Recall the definition of integration

Hsing
i (M,Z)×H i

dR(M)→ R, (δ ,ω) 7→
∫

δ

ω

This gives us
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H i
dR(M)→ ˇHsing

i (M,R)∼= H i
sing(M,R)

whereˇmeans dual of vector space.

Theorem 2.7.2 The integration map gives us an isomorphism

H i
dR(M)∼= H i

sing(M,R)

Under this isomorphism the cup product corresponds to

H i
dR(M)×H j

dR(M)→ H i+ j
dR (M), (ω1,ω2) 7→ ω1∧ω2, i, j = 0,1,2, . . .

where ∧ is the wedge product of differential forms.

If M is an oriented manifold of dimension n then we have the following bilinear
map

H i
dR(M)×Hn−i

dR (M)→ R, (ω1,ω2) 7→
∫

M
ω1∧ω2, i = 0,1,2, . . .

2.8 Dolbeault cohomology

Let M be a complex manifold and Ω
p,q
M∞ be the sheaf of C∞ (p,q)-forms on M. We

have the complex

Ω
p,0
M∞

∂̄→Ω
p,1
M∞

∂̄→ ··· ∂̄→Ω
p,q
M∞

∂̄→ ···

and the Dolbeault cohomology of M is defined to be

H p,q
∂̄

(M) := Hq(Γ (M,Ω p,•
M∞), ∂̄ ) =

global ∂̄ -closed (p,q)-forms on M
global ∂̄ -exact (p,q)-forms on M

Theorem 2.8.1 (Dolbeault Lemma) If M is a unit disk or a product of one dimen-
sional disks then H p,q

∂̄
(M) = 0

Let Ω p be the sheaf of holomorphic p-forms on M. In a similar way as in Proposition
2.4.1 one can prove that Ω

p,q
M∞ ’s are fine sheaves and so we have the resolution of

Ω p:
Ω

p→Ω
p,•
M∞ .

By Proposition 2.6.1 we conclude that:

Theorem 2.8.2 (Dolbeault theorem) For M a complex manifold

Hq(M,Ω p)∼= H p,q
∂̄

(M)

We give an example of a domain D in Cn such that H0,1
∂̄

(D) 6= 0. See [?], the end
of Chapter E.
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2.9 Cohomology of manifolds

The first natural sheaves are constant sheaves. For an abelian group G, the sheaf of
constants on X with coeficients in G is a sheaf such that for any open set it associates
G and the restriction maps are the identity. We also denote by G the corresponding
sheaf. Our main examples are (k,+), k = Z,Q,R,C. For a smooth manifold X , the
cohomologies H i(X ,G) are isomorphic in a natural way to singular cohomologies
and de Rham cohomologies, see respectively [Voi02] Theorem 4.47 and [BT82]
Proposition 10.6. We will need the following topological statements.

Proposition 2.9.1 Let X be a topological space which is contractible to a point.
Then H p(X ,G) = 0 for all p > 0.

This statement follows from another statement which says that two homotopic maps
induce the same map in cohomologies.

Proposition 2.9.2 Let X be a manifold of dimension n. Then X has a covering U =
{Ui, i ∈ I} such that

1. all Ui’s and their intersections are contractible to points.
2. The intersection of any n+2 open sets Ui is empty.

Using both propositions we get an acyclic covering of a manifold and we prove.

Proposition 2.9.3 Let M be an orientable manifold of dimension m.

1. We have H i(M,Z) = 0 for i > m.
2. If M is not compact then the top cohomology Hm(M,Z) is zero.
3. If M is compact then we have a canonical isomorphism Hm(M,Z)∼= Z given by

the orientation of M.

If M is a complex manifold of dimension n, then it has a canonical orientation given
by the orientation of C and so we can apply the above proposition in this case. Note
that M is of real dimension m = 2n.

2.10 Short exact sequences

In this section we return back to one of the main motivations of the sheaf cohomol-
ogy, namely, for an exact sequence of sheaves of abelian groups

0→S1→S2→S3→ 0.

we have a long exact sequence

· · · → H i(X ,S1)→ H i(X ,S2)→ H i(X ,S3)→ H i+1(X ,S1)→ ··· (2.6)
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that is in each step the image and kernel of two consecutive maps are equal. All the
maps in the above sequence are canonical except those from i-dimensional coho-
mology to (i+1)-dimensional cohomology. In this section we explain how this map
is constructed in Cech cohomology. Let S i

j :=C j
s (U ,Si). The idea is to use:

0 0 0
↓ ↓ ↓

· · · → S 1
n−1 → S 1

n → S 1
n+1 → ·· ·

↓ ↓ ↓
· · · → S 2

n−1 → S 2
n → S 2

n+1 → ·· ·
↓ ↓ ↓

· · · → S 3
n−1 → S 3

n → S 3
n+1 → ·· ·

↓ ↓ ↓
0 0 0

(2.7)

Let us take a covering Ui, i ∈ I and f = { f j, j ∈ Ii+1} ∈ H i(X ,S3). By taking
the covering smaller, if necessary, we can assume that f is in the image of the map
S2→S3, that is, there is g = {g j, j ∈ Ii+1} such that each g j is mapped to f j under
S2 → S3. Now we have δ f = 0 and so δg is mapped to zero under S2 → S3.
We conclude that there is h = {h j, j ∈ Ii+2} such that h is mapped to δg under
S1→S2. We have the map

H i(X ,S3)→ H i+1(X ,S1), f 7→ h

which is well-defined and gives us the long exact sequence (2.6).





Chapter 3
Hypercohomology

My mathematics work is proceeding beyond my wildest hopes, and I am even a bit
worried - if it’s only in prison that I work so well, will I have to arrange to spend
two or three months locked up every year? (André Weil writes from Rouen prison,
[OR16]).

3.1 Introduction

After a fairly complete understanding of singular homology and de Rham cohomol-
ogy of manifolds and the invention of Cech cohomology, a new wave of abstrac-
tion in mathematics started. H. Cartan and S. Eilenberg in their foundational book
[CE56] called Homological Algebra took many ideas from topology and replaced it
with categories and functors. A. Grothendieck in [Gro57] took this into a new level
of abstraction and the by-product of his effort was the creation of many cohomol-
ogy theories, such as Étale and algebraic de Rham cohomology. Étale cohomology
were mainly created in order to solve Weil conjectures, however, the relevant one to
integrals is the algebraic de Rham cohomology. Its main ingredient is the concept
of hypercohomology of complexes of sheaves which soon after its creation was re-
placed with derived functors and derived categories. This has made it an abstract
concept far beyond concrete computations and the situation is so that the introduc-
tion of C. A. Weibel’s book [Wei94] starts with: “Homological algebra is a tool used
to prove nonconstructive existence theorems in algebra (and in algebraic topology).”
In this chapter we aim to introduce hypercohomology without going into categorical
approach, and the main reason for this is that we would like to emphasize that its
elements can be computed and in the case of complex of differential forms, they can
be integrated over topological cycles. For further information the reader is referred
to [Voi03, Bry08]

15
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3.2 Hypercohomology of complexes

In this section we assume that the reader is familiar with basic concepts of Cech co-
homology, the preliminary material on this can be found in [Mov17a]. Our notations
are mainly taken from this reference.

Let us be given a complex of sheaves of abelian groups on a topological space X :

S • : S 0 d→S 1 d→S 2 d→ ·· · d→S n d→ ··· , d ◦d = 0. (3.1)

We would like to associate to S • a cohomology which encodes all the Cech coho-
mologies of individual S i together with the differential operators d. We first explain
this cohomology using a covering U = {Ui}i∈I of X .

Before proceeding further, let us mention our main example in this chapter. We
take a smooth projective variety X ⊂ PN of dimension n over an algebraically closed
field k. We take the complex Ω •X of differential forms on X .

Proposition 3.2.1 There is a covering of X with a n+1 affine Zariski open subsets.

Proof. The covering is going to be

Ui := {gi 6= 0}, i = 0,1,2, . . . ,n,

where gi’s are linear homogeneous polynomials in x0,x1, · · · ,xN and we have as-
sumed that the projective space PN−n−1 ⊂ PN given by g0 = g1 = · · · = gn+1 = 0
does not intersect X . This happens for a generic PN−n−1. For instance for a generic
linear PN−n intersects X in deg(X) distinct points. This is the definition of the de-
gree of a projective variety. Now we can take PN−n−1 ⊂ PN−n such that it does not
cross the mentioned deg(X) points. ut

For a smooth hypersurface X ⊂Pn+1 given by the homogeneous polynomial f (x0,x1, · · · ,xn+1)
of degree d, we have also another useful covering given by

Ui :=
{

∂ f
∂xi
6= 0
}
, i = 0,1,2, . . . ,n+1

which is called the Jacobian covering of X . Note that for this covering we use the
fact that X is smooth. It has n+2 open sets. For a fixed k = 0,1,2, . . . ,n+1 the open
sets U0,U1, · · · ,Uk−1,Uk+1, · · · ,Un+1 covers X if X is smooth and xk = 0 intersects
X transversely.

Consider the double complex



3.2 Hypercohomology of complexes 17

↑ ↑ ↑ ↑
S 0

n → S 1
n → S 2

n → ·· · → S n
n →

↑ ↑ ↑ ↑
S 0

n−1 → S 1
n−1 → S 2

n−1 → ·· · → S n
n−1 →

↑ ↑ ↑ ↑
...

...
...

...
↑ ↑ ↑ ↑

S 0
2 → S 1

2 → S 2
2 → ·· · → S n

2 →
↑ ↑ ↑ ↑

S 0
1 → S 1

1 → S 2
1 → ·· · → S n

1 →
↑ ↑ ↑ ↑

S 0
0 → S 1

0 → S 2
0 → ·· · → S n

0 →

(3.2)

where
S i

j :=C j
s (U ,S i)

The horizontal arrows are usual differential operator d of S i’s and vertical arrows
are differential operators δ in the sense of Cech cohomology. The m-th piece of the
total chain of (5.2) is

L m :=⊕m
i=0S

i
m−i

with the the differential operator d′ which is defined on S i
j by:

d′ = δ +(−1) jd (3.3)

Our convention for d′ is compatible with the one used in [BT82] page 90 and
[Bry08] page 14. It is easy to see that d′ ◦ d′ = 0, see Exercise 3.1 in this chap-
ter. This also justifies the appearance of the sign (−1) j in the definition of d′. We
define the hypercohomology of the complex S • relative to the covering U

Hm(U ,S •) = Hm(L •,d′) :=
ker(L m→L m+1)

Im(L m−1→L m)

Definition 3.2.1 The hypercohomology Hm(X ,S •) is defined to be the direct limit
of the total cohomology of the double complex (5.2), i.e.

Hm(X ,S •)∼= dirlimU Hm(U ,S •).

see [Mov17a] for the definition of direct limit.

From a computational point of view this definition is completely useless. We have
to search for coverings U such that Hm(U ,S •) becomes the hypercohomology
itself.

Proposition 3.2.2 If the covering U is acyclic with respect to all abelian sheaves
S i’s, that is, U is locally finite and
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Hk(Ui1 ∩Ui2 ∩·· ·Uir ,S
i) = 0, k,r = 1,2, . . . , i = 0,1,2, . . . . (3.4)

then
Hm(X ,S •)∼=Hm(U ,S •). (3.5)

Proof. By definition of the direct limit, we have already a map

Hm(U ,S •)→Hm(X ,S •)

which sends an α to its euivalence class. We have to show that it is surjective and
injective, see Exercise 3.2.

The reader who is mainly interested on computational aspects of hypercoho-
mology may take (3.5) as the definition of hypercohomology. In this way we can
describe its elements explicitly. An element of Hm(X ,S •) is represented by

ω = ω
0 +ω

1 + · · ·+ω
m, ω

j ∈Cm− j
s (U ,S j)

Each ω j itself is the following data:

ω
j

i0i1···im− j
∈S j(Ui0 ∩Ui1 ∩·· ·∩Uim− j)

for all i0, i1, · · · , im− j ∈ I. Such an ω is d′-closed, that is, d′(ω) = 0, if and only if,
the following equalities hold

0 = δω
0

(−1)m−1dω
0 = δ (ω1)

(−1)m−2dω
1 = δ (ω2)

... (3.6)
dω

m−1 = δ (ωm)

dω
m = 0

Such an ω is d′-exact, or equivelently it is zero in Hm(X ,S •), if and only if there
is η = ∑

m−1
j=0 η j, η j ∈Cm−1− j

s (U ,S j) such that

ω
0 = δ (η0)

ω
1 = (−1)m−1d(η0)+δ (η1)

... (3.7)
ω

m−1 = −d(ηm−2)+δ (ηm−1)

ω
m = dηm−1

In order to better memorize these equalities the diagram below can be helpful
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0
ω0 0
η0 ω1 0

η1 . . . . . .
. . . ωm−1 0

ηm−1 ωm 0

(3.8)

Recall that one must use d for horizontal map and δ for vertical maps. We have

H0(X ,S •)∼=
{

ω ∈S 0(X) | dω = 0
}

and H1(X ,S •) is the set of pairs (ω0,ω1), where ω0 consists of ω0
i0i1 ∈S 0(Ui0 ∩

Ui1), i0, i1 ∈ I and ω1 consists of ω1
i0 ∈S 1(Ui0), i0 ∈ I which satisfy the relation

ω
1
i1 −ω

1
i0 =−dω

0
i0i1 .

Such an ω is taken modulo those of the form ( fi1 − fi0 ,d fi0).
When the covering U := {U0,U1, · · · ,Un} consists of n open sets and S m =

0, m > n then by definition

Hm(X ,S •) = 0, m > 2n

Moreover, if we define Ǔi :=U0∩U1∩·· ·∩Ui−1∩Ui+1∩·· ·∩Un then

H2n(X ,S •)∼=
S n(U0∩U1∩·· ·∩Un)

dS n−1(U0∩U1∩·· ·∩Un)+S n(Ǔ0)+S n(Ǔ1)+ · · ·+S n(Ǔn).
(3.9)

For simplicity, we have not written the restriction maps. Note that the last n+ 1
terms in the denominator of (3.9) form the set {δηn = ηn

0 −ηn
1 + · · ·+(−1)nηn

n |
ηn

i ∈S n(Ǔi)}. For n = 1 we get

H2(X ,S •)∼=
S 1(U0∩U1)

dS 0(U0∩U1)+S 1(U1)+S 1(U0)
.

3.3 Acyclic sheaves and hypercohomology

Proposition 3.3.1 If all the sheaves S i are acyclic, that is, H j(X ,S i) = 0, j =
1,2, . . . then
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Hm(X ,S •)∼= Hm(H0(X ,S •),d) :=
ker(H0(X ,S m)→ H0(X ,S m+1))

Im(H0(X ,S m−1)→ H0(X ,S m))
.

Proof. We Use Proposition 3.2.2 and consider Hm(U ,S •) relative to a acyclic
covering U . We have already a map

f : Hm(H0(X ,S •),d)→Hm(U ,S •) (3.10)

which is obtained by restricting a global section of S m to the open sets of the
covering U . We have to define its inverse

f−1 : Hm(U ,S •)→ Hm(H0(X ,S •),d) (3.11)

Let us take an element ω = ∑
m
j=0 ω j ∈ L m which is d′-closed. We have written

the ingredient equalities derived from this in (3.6). In particular, δω0 = 0 and by
our hypothesis ω0 = δη0 for some η0 ∈ S 0

m−1. The elements ω and ω − d′η0

represesnt the same object in Hm(U ,S •), and so we can assume that ω0 = 0. This
process continues and finally we get an element in S m

0 which is is equivalent to
ω in Hm(U ,S •), and moreover, it is both δ and d-closed. This gives us a global
section f−1(ω) ∈ H0(X ,S m). We have to check that f−1 is well-defined, and it is
the inverse of f . These details are left to the reader, see Exercise 3.3.

3.4 Quasi-isomorohism and hypercohomology

A morphism between two complexes S • and Š • is the following commutative
diagram:

· · · → S n−1 → S n → S n+1 → ·· ·
· · · ↓ ↓ ↓ · · ·
· · · → Š n−1 → Š n → Š n+1 → ·· ·

It induces a canonical map in the hypercohomologies

Hm(X ,S )→Hm(X ,Š ).

For a morphism f : S → Š of complexes we have a canonical morphism

Hm( f ) : Hm(S )→ Hm(Š )

where for a complex S we have defined

Hm(S ) := The sheaf constructed from the presheaf
ker(dm)

Im(dm−1)
, m ∈ Z
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Definition 3.4.1 A morphism f of complexes is called a quasi-isomorphism if the
induced morphisms Hm( f ), m ∈ Z are isomorphisms.

Let X be a smooth variety over the field of complex numbers and let X∞ be the
underlying C∞ manifold. Let Ω •X be the complex of (algebraic) differential forms in
X . We also consider the complex Ω •X∞ of C∞ differential forms in X for the Zariski
topology of X∞. We will only need to consider Zariski open sets. In Chapter 4 we
are going to show that the natural inclusion Ω •X →Ω •X∞ is a quasi-isomorphism.

Proposition 3.4.1 If f : S → Š be a quasi-isomorphism then the induce map in
hypercohomologies f∗ : Hm(X ,S •)→Hm(X ,Š •) is an isomorphism.

Proof. We have to define the inverse map

f−1
∗ : Hk(X ,Š •)→Hk(X ,S •) (3.12)

We take a covering U acyclic with respect to all abelian sheaves S i and Š i and
use Proposition (3.2.2). Let ω̌ = ∑

m
j=0 ω̌ j ∈Hk(X ,Š ). We start looking at ω̌m. We

have d(ω̌m) = 0 and so there is

ω
m ∈S m

0 ,dω
m = 0

such that
ω̌

m− f∗ωm = dη̌
m−1

for some η̌m−1 ∈ Š m−1
0 . For this we have used the fact that f is a quasi-isomorphism.

We replace ω̌ with ω̌−d′η̌m−1 and in this way we can assume that

ω̌
m = f∗ωm.

Now we look at the (m−1)-level in which we have

dω̌
m−1 = δω̌

m = δ f∗ωm = f∗ (δω
m) (3.13)

δωm is a d-closed element and using the above equality we know that it is mapped
to zero under Hm( f ). Therefore, using the property that f is a quasi-isomorphism,
we conclude that δωm is d-exact, that is, there exists ωm−1 ∈S m−1

1 such that

δω
m−dω

m−1 = 0. (3.14)

Combining (3.13) and (3.14) we get

d
(
ω̌

m−1− f∗ωm−1)= 0. (3.15)

We are now in a similar situation as in the beginning. Since f is quasi-isomorphism
we have

ω̌
m−1− f∗ωm−1 = dη̌

m−2, for some, η̌m−2 ∈S m−2
1

and by adding −d′η̌m−2 to ω̌ we can assume that ω̌m−1 = f∗ωm−1. In the (m−
2)-the level we get ωm ∈ S m

0 ,ωm−1 ∈ S m−1
1 ,ωm−2 ∈ S m−2

2 with the following
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identities
ω̌

m = f∗ωm, ω̌
m−1 = f∗ωm−1, −dω

m−1 +δω
m = 0,

and
d
(
ω̌

m−2− f∗ωm−2)= 0. (3.16)

This process stops at (m+ 1)-th step and we get ω = ∑
m
i=0 ωm which is d′-closed

and f∗ω = ω̌ . We define f−1
∗ (ω̌) to be equal to ω . It is left to the reader to prove

that f−1
∗ is well-defined and it is inverse to f∗, see Exercise 3.4.

Proposition 3.4.2 Let S →S • be a resolution of S •. Then

Hk(X ,S •)∼= Hk(X ,S )

Proof. Our hypothesis is the same as to say that that the complex · · · → 0→S →
0→ ··· with S in the 0-th place, is quasi-isomorphic to the complex S • and so by
Proposition 3.4.1 the proof is done.

3.5 A description of an isomorphism

Let us now be given a quasi-isomorphism of complexes S •→ Š • and assume that
all the abelian sheaves Š m are acyclic. We use Proposition 3.3.1 and Proposition
3.4.1 and we get an isomorphism

Hm(X ,S )∼= Hm(Š •(X),d).

For later applications we need to describe the two maps

A : Hm(X ,S )→ Hm(Š •(X),d)

A−1 : Hm(Š •(X),d)→Hm(X ,S ).

such that both A ◦A−1 and A−1 ◦A are identity maps. We take an acyclic covering
U = {Ui}i∈I with respect to all sheaves S i and Š i. The map A is obtained by the
composition of the maps

Hm(X ,S •)→Hm(X ,Š •)→ Hm(Š •(X),d)

The first map is simply induced by the quasi-isomorphism. The second map is the
map (3.11). Its explicit desciption is given in the proof of Proposition 3.3.1. The
map A−1 is the composition of

Hm(Š •(X),d)→Hm(X ,Š •)→Hm(X ,S •)

The first map is obtained by restricting a global section of Š m to the open sets of
the covering U . The second map is (3.12) and its explicit description is given in the
proof of Proposition 3.4.1.
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3.6 Filtrations

For a complex S =S • (for simplicity we drop •) and k∈Z we define the truncated
complexes

S ≤k : · · ·S k−1→S k→ 0→ 0→ ···

and
S ≥k : · · · → 0→ 0→S k→S k+1→ ···

We have canonical morphisms of complexes:

S ≤k→S , S ≥k→S

Assume that S is a left-bounded complex, that is,

S : 0→S 0→S 1→ ·· ·

The morphism S ≥i→S induces a map in hypercohomologies and we define

F i := Im(Hm(X ,S ≥i)→Hm(X ,S ))

This gives us the filtration

· · · ⊂ F i ⊂ F i−1 ⊂ ·· · ⊂ F1 ⊂ F0 :=Hm(X ,S ).

The differential map d : S i→S i+1 induces the maps

d1 : H j(X ,S i)→ H j(X ,S i+1), j ∈ N0.

If all these maps are zero then we can define the maps

d2 : H j(X ,S i)→ H j−1(X ,S i+2), j ∈ N0

which are defined as follows: we take ω i ∈ H j(X ,S i) and since d1 is zero we have
ω i+1 ∈S i+1

j−1 such that δω i+1 +(−1) jdω i = 0. Under d2 the element ω i is mapped
to dω i+1. In a similar way, we define

dr : H j(X ,S i)→ H j−r+1(X ,S i+r), j ∈ N0.

and if dk, k ≤ r are all zero we define dr+1.

Proposition 3.6.1 Assume that all dr’s constructed above are zero. Then we have
canonical isomorphisms

F i/F i+1 ∼= Hm−i(X ,S i)

Proof. We have a canonical map F i→Hm−i(X ,S i) which sends ω i+ω i+1+ · · ·+
ωm to ω i. It is well-defined and its kernel is F i+1. Therefore, we have an embedding



24 3 Hypercohomology

F i/F i+1 ↪→ Hm−i(X ,S i). The surjectivity follows from the hypothesis. This has
been always our source of inspiration for the definition of dr’s. ut

The reader who is familiar with spectral sequences has noticed that the hypothesis
in Proposition 3.6.1 is equivalent to say that the spectral sequence associated to
the double complex (5.2) degenerates at E1. For further detail on this see [Voi02],
8.3.2, Theorem 8.21 and Proposition 8.25. In general we have dr : E p,q→E p+r,q−r+1

r
which are defined in the following way:

1. E p,q
0 = S p

q and d0 = δ .
2.

E p,q
r+1 :=

ker
(

E p,q
r

dr→ E p+r,q−r+1
r

)
Im
(

E p−r,q+r−1
r

dr→ E p,q
r

)
and so E p,q

1 = Hq(X ,S p) and d1 is induced by d. If d1 is zero then E p,q
2 = E p,q

1
and d2 is defined as we did before Proposition 3.6.1.

3.7 Exercises

3.1. For the operator d′ in (3.3) of the double complex (5.2) show that d′ ◦d′ = 0.

3.2. Complete the proof of Proposition 3.2.2.

3.3. Prove that the map (3.11) is well-defined, and it is inverse to (3.10).

3.4. Complete the details of the proof of Proposition 3.4.1.

3.5 (Deligne’s cohomology). For the complex S • if the the kernel of d : S 0→S 1

is non-trivial then we can take any abelian subgroup B of ker(d) and form the new
complex B→S • and take its hypercohomology. Discuss this.



Chapter 4
Algebraic de Rham cohomology

I do feel however that while we wrote algebraic GEOMETRY they [Weil, Zariski,
Grothendieck] make it ALGEBRAIC geometry with all that it implies. Solomon Lef-
schetz in [Lef68].

4.1 Introduction

The main objective in this chapter is to define the algebraic de Rham cohomology
Hm

dR(X) of a smooth algebraic veriety X defined over a field k of characteristic zero.
When k= C we have the underlying Cin f ty manifold X∞ and we aim construct ex-
plicitly the isomorphism between the algebraic Hm

dR(X) and the classical Hm
dR(X

∞)
de Rham cohomologies. In this way, we are able to write down explicit formulas for
cup products, Gauss-Manin connection etc, in algebraic de Rham cohomology. A.
Grothendieck is the main responsible for the definition of algebraic de Rham coho-
mology, however, it must be noted that he was largely inspired by the work of Atiyah
and Hodge in [HA55]. His paper [Gro66] was originally written as a letter to Atiyah
and Hodge and it would be fair to call this Atiyah-Hodge-Grothendieck algebraic
de Rham cohomology. However, in the literature, and mainly in Algebraic Geome-
try we find the name Grothendieck’s algebraic de Rham cohomology. Algebraic de
Rham cohomology for singular schemes has been studied by several authors during
the seventies, see for example Hartshorne’s work [Har75] and the references therein.

4.2 Atiyah-Hodge theorem

Algebraic de Rham cohomology was introduced after many efforts in order to un-
derstand the de Rham cohomology of affine varieties. This is in some sense natural
becuase the integration domain of integrals are usully supported in affine varieties.
In this section we are going to state a theorem due to Atiyah and Hodge which was

25
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the starting point for Grothendieck in order to define algebraic de Rham cohomol-
ogy.

Theorem 4.2.1 (Atiyah-Hodge Theorem, [HA55]) Let X be an affine smooth va-
riety over the field C of complex numbers. Then the canonical map

Hq(Γ (Ω •X/C),d)→ Hq
dR(X

∞)

is an isomorphism of C-vector spaces.

Proof. See [Nar68], p. 86.

In the next section we will need the following theorem.

Theorem 4.2.2 (Serre vanishing theorem) Let X be an affine variety over the field
C of complex numbers. Then

H i(X ,Ω j
X ) = 0, i = 1,2, . . . , j = 0,1,2, . . . .

Proof. The Theorem is valid in general for coherent sheaves.

4.3 Algebraic De Rham cohomology

Following the historical path which resulted in the definition of algebraic de Rham
cohomology, we are now ready to define it for arbitrary algebraic varieties.

Definition 4.3.1 Let X be a smooth variety over a field k. We consider the complex
(Ω •X/k,d) of regular differential forms on X . The (algebraic) de Rham cohomology
of X is defined to be the hypercohomology

Hq
dR(X/k) :=Hq(X ,Ω •X/k), q = 0,1,2, . . . .

Let X be an smooth affine variety over C. We have

H i
dR(X/C)∼= H i(Γ (X ,Ω •X ),d)∼= H i

dR(X
∞)

The first isomorphism follows from Theorem 4.2.2 and Proposition 3.3.1. The sec-
ond isomorphism is the statement of Theorem 4.2.1.

For an arbitrary algebraic variety X over complex numbers, the Atiyah-Hodge
theorem implies that the Ω •X/C→ Ω •X∞ is a quasi-isomorphism. In this way we can
use Proposition 3.3.1 and Proposition 3.4.1 and we get an isomorphism

Hm
dR(X/k)∼= Hm

dR(X
∞).

In §3.5 we have described this isomorphism and its inverse explicitly. Since this will
be an important tool for later applications, we are going to explain again explicit
construction of the maps
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A : Hm
dR(X

∞)→ Hm
dR(X/C) (4.1)

A−1 : Hm
dR(X/C)→ Hm

dR(X
∞) (4.2)

We first describe the map (4.1). Let us take an element Hm
dR(X

∞). This is represented
by a closed differential m-form ω̌ . In the following differential forms withˇare C∞-
forms and those withoutˇare algebraic differential forms. We restrict ω̌ to each open
set Ui, say ω̌m

i = ω̌|Ui . Using Atiyah-Hodge theorem we find algebraic differential
m-forms ωm

i and C∞ (m−1)-forms η̌
m−1
i in Ui such that

ω̌
m
i = ω

m
i −dη̌

m−1
i , dω

m = 0

In the 0-th level we have:

ω
m
j −ω

m
i = d(η̌m−1

j − η̌
m−1
i ) in Ui∩U j

Again we use Atiyah-Hodge theorem. The right hand side of the above equality rep-
resents the zero element in the (m−1)-th de Rham cohomology of Ui∩U j. There-
fore, there are algebraic differential m−1-forms ω

m−1
i j such that

ω
m
j −ω

m
i −dω

m−1
i j = 0

and so
d(η̌m−1

j − η̌
m−1
i −ω

m−1
i j ) = 0.

In intersections Ui∩U j we can add closed algebraic differential forms to ω
m−1
i j and

assume that
η̌

m−1
j − η̌

m−1
i −ω

m−1
i j = dη̌

m−2
i j .

The process repeats in the 1-the level. Summing these equalities with a proper mines
sign in the intersection of three open sets Ui∩U j ∩Uk (taking δ ) we get

ω
m−1
jk −ω

m−1
ik +ω

m−1
i j =−d(ηm−1

jk −η
m−1
ik +η

m−1
i j )

Again we have an algebraic (m−1)-form which is exact using C∞ differential forms
and so it must be exact using algebraic differential forms etc. This process at the k-
the level gives us

δω
m−k +(−1)k+1d(δ η̌

m−k−1) = 0
δω

m−k +(−1)k+1dω
m−k−1 = 0

d
(

δ η̌
m−k−1−ω

m−k−1
)
= 0

δ η̌
m−k−1−ω

m−k−1− (−1)k+2dη̌
m−k−2 = 0

At the (m−1)-the level we get the element ω = ω0 +ω1 + · · ·+ωm of Hm
dR(X/C).

Note that the last equality for k = m−1 is just δ η̌0−ω0 = 0.
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Let us now describe the map (4.2). We take am element Hm
dR(X/C). It is repre-

sented by ω = ∑
m
j=0 ω j such that d′ω = 0. In particular, δω0 = 0. Since the Cech

cohomology of the sheaf of C∞ differential forms is zero (except in dimension zero),
we have

ω
0 = δ η̌

0

for some C∞ differential forms η̌0. We replace ω and ω − δη0 and we so we can
assume that ω0 = 0. This process continues with ω1 with δω0 = 0. In the final step
we get a closed C∞ m-form in X∞. The complete description for m = 0,1,2 is left to
the reader, see Exercise 4.1.

4.4 Hodge filtration

For the complex of differential forms Ω •X/k we have the complex of truncated dif-
ferential forms:

Ω
•≥i
X/k : · · · → 0→ 0→Ω

i
X/k→Ω

i+1
X/k→ ·· ·

and a natural map
Ω
•≥i
X/k→Ω

•
X/k

We define the Hodge filtration

0 = Fm+1 ⊂ Fm ⊂ ·· · ⊂ F1 ⊂ F0 = Hm
dR(X/k)

as follows

Fq = FqHm
dR(X/k) = Im

(
Hm(X ,Ω •≥i

X/k)→Hm(X ,Ω •X/k)
)

Theorem 4.4.1 Let k be an algebraically closed field of characteristic zero and X
be a smooth projective variety over k. We have

Fq/Fq+1 ∼= Hm−q(X ,Ω q)

By Lefschetz principle we can assume that X is defined over complex numbers.
We denote by Xan the underlying complex manifold of X . Let Ω̌ i

Xan be the sheaf of
closed holomorphic differential form on Xan.

Theorem 4.4.2 (Dolbeault) Let X be a smooth projective variety over C. The maps

H j(Xan,Ω i
Xan)→ H j(Xan,Ω̌ i+1

Xan ), i, j ∈ N0,

induced by the differential map d : Ω i
Xan → Ω̌

i+1
Xan are all zero.

This theorem is taken from Griffiths’ article [Gri69a], II. He uses this property in
order to prove that the Hodge filtration varies holomorphically. He associate this
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proposition to Dolbeault, and in the appendix of [Gri69b], he gives a proof using
Laplacian operators. The situation is quit similar to the case of Hard Lefschetz the-
orem, where the only available proof is done using harmonic forms. Theorem 4.4.2
is equivalent to the fact the Frölicher spectral sequence of Xan degenerates at E1, see
for instance Theorem 8.28 in Voisin’s book [Voi02]. In this book the mentioned fact
is basically deriven from the Hodge decomposition.

Proof (Proof of Theorem 4.4.1). We need to check that the hypothesis of Proposition
3.6.1 are satisfied in our case. By GAGA principle the natural morphisms

H j(X ,Ω i
X )→ H j(Xan,Ω i

Xan)

are isomorphisms of C-vector spaces and under this identifications the algebraic dr
coincides with the holomorphic dr. Therefore, it is enough to check that the holo-
morphic dr satisfies the hypothesis of Proposition 3.6.1. In the holomorphic context,
by Theorem 4.4.2 we have H j(Xan,Ω̌ i

Xan) ∼= H j(Xan,Ω i
Xan). For this we write the

long exact sequence of the short exact sequence:

0→ Ω̌
i
Xan →Ω

i
Xan → Ω̌

i+1
Xan → 0.

In the definition if d1 we can choose a representative of ω i ∈ H j(Xan,Ω i
Xan) such

that dω i = 0, and so, by definition all dr’s are zero. ut

According to [Voi02] page 207, the algebraic proof of degeneracy at E1 of the com-
plex of algebraic differential forms (and hence an algebraic proof of Theorem 4.4.1)
is done by Deligne and Illusie in 1987 and Illusie in 1996.

4.5 Cup product

In the usual de Rham cohomology we have the cup/wedge product

Hm
dR(X

∞)×Hn
dR(X

∞)→ Hn+m
dR (X∞), ω,α 7→ ω ∧α

and it is natural to ask for the corresponding bilinear map in algebraic de Rham
cohomology. For partial result in this direction see [CG80].

Theorem 4.5.1 The cup product of ω ∈ Hm
dR(X/k) and α ∈ Hn

dR(X/k) is given by
γ = ω ∪α , where
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γ
n+m
i0 = ω

m
i0 ∧α

n
i0

γ
n+m−1
i0i1 = (−1)m

ω
m
i0 ∧α

n−1
i0i1 +ω

m−1
i0i1 ∧α

n
i1

...
...

γ
n+m− j
i0i1···i j

=
j

∑
r=0

(−1)m( j−r)+r( j−1)
ω

m−r
i0···ir ∧α

n− j+r
ir ···i j

γ
0 = ω

0
i0···im ∧α

0
im···in+m

Proof. We have to prove that under the canonical isomorphism between the classical
and algebraic de Rham cohomology, the wedge product is transformed in the prod-
uct given in the theorem. Let us take ω̌ ∈Hm

dR(X
∞) and α ∈Hn

dR(X
∞) and construct

the algebraic counterpart of ω̌, α̌, ω̌ ∪ α̌ . For this we will use the explicit construc-
tion of (4.1). Followng this, it is possible to compute the first two lines in Theorem
4.5.1. Once the general formula is guessed the proof is as bellow: First we check
that d′γ = 0.



4.6 Cup product for hypersurfaces 31

(δγ
m+n− j)i0···i j+1 =

j+1

∑
k=0

(−1)k
γ

m+n− j
i0···ǐk···i j+1

=
j+1

∑
k=0

k−1

∑
r=0

(−1)k+m( j−r)+r( j−1)
ω

m−r
i0···ir ∧α

n− j+r
ir ···ǐk···i j+1

+
j+1

∑
k=0

j+1

∑
r=k+1

(−1)k+m( j−r+1)+(r−1)( j−1)
ω

m−r+1
i0···ǐk···ir

∧α
n− j+r
ir ···i j+1

=
j

∑
r=0

j+1

∑
k=r+1

(−1)k+m( j−r)+r( j−1)
ω

m−r
i0···ir ∧α

n− j+r
ir ···ǐk···i j+1

+
j+1

∑
r=1

r−1

∑
k=0

(−1)k+m( j−r+1)+(r−1)( j−1)
ω

m−r+1
i0···ǐk···ir

∧α
n− j+r
ir ···i j+1

=
j

∑
r=0

(−1)r+m( j−r)+r( j−1)
ω

m−r
i0···ir ∧

[
(δα

n− j+r)ir ···i j+1 −α
n− j+r
ir+1···i j+1

]
+

j+1

∑
r=1

(−1)m( j−r+1)+(r−1)( j−1)
[
(δω

m−r+1)i0···ir − (−1)r
ω

m−r+1
i0···ir−1

]
∧α

n− j+r
ir ···i j+1

=
j

∑
r=0

(−1) j+m( j−r)+r( j−1)
ω

m−r
i0···ir ∧dα

n− j+r−1
ir ···i j+1

+
j+1

∑
r=1

(−1)r−1+m( j−r+1)+(r−1)( j−1)(dω
m−r)i0···ir ∧α

n− j+r
ir ···i j+1

= (−1) jd

(
j+1

∑
r=0

(−1)m( j+1−r)+r j
ω

m−r
i0···ir ∧α

n− j−1+r
ir ···i j+1

)
(−1) jdγ

m+n− j−1
i0···i j+1

Now we have to prove that α̌∧ and γ induce the same element in Hn+m(X∞,Ω •X∞).

For the description of cup product in Cech cohomology Hm(X ,Z) see [Bry08]. For
simple applications of cup product in the case of elliptic curves see [Mov12].

4.6 Cup product for hypersurfaces

The discussion of the algebraic cup product for hypersurfaces is partially done in
Carlson and Griffiths’ article [CG80]. Let X ⊂ Pn+1 be a smooth hypersurface of
degree d given by f = 0. Recall that for a monomial xi = xi0

0 xi1
1 · · ·x

in+1
n+1 of degree

(k+1)d−n−2

ωi = Residue
(

xi ·Ω
f k+1

)
∈ Hn

dR(X).
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where Ω := ∑
n+1
i=0 (−1)ixid̂xi. We say that ωi has adjoint level k. We consider the

Jacobian covering JX of Pn+1:

JX := {U j, j = 0,1,2, · · · ,n+1}, U j :=
{

∂ f
∂x j
6= 0
}
.

Since X is smooth, this is a covering of Pn+1 and hence X itself. For a vector field Z
in Cn+2, let ιZ denote the contraction of differential forms along Z and for a multi-
index j = ( j0, ..., jl) with | j| := l let

Ω j := ι ∂

∂x0
◦ ι ∂

∂x1
◦ · · · ◦ ι ∂

∂xl

Ω (4.3)

f j :=
∂ f

∂x j0
· ∂ f

∂x j1
· · · ∂ f

∂x jl
. (4.4)

Theorem 4.6.1 (Carlson-Griffiths, [CG80], page 7) Let ωi be a differential form
of adjoint level k. Then, in Fk/Fk+1 ∼= Hk(X ,Ω n−k

X ), is represented by the cocycle

(ωi)
n−k,k =

(−1)n+(k+1
2 )

k!

{
xiΩ j

f j

}
| j|=k

(4.5)

with respect to the Jacobian covering.

The above theorem gives us only a folrmula for (ωi)
n−k,k and we need the full

expression of ωi in the algebraic de Rham cohomology of X . Once this is done we
need a formula for the cup product of ωi’s. A partiall result is also given by Carlson
and Griffiths. For ωi and ω j of adjoint level k and n− k we have

ωi∪ω j =
xi+ jΩ

f0 f1 · · · fn+1
. (4.6)

4.7 The cohomological class of an algebraic cycle

Let Z ⊂ X be an algebraic cycle of codimension m. In this section we construct

[Z] ∈ Hm
dR(X). (4.7)

4.8 Polarization

Let Pn be a projective space of dimension n with the projective coordinate system
[x1 : x2 : · · · : xn+1] and fi j := x j

xi
. The rational function fi j has a zero (resp. pole) of

order 1 at x j = 0 (resp. xi = 0).
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Definition 4.8.1 We call

θ ∈ H2
dR(X), θi j :=

d( z j
zi
)

z j
zi

.

the polarization.

Proposition 4.8.1 The polarization in the usual de Rham cohomology is given by

∂̄ ∂ log(
n+1

∑
i=1
|xi|2).

and it for any linear P1 ⊂ Pn we have∫
P1

θ = 2πi.

Proof. We have δθ = 0 and dθ = 0. Therefore. d′θ = 0 and hence it induces an
element in the algebraic de Rham cohomology H2

dR(X). We define:

pi : Pn\{xi = 0}→ R+, pi(x) :=
n+1

∑
j=1

∣∣∣∣x j

xi

∣∣∣∣2

We have p j =
∣∣∣ x j

xi

∣∣∣2 pi and so ω j−ωi =
d fi j
fi j

, where ωi := ∂ pi
pi

= ∂ log pi. The (1,1)-

forms ∂̄ ∂ log pi’s in the intersection of Ui’s coincide and gives us the element in the
usual de Rham cohomology corresponding to θ . For the second statement see the
section of Chern classes in my lecture notes [Mov17a]. ut

Using Theorem 4.5.1 we know that θ m ∈ H2m
dR (X) has only the middle piece:

(θ m)i0i1···im =
d fi0i1
fi0i1
∧

d fi1i2
fi1i2
∧·· ·∧

d fim−1im

fim−1im
. (4.8)

where fi j := x j
xi

.

4.9 Top cohomology

In this section we describe the isomorphism

Tr : H2n
dR(X)∼= 2k

over the field k. In the complex context k= C, it is given by

ω → 1
(2πi)n

∫
X

ω.
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Proposition 4.9.1 The top cohomology H2n
dR(X) is of dimension 1 and it is generated

by the restriction of θ n ∈ H2n
dR(P

N).

Let PN−n−1 ⊂ PN be a projective space such that PN−n−1∩X = /0. We assume that it
is given by linear equations g0 = g1 = · · ·= gn = 0 and consider the corresponding
covering. In this covering a generator of H2n

dR(X) is given by

d fi0i1
fi0i1
∧

d fi1i2
fi1i2
∧·· ·∧

d fim−1im

fim−1im
(4.9)

where fi j := g j
gi

.

4.10 Poincaré duality

In this section we prove:

Theorem 4.10.1

4.11 Periods of algebraic cycles

In this section we take a smooth projective variety X ⊂ PN over a field k of charac-
teristic 0 and assume that k is small enough so that we have an embedding k ↪→ C.
Since any projective variety X over k uses a finite number of coefficients in k, the
assumption on the embedding of k in C is not problematic. We start this section with
the following remarkable property of algebraic cycles.

Proposition 4.11.1 (Deligne, [DMOS82] Proposition 1.5) Let X be a projective
smooth variety over an algebraically closed field k⊂ C and let Z be an irreducible
subvariety in X of dimension m

2 . For any element of the algebraic de Rham coho-
mology Hm

dR(X/k), we have

1
(2πi)

m
2

∫
[Z]

ω ∈ k (4.10)

where [Z]⊂ Hn(Xan,Z) is the homololgy class of Z.

Proof. The cohomology ring of the projective variety PN is generated by the polar-
ization θ ∈H2

dR(PN) which satisfies
∫
[P1] θ = 2πi. Therefore, for a smooth projective

variety Z̃ ⊂ PN of dimension m
2 defined over k we have∫
[Z̃]

θ
m
2 = deg(Z̃) · (2πi)

m
2 (4.11)
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and the fact that θ
m
2 restricted to Z̃ generates the k-vector space Hm

dR(Z̃). Let Z ⊂
X be as in the proposition. We have a desingularization morphism Z̃ → Z which
composed with the inclusion gives us a map f : Z̃→ X which is still defined over k.
We have f ∗ω ∈Hm

dR(Z̃) and so there is a a∈ k such that f ∗ω = a ·θ m
2 . This together

with (4.11) implies the desired statement. ut

4.12 Proof of the Hodge decomposition

In this section we present a new proof of the Hodge decomposition which does not
use harmonic forms, instead it uses the algebraic de Rham cohomology introduced
in the previous sections.

Let X be an algebraic variety over C and OX be the sheaf of regular functions on
X . We consider the sheaf OXah on X such that is sections over an open set U ⊂ X is
given by:

OXah(U) := The C algebra generated by the elements of , OX (U), OX (U).

We also call OXah the sheaf of holomorphic and anti-holomorphic functions. From
this we can construct the complex of differential (p,q)-forms Ω

p,q
Xah .

Conjecture 4.12.1 The sheaves Ω
p,q
Xah are acyclic, that is,

Hm(X ,Ω p,q
Xah) = 0, ∀m≥ 1.

I do not have any evidence why this conjecture must be true. If so, we do need the
big class of C∞-functions. Just polynomials and their complex conjugate would be
enough for the proofs of many classical theorems in Hodge theory, mainly proved
by functional or harmonic analysis. If the above conjecture is false it means that we
really need the bump function used in the defintion of partition of unity, and maybe
even more. However, the desire of defining a small of C∞ functions which would do
the job of Hodge decomposition will be still there.

4.13 Positivity of the the polarization

I think is is possible to give a proof of the following theorem, only using algebraic
differential forms and their complex conjugates, without using Harmonic forms.

Proposition 4.13.1 The Hodge filtration with respect to the polarization satisfies
the following properties:

〈F p,Fq) = 0, ∀p,q, p+q > m, (4.12)

(−1)
m(m−1)

2 +p(
√
−1)−m〈ω,ω〉> 0, ∀ω ∈ F p

0 ∩Fm−p
0 , ω 6= 0. (4.13)
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Final remarks

In this section let X/C be a smooth algebraic variety over the field of complex num-
bers, and let Xan be the underlying complex manifold of X . Let also Ω •X/C,Ω

•
Xan and

Ω •X∞ be the complex of the sheaves of algebraic, holomorphic and C∞ differential
forms on X , respectively C∞. The first complex is automatically defined over Zariski
topology of X/C, whereas the two others are defined over the usual topology of Xan

and X∞. By Poincaré lemma both Ω •Xan and Ω •X∞ are the resoultions of the constant
sheaf C and hence

Hm(Xan, Ω
•
Xan)∼= Hm(Xan,C), m = 0,1,2, . . . .

Hm
dR(X

∞)∼=Hm(Xan, Ω
•
X∞)∼= Hm(Xan,C), m = 0,1,2, . . . .

From another side the inclusion Ω •X/C→Ω •Xan is a quasi-isomorphism and so

Hm
dR(X/C)∼= Hq

dR(X
an), m = 0,1,2, . . .

Note that X is an affine variety Xan is Stein by Cartan’s B theorem

H i(Xan,Ω j
Xan) = 0, i = 1,2, . . . , j = 0,1,2, . . . .

4.14 Hodge filtration of affine varieties

Let X be an affine variety. It follows from Theorem 4.2.2 and Theorem 4.4.1 that
the Hodge filtration of X defined in (4.4) is trivial, that is, Fm = Fm−1 = · = F1 =
F0. Therefore, the truncated complexes Ω

•≥i
X give us the correct Hodge filtration

for projective varieties and beyond this we may be still in trouble to define the
correct Hodge filtrations. Here, one has to calrify what correct means. Deligne in
[Del71] defines the mixed Hodge structure of affine varieties and in particular its
basic ingredient, namely the Hodge filtration. In this section we give an exposition of
this topic. Even if one is interested in projective varieties, computations are usually
done in affine varieties, and this topic is indespensible for further study of projective
varieties. The reader may also consult Voisin’s books [Voi02] Section 8.2.3 and
[Voi03] Section 6.1.

Definition 4.14.1 Let X be a projective variety and D = ∑
s
i=1 Di be a divisor. We

say that Y is a normal crossing divisor of ....

Definition 4.14.2 The sheaf of logarithmic differential forms.

· · ·
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4.15 Hard Lefschez theorem

4.16 Exercises

4.1. Describe as explicit as possible the maps (4.1) and (4.2).

4.2. One can further describe the map (4.2) explicitly, provided that we specify the
partition of unity used in our algebraic contect. For this we may need to add ex-
ponent of algebraric functions into the sheaf OX of regular functions in a variety
X . From another side, it is quit possible to redefine the C∞ de Rham cohomology
Hm

dR(X
an), using a minimum data of C∞ functions and not all of them. For instance,

we may add the complex conjugate of algebraric functions into the sheaf OX . Deve-
lope these ideas as much as you can.

4.3. Let Oah
X be the the C-algebra generated by holomorphic and anti-holomorphic

functions. From this we construct Ω a
X . What are the Cech cohomologies of these

sheafs?





Chapter 5
Gauss-Manin connection: general theory

In 1958 Yu. Manin solved the Mordell conjecture over function fields and A.
Grothendieck after reading his article invented the name Gauss-Manin connection.
I did not find any simple exposition of this subject, the one which could be under-
standable by Gauss’s mathematics. I hope that the following explains the presence
of the name of Gauss on this notion. Our story again goes back to integrals. Many
times an integral depend on some parameter and so the resulting integration is a
function in that parameter. For instance take the elliptic integral∫

δ

Q(x)dx√
P(x)

(5.1)

and assume that P and Q depends on the parameter t and the interval δ does not
depend on t. In any course in calculus we learn that the integration and derivation
with respect to t commute:

∂

∂ t

∫
δ

Q(x)√
P(x)

dx =
∫

δ

∂

∂ t
(

Q(x)√
P(x)

)dx.

As before we know that the right hand side of the above equality can be written
as a linear combination of two integrals

∫
δ

dx√
P

and
∫

δ
xdx√
P(x)

. This is the historical

origin of the notion of Gauss-Manin connection, that is, derivation of integrals with
respect to parameters and simplifying the result in terms of integrals which cannot
be simplified more.

5.1 De Rham cohomology of projective varieties over a ring

Recall our convention about the ring R in §?? and let T := Spec(R) be the corre-
sponding variety over k.

39
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Remark 5.1.1 The usage of T is just for the sake of compatibility of our notations
with those in the literature.

Let X be a projective, smooth, reduced variety over k and let X→ T be a morphism
of varieties over k. We also say that X is a variety over the ring R.

We have the complex of sheaves of differential forms (Ω •X/T,d) and we define
the i-th relative de Rham cohomology of X as the i-th hypercohomology of the
complex (Ω •X/T,d), that is

H i
dR(X/T) =Hi(Ω •X/T,d).

We explain how the elements of the hypercohomology look like and how to calculate
it.

Let U = {Ui}i∈I be any open covering of X by affine subsets, where I is a totally
ordered finite set. We have the following double complex

...
...

...
↑ ↑ ↑

(ΩX/T)
0
2 → (ΩX/T)

1
2 → (ΩX/T)

2
2 → ·· ·

↑ ↑ ↑
(ΩX/T)

0
1 → (ΩX/T)

1
1 → (ΩX/T)

2
1 → ·· ·

↑ ↑ ↑
(ΩX/T)

0
0 → (ΩX/T)

1
0 → (ΩX/T)

2
0 → ·· ·

(5.2)

Here (ΩX/T)
i
j is the product over I1 ⊂ I, #I1 = j+1 of the set of global sections ωσ

of Ω i
X/T in the open set σ = ∩i∈I1Ui. The horizontal arrows are usual differential

operator d of (ΩX/T)
i
X/T ’s and vertical arrows are differential operators δ in the

sense of Cech cohomology, that is,

δ : (ΩX/T)
i
j→ (ΩX/T)

i
j+1, {ωσ}σ 7→ {

j+1

∑
k=0

(−1)k
ωσ̃k |σ̃}σ̃ . (5.3)

Here σ̃k is obtained from σ̃ , neglecting the k-th open set in the definition of σ̃ . The
k-th piece of the total chain of (5.2) is

L k :=⊕k
i=0(ΩX/T)

i
k−i

with the differential operator

d′ = d +(−1)k
δ : L k→L k+1. (5.4)

The relative de Rham cohomology Hk
dR(X/T) is the total cohomology of the double

complex (5.2), that is,
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Hk
dR(X/T) :=Hk(M,Ω •X/T) :=

ker(L k d→L k+1)

Im(L k−1 d→L k)
.

5.2 Gauss-Manin connection

What we do in this section in the framework of Algebraic Geometry is as follows:
Let X be a smooth reduced variety over R. We construct a connection

∇ : H i
dR(X/T)→Ω

1
T⊗R H i

dR(X/T)

where Ω 1
T is by definition Ω 1

R/k, that is, the R-module of differential attached to R.
By definition of a connection, ∇ is k-linear and satisfies the Leibniz rule

∇(rω) = dr⊗ω + r∇ω.

A vector field v in T is an R-linear map Ω 1
T→ R. We define

∇v : H i
dR(X/T)→ H i

dR(X/T)

to be ∇ composed with

v⊗ Id : Ω
1
T⊗R H i

dR(X/T)→ R⊗R H i
dR(X/T) = H i

dR(X/T).

If R is a polynomial ring Q[t1, t2, . . .] then we have vector fields ∂

∂ ti
which are defined

by the rule
∂

∂ ti
(dt j) = 1 if i = j and = 0 if i 6= j.

In this case we simply write ∂

∂ ti
instead of ∇ ∂

∂ ti
.

Sometimes it is useful to choose a basis ω1,ω2, . . . ,ωh of the R-modular H i(X/T)
and write the Gauss-Manin connection in this basis:

∇


ω1
ω2
...

ωh

= A⊗


ω1
ω2
...

ωh

 (5.5)

where A is a h×h matrix with entries in Ω 1
T.
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5.3 Construction

Let X be a variety over the ring R and T := Spec(R) Let us take a covering U =
{Ui}i∈I of X by affine open sets. In this section we need to distinguish between the
differential operator relative to R

dR : Ω
k
X/T→Ω

k+1
X/T

and the differential operator dk relative to k:

dk : Ω
k
X→Ω

k+1
X

We also need to consider the double complex similar to (5.2) relative to k: (5.4).

...
...

...
↑ ↑ ↑

(ΩX)
0
2 → (ΩX)

1
2 → (ΩX)

2
2 → ·· ·

↑ ↑ ↑
(ΩX)

0
1 → (ΩX)

1
1 → (ΩX)

2
1 → ·· ·

↑ ↑ ↑
(ΩX)

0
0 → (ΩX)

1
0 → (ΩX)

2
0 → ·· ·

(5.6)

We have a projection map from the double complex (5.6) to (5.2).
Let ω ∈Hk

dR(X/T). By our definition ω is represented by⊕k
i=0ωi, ωi ∈ (ΩX/T)

i
k−i

and ωi is a collection of i-forms {ωi,σ}σ . We have By definition we have d′Rω = 0.
Since the differential map dR used in the definition of d′R is relative to R, that is, by
definition dr = 0,r ∈ R. Now, let us take any element ω̌ in the double complex (5.6)
which is mapped into ω under the canonical projection. We apply dk on ω̌ and the
result is not necessarily zero. However, by our choise of ω we have d′Rω = 0, and
so, d′ω̌ maps to zero in the double complex (5.2). This is equivalent to say that

d′kω̌ = η̌ =⊕k+1
i=0 η̌i η̌i ∈Ω

1
T∧ (ΩX)

i
k+1−i

We map η̌ into the wedge product of ω1
T with the double complex (5.2) and we get

an element
η̌ ∈Ω

1
T⊗R (ΩX/T)

i
k+1−i.

In this process we have replaced the notation ∧ with the tensor product ⊗R. Since
d′k ◦d′kω̌ = 0

(id⊗R d′R)(η̌) = 0.

This gives us an element in Ω 1
T ⊗R Hk

dR(X/T) which is by definition ∇ω .
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5.4 Griffiths transversality

Let X/T be as before. The relative algebraic de Rham cohomology Hm(X/T) carries
a natural filtration which is called then Hodge filtration:

0 = Fm+1 ⊂ Fm ⊂ ·· ·F1 ⊂ F0 = Hm(X/T)

Its ingredients are defined by

F i = F iHm
dR(X/T) = Im

(
Hm(X ,Ω •≥i

X/T)→Hm(X,Ω •X/T)
)

Theorem 5.4.1 (Griffiths transversality) The Gauss-Manin connection maps F i

to Ω 1
T⊗R F i−1, that is,

∇(F i)⊂Ω
1
T⊗R F i−1, i = 1,2, . . . ,m.

Proof. This follows from the definition of the Gauss-Manin connection.

5.5 Geometric Gauss-Manin connection

Let us now assume that k=C. The main motivation, which is also the historical one,
for defining the Gauss-Manin connection is the following: For any ω ∈H i

dR(X) and
a continuous family of cycles δt ∈ Hi(Xt ,Z) we have

d
(∫

δt

ω

)
=
∫

δt

∇ω. (5.7)

Here, by definition ∫
δt

α⊗β = α

∫
δt

β ,

where β ∈ H i
dR(X) and α ∈ Ω 1

T . Integrating both side of the equality (5.5) over a a
basis δ1,δ2, . . . ,δh ∈ Hi(Xt ,Q) we conclude that

d([
∫

δ j

ωi]) = [
∫

δ j

ωi] ·A. (5.8)
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5.6 Algebraic vs. Analytic Gauss-Manin connection

5.7 A consequence of global invariant cycle theorem

We derive a consequence of gloabl invariant cycle theorem. For the references on
this topic see [Mov17b] §6.11.

Let Y,X ,π : U→ B as before, but defined over a field k of characteristic zero. Let

Theorem 5.7.1 Let δ be a global section of the relative algebraic de Rham coho-
mology Hm

dR(U/B). If ∇δ = 0 then its evaluation δ0 at 0 ∈ B is in the image of the
map

Hm
dR(X)→ Hm

dR(Y ).

induced by inclusion Y ↪→ X. Conversely, any δ0 in the image of the above map
comes from a global section δ with ∇δ = 0.

Proof. The proof is done for k = C. By our hypothesis δ is a glonal section of
Rmπ∗Q⊗QC and so it is invariant under the monodromy. Therefore,

δ0 ∈ Hm(Y,Q)ρ ⊗QC.

1. Show that the above definition does not depend on the choice of covering, that
is, if U1 and U2 are two open covering of X then the corresponding hypercoho-
mologies are isomorphic in a canonical way.

2. For which varieties X , we have H0
dR(X) = R.



Chapter 6
Infinitesimal variation of Hodge structures

In its early phase (Abel, Riemann, Weierstrass), algebraic geometry was just a chap-
ter in analytic function theory [...] A new current appeared however (1870) under
the powerfull influence of Max Noether who really put ”geometry” and more ”bi-
rational geometry” into algebraic geometry [...] The next step in the same direction
was taken by Castelnuovo (1892) and Enriques (1893). They applied analogous
methods to the creation of an entirely new theory of algebraic surfaces. Their ba-
sic instrument was the study of linear systems of curves on a surface. Many new
birationally invariant properties were discovered and an entirely new and beauti-
ful chapter of geometry was opened. In 1902 the Castelnuovo-Enriques team was
enriched by the brilliant personality of Severi. More than his associates he was
interested in the contacts with the analytic theory developed since 1882 by Émile
Picard. The most important contribution of Severi, his theory of the base was in
fact obtained by utilizing the Picard number p. The theory of the great Italian ge-
ometers was essentially, like Noether’s, of algebraic nature. Curiously enough this
holds in good part regarding the work of Picard. This was natural since in his time
Poincaré’s creation of algebraic topology was in its infancy. Indeed when I arrived
on the scene (1915) it was hardly further along. [...] I cannot refrain, however, from
mention of [....] the systematic algebraic attack on algebraic geometry by Oscar
Zariski and his school, and beyond that of André Weil and Grothendieck.

Gauss-Manin connection carries many information of the underlying family of
algebraic varieties, however, in general it is hard to compute it and verify some of its
properties. For this reason it is sometimes convenient to break it into smaller peices
and study these by their own. Infinitesimal variation of Hodge structures, IVHS for
short, is one of these pieces of the Gauss-Manin connection, and we explain it in this
chapter. It was originated by the articles of Griffiths around sixties [Gri68a, Gri68b,
Gri69a], and was introduced by him and his collaborators in the subsequence articles
[CG80, CGGH83]. See for instance page 183 of the last article for some historical
comments on this.
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46 6 Infinitesimal variation of Hodge structures

6.1 Starting from Gauss-Manin connection

Recall that for a family of projective varieties X→ T we have the Gauss-Manin
connection

∇ : Hm(X/T)→Ω
1
T⊗OT

Hm(X/T)

We have also the Hodge filtration

0 = Fm+1 ⊂ Fm ⊂ ·· ·F1 ⊂ F0 = Hm(X/T)

and the Gauss-Manin connection satisfies the so called Griffiths transversality:

∇(F i)⊂Ω
1
T⊗OT

F i−1, i = 1,2, . . . ,m.

Therefore, the Gauss-Manin connection induces well-defined maps

∇i :
F i

F i+1 →Ω
1
T⊗OT

F i−1

F i (6.1)

In Theorem 4.4.1 we have learned that

F i

F i+1
∼= Hm−i(X, Ω

i
X/T).

Therefore, we get the following R-linear map

∇i : Hm−i(X, Ω
i
X/T)→Ω

1
T⊗R Hm−i+1(X, Ω

i−1
X/T) (6.2)

After analysing the definition of the Gauss-Manin connection we get the following
description of ∇i. Let ω ∈ Hm−i(X, Ω i

X/T). It is given by a cocycle in

(ΩX/T)
i
m−i =

(ΩX)
i
m−i

Ω 1
T∧ (ΩX)

i−1
m−i

.

Let ω̌ ∈ (ΩX)
i
m−i such that it maps to ω under the canonical projection. We have

δ (ω̌) ∈Ω
1
T∧ (ΩX)

i−1
m−i

Projecting this in Ω 1
T⊗R (ΩX/T)

i−1
m−i we get ∇i(ω).

Sometimes it is usefull to write (6.2) in the following way:

∇i : ΘT→ hom
(

Hm−i(X, Ω
i
X/T),H

m−i+1(X, Ω
i−1
X/T)

)
(6.3)



6.3 Kodaira-Spencer map I 47

6.2 Algebraic polarization

A smooth projective variety comes with an embedding X ⊂ PN , and this gives us the
polarization θ ∈ H2(X ,Z)∩H11 which is Poincaré dual [Y ] ⊂ H2n−2(X ,Z), where
Y is a smooth hyperplance section of X . We would like to introduce this in the
framework of algebraic de Rham cohomology.

Recall that θ is the Chern class of the line bundle O(1) |X :

θ := c(O(1)).

We make the following composition

H1(X ,O∗X )→ H2(X ,Z)→ H2
dR(X)

where the first one is the Chern class map and define the resulting map

c : H1(X ,O∗X )→ H2
dR(X) (6.4)

in the algebraic context. Its image is in the F1 piece of the de Rham cohomology.
Therefore, we will have also the map

c : H1(X ,O∗X )→ H1(X ,Ω 1
X ) (6.5)

that we will denote it by the same letter c. We will call c the algebraic Chern class
map.

Proposition 6.2.1 The algebraic Chern class of a line bundle in H1(X ,O∗X ) given
by a cocycle { fi j}i, j∈I is given by ω = ω2

0 +ω1
1 +ω0

2 , where ω2
0 and ω0

2 are zero
and ω1

1 is given by { d fi j
fi j
}i, j∈I .

Proof.

6.3 Kodaira-Spencer map I

Now we define the Kodaira-Spencer map

K : H0(T,ΘT)→ H1(X,ΘX/T) (6.6)

For a global vector field v in T we define K(v) in the following way. We choose an
acyclic covering U = {Ui}i∈I and vector fields vi in Ui such that vi is mapped to v
under X→ T. The vector fields vi− v j are tangent to the fibers of X→ T and they
give us K(v).

The Kodaira-Spencer map K is related to the connecting homomorphism of the
long exact sequence attached to the short exact sequence:
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0→ΘX/T→ Θ̌X→ π
∗
ΘT→ 0 (6.7)

where Θ̌X ⊂ΘX is by definition the sheaf of vector fields in X which are mapped to
vector fields in T, and π∗ΘT is a sheaf in X such that its section in a Zariski open
set X are just the elements of ΘT.

Therefore, we have

H0(X,π∗ΘT) = H0(T,ΘT), H1(X,π∗ΘT) = H1(T,ΘT) (6.8)

The long exact sequence of (6.7) turns out to be

· · · →H0(X,Θ̌X)→H0(T,ΘT)
K→H1(X,ΘX/T)→H1(X,Θ̌X)→H1(T,ΘT)→ ···

(6.9)
We conclude that

Proposition 6.3.1 Assume that H1(T,ΘT) = 0. We have H1(X,Θ̌X) = 0 if and only
if the Kodaira-Spencer map is surjective.

For the main purpose of the present book, it would be essential to compute H i(X,Θ̌X), i=
0,1.

Let us now consider the parameter space T of smooth hypersurfaces X ⊂ Pm+1.
In this case T is the affine space Aa

k mines a discriminant locus {∆ = 0}. It has the
coordinate system (tα ,α ∈ Ǐ), where

Ǐ :=
{
(α0,α1, . . . ,αm+1) | 0≤ αe ≤ d, ∑αe = d

}
The polynomial expressions of ∆ in terms of the variables tα is in general huge. The
variety X⊂ Pm+1×T is given by

X : g = 0.

where g := ∑
α∈Ǐ

tα xα = 0

and X→ T is the projection on T. Let ∂

∂ tα
, α ∈ Ǐ be canonical vector fields in T.

Since the fibers of X→ T are smooth, we can take the Jacobian covering U =
{Ui} j=0,1,2,...,m+1 of X, where

U j :
∂g
∂x j
6= 0.

In the affine open set Ui a pull-back of ∂

∂ tα
is given by

∂

∂ tα
−

∂g
∂ tα
∂g
∂x j

∂

∂x j

Therefore, the Kodaira-Spencer map is given by
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K(
∂

∂ tα
) :=

{
∂g
∂ t

(
(

∂g
∂x j

)−1 ∂

∂x j
− (

∂g
∂xi

)−1 ∂

∂xi

)}
i, j=0,1,...,m+1

Proposition 6.3.2 For the universal family of hupersurfaces X → T, we have
H1(X,ΘX) = 0 except for hypersurface of dimension two and degree four. In this
exceptional case it is a one dimensional Q-vector spaces.

This proposition will be proved in the next section.

6.4 Kodaira-Spencer map II

Most of the time we take a point 0 ∈ T, set X := X0 and specialize (6.6) at a point
0 ∈ T:

K : TT,0→ H1(X ,ΘX ) (6.10)

In the literature we mainly find this map. The next discussion is take from Voisin’s
book [Voi03] Lemma 6.15. We start with

0→ TX → TX|X → NX⊂X → 0
↓ ↓ ↓

0→ TX → TPn+1 |X → NX⊂Pn+1 → 0
(6.11)

Here, NA⊂B is the normal bundle of A inside B, the first down arrow map is the
identity, the second is the derivation of the projection X→ Pn+1 and the third is the
map induced in the quotient. We note that NX⊂X is the trivial bundle in X . In fact,
a trivialization of this bundle is given by the restriction of the derivation of the map
X→ T to the points of X . Therefore, we have canonical identifications

H0(X ,NX⊂X) = TT,0,

H1(X ,NX⊂X) = TT,0⊗k H1(X ,OX ).

Now we write the long exact sequence of (6.11) and we use the above data

H0(X , TX|X ) → TT,0
K→ H1(X ,TX ) → H1(X , TX|X ) → TT,0⊗k H1(X ,OX )

↓ ↓ ↓ ↓ ↓
H0(X , TPn+1 |X )

b→ H0(X ,NX⊂Pn+1 )
c→ H1(X ,TX ) → H1(X , TPn+1 |X ) → H1(X ,NX⊂Pn+1 )

↑ a
H0(X ,TPn+1 )

(6.12)
The last up arrow map is just the restriction map that we will need later.

Let us now focus on the case of hypersurfaces X in Pn+1 given by the homoge-
neous polynomial g ∈ k[x] of degree d. In this case we have many canonical identi-
fications and vanishings so that (6.13) becomes
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H0(X , TX|X ) → k[x]d
K→ H1(X ,TX ) → H1(X , TX|X ) → 0

↓ ↓ ↓ ↓ ↓
H0(X , TPn+1 |X )

b→ k[x]d
c→ H1(X ,TX ) → H1(X , TPn+1 |X ) → 0

↑ a
〈xi

∂

∂x j
, i, j = 1,2, . . . ,n+1〉

(6.13)

Let us explain the details of this. The identification

TT,0 = k[x]d

is done in the following way. For p∈ k[x]d we first consider the curve g+ t p, t ∈Ak

whose derivation at t = 0 gives the corresponding vector in TT,0. We have also

H0(X ,NX⊂Pn+1)∼= H0(Pn+1,OPn+1(d))∼= k[x]d

The map TT,0 → H0(X ,NX⊂Pn+1) turns out to be the identity map. The k-vector
space H0(X ,TPn+1) is generated by x j

∂

∂xi
and the composition b◦a after these iden-

tifications is

x j
∂

∂xi
→ x j

∂g
∂xi

We will need the following:

Theorem 6.4.1 (Bott, [Bot57]) For a smooth hypersurface X in Pn+1 we have

H1(Pn+1,TPn+1(X)) = 0,

where TPn+1(X) is the sheaf of vector fields in Pn+1 vanishing along X. Further, if
n 6= 2 and the degree of X is not 4 then

H1(X ,TPn+1 |X ) = 0

The first part of Bott’s theorem implies that the maps a and c are surjective. Finally
we get

Theorem 6.4.2 For a fixed hypersurface X ⊂ Pn+1 given by the homogeneous poly-
nomial g we have the Kodaira-Spencer map

(C[x]/jacob(g))d
K→ H1(X ,ΘX )

given by

K(xα) :=
{

xα

(
(

∂g
∂x j

)−1 ∂

∂x j
− (

∂g
∂xi

)−1 ∂

∂xi

)}
i, j=0,1,...,m+1

for xα ∈ (C[x]/jacob(g))d . For (n,d) 6= (2,4) it is an isomorphism and for (n,d) =
(2,4) it is an injection whose image is of codimension 1 in H1(X ,ΘX ).



6.6 IVHS for hypersurfaces 51

6.5 A theorem of Griffiths

Under the assumption that H1(X,ΘX) = 0, we are going to define a canonical map

∇̄i : H1(X,ΘX/T)→ hom
(

Hm−i(X, Ω
i
X/T),H

m−i+1(X, Ω
i−1
X/T)

)
(6.14)

Let v= {vi j}∈H1(X,ΘX/T) and ω ∈Hm−i(X, Ω i
X/T). We want to define ∇̄i(v)(ω)∈

Hm−i+1(X, Ω
i−1
X/T). We take an acyclic covering U := {Ui}i∈I and a cocycle

ω̌ ∈ (ΩX)
i
m−i which maps to ω under the canonical projection Ω i

X → Ω i
X/T. The

ingredients of δω̌ are sections of the sheaf Ω 1
T∧Ω

i−1
X .

We have H1(X,ΘX) = 0 and ΘX/T ⊂ΘX. Therefore, we have vector fields vi in
Ui such that vi j = v j− vi. In any intersections U0∩U1∩·· ·∩Uim ∩Um−i+1 we have

0 = ivi j(δω̌) = iv j(δω̌)− ivi(δω̌)

The first equality is in Ω
i−1
XT . Therefore, {iv j(δω̌)} does not depend on the choice of

j. This gives us the desired element in Hm−i+1(X, Ω
i−1
X/T).

Theorem 6.5.1 (Griffiths) The map (6.3) factors through the Kodaira-Spencer
map (6.6) and one gets the map ∇̄i, that is,

∇i = ∇̄i ◦K

Proof. This follows from the definition of ∇i and ∇̄i.

In many situtation we want to use

∇̄i : H1(X ,ΘX )→ hom
(
Hm−i(X , Ω

i
X ),H

m−i+1(X , Ω
i−1
X )

)
(6.15)

which is (6.14) over a fixed fiber X =Xt of X→T. Since we have used H1(X,ΘX) =
0, we cannot simply take T as a one point variety and proceed the definition of ∇̄i
as before.

6.6 IVHS for hypersurfaces

Let us consider a hyper surface X⊂ Pm+1 given by the homogeneous poynomial g.
Griffiths theorem gives a basis of the algebraic de Rham cohomology Hm

dR(P
m+1−

X). Recall that we have a long exact sequence

· · · → Hn+1
dR (Pn+1)→ Hn+1

dR (Pn+1−X)→ Hn
dR(X)→ Hn+2(Pn+1)→ ·· ·

For n odd we have Hn
dR(X)0 = Hn

dR(X) and for n even Hn
dR(X) = Hn

dR(X)0⊕ θ
n
2 ,

where θ ∈ H2
dR(X) is the polarization of X . Under the residue map Hn+1

dR (Pn+1−
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X)→ Hn
dR(X)0 is an isomorphism. Since θ

n
2 ∈ F

n
2 Hn

dR(X), we get the following
identifications

Hk(X ,Ω n−k
X )0 ∼= (C[X ]/J)(k+1)d−n−2, k = 0,1, . . . ,m. (6.16)

For n even and k = n
2 , we have Hk(X ,Ω n−k

X ) = Hk(X ,Ω n−k
X )0 +θ

n
2 . For all other n

and k, Hk(X ,Ω n−k
X )0 = Hk(X ,Ω n−k

X ).
Assume that the polynomial g depends on a parameter t. According to the defi-

nition of the Gauss-Manin connection, we have

∇ ∂

∂ t

(
Pηα

gk

)
=

(
−k

∂g
∂ t Pηα

gk+1

)
⊗dt (6.17)

We have (
n+1

∑
i=1

Ai
∂g
∂xi

)
ηα

gk+1 =
1
k

(
n+1

∑
i=1

∂Ai

∂xi

)
ηα

qk + exact terms. (6.18)

We conclude that

Proposition 6.6.1 The infinitesimal variation of Hodge structures

H1(X ,ΘX )×Hm−k(X ,Ω k
X )→ Hm−k+1(X ,Ω k−1

X )

for a hypersurface X : g = 0 of degree d and dimension n is given by the multiplica-
tion of polynomials

(C[X ]/J)d× (C[X ]/J)(k+1)d−m−2→ (C[X ]/J)(k+2)d−m−2, (F,G) 7→ FG, (6.19)

provided that (n,d) 6= (2,4). In this exceptional case, the same statement is true if
we replace H1(X ,ΘX ) with the image of the Kodaira-Spencer map.

6.7 Griffiths-Dwork method

We can use Theorem ?? and find a basis of Hm
dR(P

m+1−X). Applying the Gauss-
Manin connection to the elements of this basis, we can write the right hand side of
(6.17) in terms of the basis. For this we may use (6.18) in order to reduce the pole
order. This is mainly known as Griffiths-Dwork method.

6.8 Noether-Lefschetz theorem

Theorem 6.8.1 (Noether-Lefschetz theorem) For d ≥ 4 a generic surface X ⊂ P3

of degree has Picard group Pic(X)∼=ZO(1), that is, every curve C⊂X is a complete
intersction of X with another surface.
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Let PN be the projectivization of the parameter space of surfaces in P3. Here by a
generic surface we mean that there is a countable union V of proper subvarieties of
PN such that X is in PN−V .

For the proof of Noether-Lefschez theorem, we need varieties which parameter-
ize all curves in P3. This is done using Hilbert schemes. Let us consider the set Hg,n
of all curves of genus g and degree d in P3. We know that Hg,n is a projective variety,
see for instance [ACG11]. It maynot be irreducible. We call Hg,n the Hilbert scheme
of degree n and genus g curves in P3. Let also T be the space of surfaces of degree
d surfaces in P3. we have the following incidence variety

Σg,n := {(C,X) ∈ Hg,n×T |C ⊂ X}

which is again a projective variety. For particular classes of (g,n), we have an irre-
ducible component Σ̃g,n which parametrizes the pairs (C,X), where C is a complete
intersection of X with another surfaces. The closure Σ̌g,n of Σg,n− Σ̃g,n is still a pro-
jective variety and the projection Σ̌g,n→ T is a proper map. The image of this map
is a finite union of irreducible subvarieties of T. The union of all these for all (g,n)
is called the Noether-Lefschetz loci in T.

Proof. We give two proofs. The first one is topological and is due to Lefschetz. The
second one uses IVHS for surfaces.

First proof: If the theorem is not true then there is a cycle δ ∈ H2(X ,Z) which is
invariant under the monodromy. This is not possible except when δ is the homology
class of a complete intersection of X with another surface.

Second proof: Let us assume the theorem is not true. This means that there is
some g and n and a component Σ of Σ̌g,n such that the projection π : Σ → T is
surjective. For each t ∈ T we want to choose a point in π−1(t), and hence, a curve
Ct ⊂ Xt which varies continously with t. We choose a smooth point t ∈ Σ such that
the drivative of π at t is surjective. By implicit function theorem, we can choose an
analytic subvariety A ⊂ Σ such that πA is a biholomorphism between A and (Σ , t).
This gives us an an analytic family (Xt ,Ct) of hypersurfaces Xt and curves Ct ⊂ Xt
for t in an open set of T. For the rest of our argument, we only need the topological
class δt := [Ct ] ∈ H2(Xt ,Z) of Ct . We have find a continous family of topological
cycles δt , t being in an open subset of T, such that,

∫
δt

ω = 0, for all global 2-forms
ω in Xt . We get ∫

δt

∇ ∂

∂ t
ω = 0, ∀ ∂

∂ t
∈ΘT, ω ∈ H0(X ,ΩX ).

For a fixed X = Xt among this family the map

H1(X ,ΘX )×H0(X ,Ω 2
X )→ H1(X ,Ω 1

X )0

is surjective. For d = 4 we use the image of the Kodaira-Spencer map insetad of the
full H1(X ,ΘX ). Therefore, H0(X ,Ω 2

X )+ΘTH0(X ,Ω 2
X ) and its complex conjugate

generate the whole primitive cohomology H2
dR(X)0. Since we have
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δt

H0(X ,Ω 2
X )+ΘTH0(X ,Ω 2

X )+H0(X ,Ω 2
X )+ΘTH0(X ,Ω 2

X ) = 0

we conclude that δt is the Poincaré dual to the polarization θ . This is the same as
to say that Ct is homolog to an a curve Dt which is a complete intersection. Since
H1(X ,OX ) = 0, we conclude that Ct −Dt is a zero divisor of a function on X .

6.9 Algebraic deformations

Let us now consider the following IVHS

∇̄ : H1(X ,ΘX )×H1(X ,Ω 1
X )→ H2(X ,Ω 0

X ).

The polarization θ is originally defined as an element of H2(X ,Z), therefore, if X ⊂
PN depends on a parametr then it is a flat section of the Gauss-Manin connection.
Therefore, it is natural to define

H1(X ,ΘX )θ :=
{

a ∈ H1(X ,ΘX ) | ∇̄(a,θ) = 0,
}

(6.20)

In the case of a hypersurface X ⊂ Pn+1, by Lefschetz theorems we know that for
n≥ 3 we have H2(X ,Ω 0

X ) = 0. Therefore, in this case we have

H1(X ,ΘX )θ = H1(X ,ΘX ),

For n = 2, the dimension of H2(X ,Ω 0
X ) is the Hodge number h20, and so, the

*****
A hypersurface X ⊂ P3 of degree 4 is called a K3 surface. Using Serre duality

we have
H1(X ,ΘX )∼= H1(X ,Ω 1

X )

Note that Ω 1
X is dual to ΘX and Ω 2

X is the trivial line bundle. We find that the dimen-
sion of H1(X ,ΘX ) is the hodge number h11 of X . This is h11 = 20. From another side
dim(C[x]/J)4 = 19. We conclude that the complex moduli space of a K3 surface is
of dimension 20. Algebraic deformations correspond to a 19 dimensional subspace
of this space.

Exercises
1. Prove that the vector space H0(Pn,ΘPn ) of global vector fields in Pn is generated by xi

∂

∂x j
,

where xi’s are coordinates of Pn. Therefore, it is of dimension n2.



Chapter 7
Hodge cycles and Gorenstein rings

In this chapter we describe a relation between Gorenstein rings and Hodge cycles.
We have used mainly [Dan14] and [MV17] and [Voi03].

7.1 Gorenstein rings

Preliminareis on Gorenstein rings, see this link.

Theorem 7.1.1 (Macaulay’s theorem)

7.2 Zariski tangent space of Hodge loci

Let X0 ⊂ Pn+1 be a smooth hypersurface of degree d and dimension n, and

N := (
n
2
+1)(d−2).

Any non-torsion Hodge cycle δ0 ∈ Hn(X0,Z)/Z[Z∞] defines a ring R whose a-th
graded piece for a≤ N is Ra := C[x]a/Ia, where

Ia :=

{
Q ∈ C[x]a

∣∣∣∣∣
∫

δ0

QPΩ

f
n
2+1 = 0, ∀P ∈ C[x]N−a

}
.

By definition Im =C[x]m for all m≥N+1 and so Ra = 0. Note that if δ0 is a rational
multiple of Z∞, then we have R = C[x] which we discard it. It turns out that RN is a
one dimensional vector space, and so, R is a Gorenstein ring of socle degree N. Let

J := jacob( f ).

55

http://staff.math.su.se/shapiro/ProblemSolving/gorenstein.pdf
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Proposition 7.2.1 We have
J ⊂ I

and hence we have a canonical surjective map C[x]/J→ R.

Proof. For this we use the formula

dω

f i−1 = (i−1)
d f ∧ω

f i−1 +d
(

ω

f i−1

)
and the fact that δ0 is Hodge.

we have the following natural isomorphism of one dimensional vector spaces:

H : RN → C, P 7→ 1
(2πi)

n
2

∫
δ0

PΩ

f
n
2+1 (7.1)

and hence we get:
H : Ra×RN−a→ RN ∼= C.

The following is a consequence of the Hodge conjecture.

Conjecture 7.2.1 If f is defined over a field k⊂C then I,R and H are defined over
an algebraic extesion of k.

The following particular case is proved by P. Deligne.

Theorem 7.2.1 If f is the Fermat polynomial, and hence defined over Q, then I,R
and H are defined over an abelian extension of Q.

A major problem in our way is that for a generic f there is no no-zero primi-
tive Hodge cycle, and we might be interested to translate this into non-existence of
Gorenstein rings of socle degree N for such polynomials. Note that Conjecture 7.2.1
and Theorem 7.2.1 are the only manifestation of the fact that δ0 has coefficients in
Z.

7.3 Hodge locus

Let T ⊂ C[x]d be the parameter space of smooth hypersurface of degree d and di-
mension d in Pn+1. For t ∈ T we have the hypersurface Xt given by ft ∈ C[x]d . We
fix 0 ∈ T. Recall the following definition of Hodge locus from [Mov17b]. For a
Hodge cycle δ ∈ Hodgen(X ,Z)0̌, let δt ∈ Hn(Xt ,Z)0̌ be the monodromy of δ to the
hypersurface Xt . Let OT,0 be the ring of holomorphic functions in a neighborhood
of 0 in T. We have the elements

FP,i(t) :=
∫

δt

PΩ

f i ∈ OT,0, P ∈ C[x]N−( n
2−i+1)d , i = 1,2, . . . ,

n
2
.
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Definition 7.3.1 The (analytic) Hodge locus passing through 0 and corresponding
to δ is the analytic variety

Vδ :=

{
t ∈ (T,0)

∣∣∣∣∣ FP,i(t) = 0, ∀P ∈ C[x]N−( n
2−i+1)d , i = 1,2, . . . ,

n
2

}
. (7.2)

We consider it as an analytic scheme with

OVδ
:= OT,0

/〈
P ∈ C[x]N−( n

2−i+1)d , i = 1,2, . . . ,
n
2

〉
. (7.3)

In the two dimensional case, that is dim(Xt) = 2, the Hodge locus is usually called
Noether-Lefschetz locus.

Theorem 7.3.1 Let Vδ0 ⊂ (T,0) be the Hodge locus passing through 0 and corre-
sponding to δ0. The Zariski tangent space of Vδ0 at 0 is canonically identified with
Id .

Proof. This follows by our definition of Hodge locias above. Note that

∂

∂ tα

∫
δt

PΩ

f i =

∫
δt

QPΩ

f i+1 , Q :=− ∂ f
∂ tα

. (7.4)

This implies that the linear part of FP,i for i < n
2 and only the linear parts of FP, n

2
contribute to the tangent space of Vδ0 at 0 ∈ T. ut

Im [Voi02] terminology, t∇(δ pd
0 ) = Id is the Zariski tangent space of Vδ0 at 0.

Proposition 7.3.1 If δ0 = [Z] and Z is given by the ideal IZ then

IZ,d ⊂ Id . (7.5)

In particular, if the primitive part of the cycles [Z1], [Z2], . . . , [Zk] form a one dimen-
sional sybspace of Hn(X ,Q)0 then

k

∑
i=1

IZi,d ⊂ Id . (7.6)

Proof. This follows from Carlson-Griffiths Theorem used in [MV17]. ut

Definition 7.3.2 An algebraic cycle Z1 is called perfect if there are other algebraic
cycles Zi, i = 2, . . . ,k as in the above definition such that (7.6) is an equality.

Assume that n≥ 2 is even and f ∈ C[x]d is of the following format:

f = f1 f n
2+2 + f2 f n

2+3 + · · ·+ f n
2+1 fn+2, fi ∈ C[x]di , f n

2+1+i ∈ C[x]d−di , (7.7)
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where 1≤ di < d, i = 1,2, . . . , n
2 +1 is a sequence of natural numbers. Let X ⊂ Pn+1

be the hypersurface given by f = 0 and Z ⊂ X be the algebraic cycle given by

Z : f1 = f2 = · · ·= f n
2+1 = 0.

We call Z a complete intersection algebraic cycle in X . In Hn(X ,Z) the homology
classes of all cycles

g1 = g2 = · · ·= g n
2+1 = 0, gi ∈ { fi, f n

2+1+i}

are equal up to sign and up to Z[Z∞]. Let us denote it by δ0. This with Proposition
7.3.1 imply that Z is perfect and

Jd := 〈 f1, f2, . . . , fn+2〉d ⊂ Id .

Now Macaulay’s theorem (see [Voi03] Theorem 6.19) implies that the ring (C[x]/J)
is also Groenstein of socle degree N and so I = J, and in particular, Id = Jd . Note
that Jd is the tangent space of Td at X and this proves the theorem.

In the case of Fermat variety Xd
n and

xd
2i−2−xd

2i−1 = fi f n
2+1+i, fi ∈C[x2i−2,x2i−1]di , f n

2+1+i ∈C[x2i−2,x2i−1]d−di , i= 1, . . . ,
n
2
+1

the Macaulay’s theorem is an easy exercise in commutative algebra.



Chapter 8
Bloch’s semi-regularity

In this section we review Bloch’s semi-regularity map introduced in [Blo72] and
some developments alterwards in [Ran93] and [DK16].

8.1 Normal bundle

Let Z ⊆ X be projective varieties over complex numbers and let

ΘX := the sheat vector fields in X
ΘX ,Z := the subsheaf of ΘX containing vectors tangent to Z
NZ⊆X := the normal bundle of X

We have the short exact sequence

0→ΘX ,Z →ΘX → NZ⊆X → 0 (8.1)

This might be taken as the definition of the normal bundle.

Proposition 8.1.1 We have canonical isomorphism

NZ⊆X ∼= HomOX (IZ⊂X → OX ).

v 7→ ( f 7→ d f (v)).
Proof. ut

The long exact sequence of 8.1 gives us the map α and γ in

H0(X ,NZ⊆X )→ H1(X ,ΘX ,Z)
γ→ H1(X ,ΘX )

α−−→ H1(X ,NZ⊆X )→ . . . (8.2)

Let us consider the following IVHS

∇̄ : H
n
2 (X ,Ω

n
2

X )→ Hom
(

H1(X ,ΘX ),H
n
2+1(X ,Ω

n
2−1

X )
)

59
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and [Z]pd ∈ H
n
2

(
X ,Ω

n
2

)
be the cohomology class of Z.

Theorem 8.1.1 The Bloch semi-regularity map is such that the following commutes

H1(X ,NZ⊆X )

α ↗ ↘ β

H1(X ,ΘX )
∇̄([Z]pd)−−−−−→ H

n
2+1
(

X ,Ω
n
2−1
) (8.3)

For this [Dan2017] Theorem 33 and [BuchweitzFlenner2000] Theorem 4.5,5.5.
From this we get:

Definition 8.1.1 We say that the algebraic cycle Z ⊂ X is semi-regular if the semi-
regularity map β is injective. It is called weakly semi-regular if one of the following
equivalent conditions hold.

Im(α)∩ker(β ) = {0} ⇔ ker

(
∇̄[Z]pd

)
= ker(α)

The fact that these are equivalent conditions follows from Theorem 8.1.1

Conjecture 8.1.1 The pair (X ,Z) is weakly semi-regular if and only if it satisfies
the alternative Hodge conjecture.

Let Hilb(X) and Hilb(X ,Z) be the Hilbert scheme parametrizing deformations
of X and the pair (X ,Z), respectively. We have the canonical map

κ : Hilb(X ,Z)→ Hilb(X)

and we denote by VZ its image. We denote by 0 ∈ Hilb(X) and 0 ∈ Hilb(X ,Z) the
points corresponding to X and (X ,Z), respectively. We would like to get some infor-
mation about the tangent space of VZ at 0. Since VZ is given as the image of another
variety, we will be able to get some information about the Im(D0κ) which might be
stricktly smaller than T0VZ . Let us now consider the diagram

H0(X ,NZ⊆X )→ H1(X ,ΘX ,Z)
γ→ H1(X ,ΘX )

α−−→ H1(X ,NZ⊆X )
↑ KSX ,Z ↑ KSX α̌ ↗

T0Hilb(X ,Z)
D0κ→ T0Hilb(X)

Let G be the linear reductive group acting on both Hilb(X) and Hilb(X). We identify
elements of Lie(G) with global vector fields in Hilb(X) and Hilb(X ,Z). In this way
the the differnetial Dκ of κ is the identity map on Lie(G). In the following proposi-
tion we need that the kernel of KSX is given by Lie(G). For instance, this is the case
for hypersurfaces.

Proposition 8.1.2 If the Kodaira-Spencer map KSX ,Z is surjective and the kernel of
KSX is given by Lie(G) then
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Im(D0κ) = ker(α̌).

Proof. The inclusion Im(D0κ)⊂ ker(α̌) is trivial and does not need any hypothesis.
We prove ker(α̌)⊂ Im(D0κ). Let a1 ∈ ker(α̌) and using the first hypothesis we find

→ a3
γ→ a2

α−−→ 0
↑ ↑ ↗
a4

D0κ→ a1,a5

In the final step, we find a5 = D0κ(a4). The element a1−a5 is in the kernel of KSX
and by the second hypothesis a1−a5 ∈ Lie(G). The map Dκ is identity restricted to
Lie(G)⊂ THilb(X ,Z).

ut

8.2 Complete intersection algebraic cycles

Consider the short exact sequence

0→ NZ⊆X → NZ⊆Pn+1 → NX⊆Pn+1 |Z → 0

all sheaves over Z, and the corresponding long exact sequence

H0(Z,NZ⊆Pn+1)
i→ H0(Z,NX⊆Pn+1)→ H1(Z,NZ⊆X )→ H1(Z,NZ⊆Pn+1)

Definition 8.2.1 Let f be a homogeneous polynomial of the form

f :=

n
2+1

∑
i=1

fi f n
2+1+i = 0.

We call Z : f1 = f2 = . . .= f n
2+1 a complete intersection algebraic cycle.

Proposition 8.2.1 Let Z ⊆ X be a complete intersection algebraic cycle. We have

1. NX⊆Pn+1 ' OX (d)

2. NZ⊆Pn+1 '
n
2+1
⊕

i=1
OZ(di)

The map NZ⊆Pn+1 → NX⊆Pn+1 |Z is given by:
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n
2+1
⊕

i=1
OZ(di)→ OZ(d)

(h1,h2, . . .h n
2+1)→

n
2+1

∑
i=1

hi f n
2+1+i

Here, we have used the restriction of fs ∈ H0(Pn+1,OPn+1(s)) ∼= C[x]s for s = n
2 +

2, · · · ,n+2 to Z. By Proposition 8.2.1 we have

H1(Z,NZ⊆Pn+1) =⊕
n
2+1
i=1 H1(Z,OZ(di)), (8.4)

Therefore, in order to describe H1(Z,NZ⊆X ) explicity, we need that the above coho-
mologies are zer and then we need to describe the map i explicity:

Proposition 8.2.2 If

H1(Z,OZ(a)) = 0, (8.5)
H1(Pn+1, IZ(a)) = 0, a = d1,d2, . . .d n

2+1, (8.6)

then

H1(Z,NZ⊆X )'

(
C[x]

〈 f1, f2, . . . f n
2+1, f n

2+2, . . . , fn+2〉

)
d

(8.7)

Proof. From (8.4) and (8.5) we have

H1(Z,NZ⊆X )'
H0(Z,OZ(d))

Im

(
n
2+1
⊕

i=0
H0(Z,OZ(di))

i−→ H0(Z,OZ(d)))

)

Let us take
0→ IZ → OPn+1 → OZ → 0

and tensor it with OPn+1(k)

0→ IZ(k)→ OPn+1(k)→ OZ(k)→ 0 (8.8)

and consider the corresponding long exact sequence

. . .H0(Pn+1, IZ(k))→H0(Pn+1,OPn+1(k))
α−−→H0(Z,OZ(k))→H1(Pn+1, IZ(k))→···

Therefore, if H1(Pn+1, IZ(k)) = 0 then the restriction map α is surjective and

H0(Z,OZ(k))∼=
C[x]k
(IZ)k

ut
Proposition 8.2.3 If for a complete intersection Z we have have (8.5) and (8.6) then
Z is semi-regular.
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Proof. Let I := 〈 f1, f2, . . . f n
2+1, f n

2+2, . . . , fn+2〉. The diagram (8.3) becomes

C[x]d/Id

α ↗ ↘ β

C[x]d
∇̄([Z]pd)−→ C[x]( n

2+2)d−n−2

Note that ker(α) = Id which is the Zariski tangent space of the Hodge locus.

Proposition 8.2.4 A linear cycle P n
2 inside a smooth hypersurface of dimension n

is semi-regular.

Proof. We need to check (8.5) and (8.6).

8.3 Castelnuevo-Mumford regularity

Definition 8.3.1 The Castelnuevo-Mumford regularity of a scheme Z ⊂ Pn+1 is the
smallest r such that

H i
(
Pn+1, IZ(r− i)

)
= 0, ∀i≥ 1 (8.9)

Theorem 8.3.1 The Castelnuevo-Mumford regularity of a complete intersection of
type d1,d2, . . . ,ds is less than or equal d1 ·d2 · · ·ds

Proof. We first prove this for a hypersurface Z of degree d1 for which we have

IZ = OPn+1(−Z)∼= OPn+1(−d1).

and so IZ(r− i)∼= OPn+1(r− i−d1). Using [Har77] Theorem 5.1, we know that for
all r ≥ d1 we have (8.9). Now assume that for a complete intersection Zs−1 of type
d1,d2, . . . ,ds−1 and all r ≥ d1 ·d2 · · ·ds−1 we have (8.9) and consider Zs.

The following short exact sequence might be useful

O→ IZ ·ΘX →ΘX ,Z →ΘZ → 0
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J. (2), 9:119–221, 1957.

Gro66. Alexander Grothendieck. On the de Rham cohomology of algebraic varieties. Inst.
Hautes Études Sci. Publ. Math., (29):95–103, 1966.



References 65

HA55. W. V. D. Hodge and M. F. Atiyah. Integrals of the second kind on an algebraic variety.
Ann. of Math. (2), 62:56–91, 1955.

Har75. Robin Hartshorne. On the De Rham cohomology of algebraic varieties. Publ. Math.,
Inst. Hautes Étud. Sci., 45:5–99, 1975.

Har77. Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate
Texts in Mathematics, No. 52.

Lef68. Solomon Lefschetz. A page of mathematical autobiography. Bull. Amer. Math. Soc.,
74:854–879, 1968.

Mov11. H. Movasati. Multiple Integrals and Modular Differential Equations. 28th Brazilian
Mathematics Colloquium. Instituto de Matemática Pura e Aplicada, IMPA, 2011.
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Chapter 9
Garbage

9.1 Integral Hodge Conjecture (work with Roberto and Enzo)

In order to produce A run the following commands.

LIB "foliation.lib";
int d=8; int n=2;
intvec mlist=d; for (int i=1;i<=n; i=i+1){mlist=mlist,d;}
ring r=(0,z), (x(1..n+1)),dp;
poly cp=cyclotomic(d); int degext=deg(cp) div deg(var(1));
cp=subst(cp, x(1),z);
minpoly =number(cp); //--z is the d-th root of unity---
list ll=MixedHodgeFermat(mlist); list J=ll[1][1]+ll[2][1];
for (i=2; i<=(n div 2); i=i+1){J=J+ll[1][i]+ll[2][i];}
list Jexp; for (i=1; i<=size(J); i=i+1)

{Jexp=insert(Jexp, leadexp(J[i]), size(Jexp));}
matrix A=DimHodgeCycles(mlist, Jexp);
(d-1)ˆ(n+1)-rank(A);

Lattice of Hodge cycles supported in linear cycles

For our article it is better to compute the following A. This lattice is explained
[Mov17b], 16.17.

LIB "foliation.lib";
int d=8; int n=2;
intvec mlist=d; for (int i=1;i<=n; i=i+1){mlist=mlist,d;}
ring r=(0,z), (x(1..n+1)),dp;
poly cp=cyclotomic(d); int degext=deg(cp) div deg(var(1));
cp=subst(cp, x(1),z);
minpoly =number(cp); //--z is the d-th root of unity---
list ll=MixedHodgeFermat(mlist); list J=ll[1][1]+ll[2][1];

67
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for (int i=2; i<=(n div 2); i=i+1){J=J+ll[1][i]+ll[2][i];}
//adding differnetial forms with zero period over linear cycles.
int nh=n div 2; list Pn2=LinearCoho(mlist,0);
J=J+RemoveList(ll[1][nh+1], Pn2[1]);

list Jexp; for (i=1; i<=size(J); i=i+1)
{Jexp=insert(Jexp, leadexp(J[i]), size(Jexp));}

matrix A=DimHodgeCycles(mlist, Jexp);
(d-1)ˆ(n+1)-rank(A);

In order to produce the intersection matrix we first produce the intersection ma-
trix of vanishing cycles. This is a µ×µ matrix Ψ produced by:

poly f; for (i=1; i<=n+1; i=i+1){f=f+var(i)ˆmlist[i]; }
ideal I=std(jacob(f)); I=kbase(I);
list Il=I[1..size(I)];
matrix Psi=IntersectionMatrix(Il);

(run this right after the first code)

Lattices

For a lattice V , Vp := V/pV is a Fp-vector space with the induced Fp-bilinear map
Vp×Vp→ Fp. In a similar we define V̌p. It is easy to see that

1. For a lattice V , we have det(V̌ ) = ±1 if and only if rankV̌ = rank(V̌p) for all
prime p.

2. For a basis vi of V (resp. Vp), rank(V̌ ) (resp. rank(V̌p)) is the rank of the the
matrix [vi · v j].

The following algorithm computes det(V̌ ) starting from A := [vi · v j].

1. Compute rank(A) over Q and call it ρ .
2. Find a ρ×ρ-block B of A such that det(B) 6= 0 and find all the primes det(B) =

pn1
1 · · · pns

s .
3. Among p’s above collect all p such that rank(A) over Fp is strictly less that

rank(A) over Q. Call these the bad primes.
4. Let p be a bad prime and so ρp := rank(A/Fp) is strictly less than ρ . Find ρp

rows of A/Fp linearly independent over Fp. Let v1,v2, . . . ,vρp ∈ V be the cor-
responding elements. Write any other line (corresponding to v) as a Fp-linear
combination of these rows. This gives us an element v−∑

ρp
i=1 aivi ∈V , with ai’s

integers between 0 and p−1, such that

p

∣∣∣∣∣(v− ρp

∑
i=1

aivi) ·w, for all w ∈V.
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Substitute v with v−∑
ρp
i=1 aivi and wirte the bilinear form in this new basis, let us

call it v1,v2, . . . ,vρp ,w1,w2, . . . ,wkp . The bilinear form in this new basis has the
matrix such that it has ρp×ρp block of non-zero determinant and elsewhere its
entries are divisable by p.

5. Define a new lattice W replacing wi’s with wi
p . We have

det(W̌ ) = det(V̌ )/pρ−ρp

6. Repeat the algorithm for W .

polarization

Let θ ∈ V be an element with d := θ · θ and call it the ploarization. We consider
the lattice θ⊥ of elements orthogonal to θ and call it the primitive part of V (with
respect to the polarization). We will need the following proposition in the discussion
of comparing the lattice of Hodge cycles and primitive Hodge cycles.

Proposition 9.1.1 If there is an element w ∈V such that w ·θ = 1 then

det(θ⊥) = d ·det(V ).

Proof. The property w ·θ = 1 implies that V =Zw⊕θ⊥: every v∈V can be written
uniquely as v := (v · θ)w+ ṽ for some unique ũ ∈ V . In particular, θ = dw+ θ̃ .
We take an arbitrary basis v1,v2, . . . ,vµ of θ⊥ and write θ ,v1,v2, . . . ,vµ in terms of
w,v1,v2, . . . ,vµ and conclude that

d ·det(θ⊥) = det(Zθ +θ
⊥) = d2 det(V )

which implies the desired statement.

Proposition 9.1.2 Let V be a lattice and W ⊂ V be its sublattice of the same rank
µ . We have

V
W
∼= Z/a1Z×Z/a1Z×·· ·×Z/aµZ

where a1,a2, · · · ,aµ are the elementary divisors of the Smith normal form of the
base change matrix A, that is, if the entries of [vi]µ×1 and [wi]µ×1 form a basis of V
and W respectively, then [wi] = A[vi]. In particular,

det(W ) = (a1 ·a2 · · ·aµ)
2 det(V )

Proof. We just make the change of basis U[wi] and T−1[vi] and get the result.
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Writing linear cycles in terms of vanishing cycles

In this section we explain how to write linear cycles in terms of vanishing cycles.
The main ingredients are the integration of ωβ over both cycles. Over linear cycles
it is done in [MV17]. Over vanishing cycles it is done in [Mov17b], Chapter 16,
formula (16.25) and we reproduce it here:

(2πi)−
n
2

∫
δ

β ′
Resi

(
xβ dx

(g−1)
n
2+1

)
=

(−1)n

n
2 !dn+1

∏
n+1
i=1

(
ζ
(β ′i +1)(βi+1)
d −ζ

β ′i (βi+1)
d

)
∏
j∈A

(
ζ

β j+1
2d +ζ

βσ( j)+1
2d

)
(9.1)

for β ∈ I
n
2 ,

n
2

P
n
2

, where

I
n
2 ,

n
2

P
n
2

:=

{
β ∈ I

∣∣∣∣∣βi +1
d

+
βσ(i)+1

d
= 1, i = 0,1,2, . . . ,n+1, for some σ

}
,

(9.2)
and σ is a permutation of 0,1, . . . ,n+1 without fixed point and with σ2 being iden-
tity. Here, β0+1

m0
:= n

2 + 1−Aβ arises from the projectivization of the affine Fermat
variety.

Three lines forming the capital letter E.

9.2 Harris-Voisin conjecture

Let us consider two Hodge cycles δk ∈ Hodgen(X
d
n ,Z)0̌, k = 1,2 and the corre-

sponding matrices [pi+ j(δk)], k = 1,2. Let Vδ1 ,Vδ2 ,Vδ1+δ2 ⊂ (T,0) be the Hodge
loci passing through 0 and corresponding to the Hodge cycles δ1,δ2 and δ1 + δ2,
respectively. We are interested in cases for which Vδ1+δ2 is not contained in none of
Vδ1 and Vδ2 . This phenomena produces more components of the Hodge locus using
the known ones. In general, we have

ker([pi+ j(δ1)])∩ker[pi+ j(δ2)]⊂ ker[pi+ j(δ1 +δ2)] (9.3)

and since Vδk
’s might have complicated singularities we can only get partial infor-

mation, looking at the Zariski tangent spaces of Vδk
, k = 1,2.

Proposition 9.2.1 Following the notation as above, assume that

1. Vδk
, k= 1,2 are smooth varieties at 0. This is satisfied when both [pi+ j(δk)]), k=

1,2 have maximal rank.
2. They intersect each other transversely at 0, that is, the codimension of the left

hand side of (9.3) is equal to the sum of codimensions of ker([pi+ j(δ1)])] and
ker([pi+ j(δ2)]).

3. ker[pi+ j(δ1 +δ2)] is contained in none of ker([pi+ j(δk)])], k = 1,2.
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Then Vδ1+δ2 is not contained in none of Vδ1 and Vδ2 .

Proof. The first and second hypothesis imply that Vδ1 ∩Vδ2 is smooth at 0 and its
tangent space is ker([pi+ j(δ1)])∩ker[pi+ j(δ2)]. This together with the third hypoth-
esis implies that Vδ1+δ2 is not contained in none of Vδ1 and Vδ2 . ut

Some new directions for this article.

1. Our arguments work also for degree d cycles P n
2 → X . We have to develope this

case too.
2. We might determine explicit linear combinations of P n

2 which are general, see
my book.

One can remove the hypothesis that Xt is in a Zariski open neighborphood of 0
by computing periods. This is being done by [Vil18]. Definition of Hodge Locus

We want to find the first d such that the number of special algebraic cycles Z’s is
infinite. After proving that the corrsponding NL components are distinct, we get an
explicit counterexample for Harris’ conjecture.

Proposition 9.2.2 If for two algebraic cycles Z1 and Z2 in the fermat variety, there
is no inclusion between ker[pi+ j(Z1))] and ker[pi+ j(Z2))], then there is no inclusion
beween NLZ1 and NLZ2 as analytic schemes. Morover, if

codim(ker[pi+ j(Z1))]∩ker[pi+ j(Z2))])>

(
d−1

3

)
(9.4)

then there is no inclusion beween NLZ1 and NLZ2 as analytic varieties.

At best we may hope that ker[pi+ j(Z1))]∩ ker[pi+ j(Z2))] = {0}. A necessary con-
dition so that this happens is:

2
(

d−1
3

)
>

(
d +3

3

)
−16

The first d such that this happens is d = 18. See the code below. Note that even in
d = 5,6 we may have (9.4).
LIB "general.lib";
for (int d=4; d<=20; d=d+1){d, binomial(d-1,3), binomial(d+3,3)-16, 2*binomial(d-1,3)-binomial(d+3,3)+16;}
4 1 19 -17
5 4 40 -32
6 10 68 -48
7 20 104 -64
8 35 149 -79
9 56 204 -92
10 84 270 -102
11 120 348 -108
12 165 439 -109
13 220 544 -104
14 286 664 -92
15 364 800 -72
16 455 953 -43
17 560 1124 -4
18 680 1314 46
19 816 1524 108
20 969 1755 183



72 9 Garbage

9.3 Quintic Fermat surfaces

For the quintic Fermat surface X5
2 , the matrix [pi+ j] is 4×40. Special Hodge cycles

δ has the ν invaraint with
ν(δ ) = 2,3

Proposition 9.3.1 There are finite number of special Hodge cycles δ ∈Hodge2(X
5
2 ,Z).

9.4 Smoothnes and reducedness of components of the Hodge loci

Let us denote by (x1,x2, · · · ,xn) be a coordinate system for (Cn,0) and let OCn,0 be
the ring of holomorphic functions in (Cn,0).

Proposition 9.4.1 Let us be given f , f1, f2, . . . , fk ∈ OCn,0, all vanishing at 0, and
assume that the linear part of f1, f2, . . . , fk together with xk+1, . . . ,xn are linearly
independent over C. Then f belongs to the ideal generated by f1, f2, . . . , fk if and
only if

[
∂ f

∂xk+1
, ∂ f

∂xk+2
, · · · , ∂ f

∂xn

]
=
[

∂ f
∂x1

, ∂ f
∂x2

, · · · , ∂ f
∂xk

]


∂ f1
∂x1

∂ f1
∂x2
· · · ∂ f1

∂xk
∂ f2
∂x1

∂ f2
∂x2
· · · ∂ f2

∂xk
...

...
. . .

...
∂ fk
∂x1

∂ fk
∂x2
· · · ∂ fk

∂xk


−1

∂ f1
∂xk+1

∂ f1
∂xk+2

· · · ∂ f1
∂xn

∂ f2
∂xk+1

∂ fk+2
∂x2
· · · ∂ f2

∂xn
...

...
. . .

...
∂ fk

∂xk+1

∂ fk
∂xk+2

· · · ∂ fk
∂xn


(9.5)

Proof. Let B2 = B1A−1
1 A2 be the above equaliy. We take fk+1, · · · , fn ∈OCn,0 which

vanish at 0 and such that the derivative of f = ( f1, f2, . . . , fn) at 0 has non-zero
determinant, and hence, we can regard f as a new coordinate system in (Cn,0). Now,
f belongs to the ideal generated by f1, f2, . . . , fk if and only if its derivative with
respect to fk+1, · · · , fn are zero. Using the chain rule and inverse function theorem:
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[
∂ f
∂ f1

, ∂ f
∂ f2

, · · · , ∂ f
∂ fn

]
=
[

∂ f
∂x1

, ∂ f
∂x2

, · · · , ∂ f
∂xn

]


∂x1
∂ f1

∂x1
∂ f2
· · · ∂x1

∂ fn
∂x2
∂ f1

∂x2
∂ f2
· · · ∂x2

∂ fn
...

...
. . .

...
∂xn
∂ f1

∂xn
∂ f2
· · · ∂xn

∂ fn

 (9.6)

=
[

∂ f
∂x1

, ∂ f
∂x2

, · · · , ∂ f
∂xn

]


∂ f1
∂x1

∂ f1
∂x2
· · · ∂ f1

∂xn
∂ f2
∂x1

∂ f2
∂x2
· · · ∂ f2

∂xn
...

...
. . .

...
∂ fn
∂x1

∂ fn
∂x2
· · · ∂ fn

∂xn


−1

(9.7)

= [B1,B2]

[
A1 A2
0 I

]−1

(9.8)

= [B1,B2]

[
A−1

1 −A−1
1 A2

0 I

]
(9.9)

9.5 Intersection of vanishing and algebraic cycles

We work in the affine chart x0 = 1. The sets Z1 and δβ intersect each other at the
point p := (1,0, · · · ,0,0) ∈ Cn+1. This point is not a smooth point of δβ and this
make our analysis of its intersection number with Z1 harder.

Proposition 9.5.1 For d an even number, the intersection number of Z1 with Γβ at
p is given by (−1)a, where a is the number of 2i’s such that

Im(ζ
1+2β2i+1−2β2i
2d )< 0.

Proof. Using the action of G on U we can assume that β = 0 and Z1 is given by

Z1 : x0− x1 = x2−a1x3 = x4−a2x5 = · · ·= xn−a n
2
xn+1 = 0.

where ai = ζ
1+2β2i+1−2β2i
2d . The tangent space of the Fermat variety X at the point p,

is the linear subspace of Cn+1 given by x1 = 0. Therefore, the orientation of X at p
is given by

α := dRe(x2)∧dIm(x2)∧·· ·∧dRe(xn+1)∧dIm(xn+1).

Here, by abuse of classical notations, we consider d(Re(x2)) and d(Im(x2)) the
vector in the real tangent space of X at p given by (0,1,0 · · · ,0) and (0, i,0,1, · · · ,0),
respectively. The orientation of Γβ , β = 0 at p is given by

β := dRe(x2)∧·· ·∧dRe(xn+1).
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The tangent space of Z1 at p has a basis of the form (0,a1,1,0, · · · ,0), (0, ia1, i,0, · · · ,0), · · · .
Let us make wedge γ of all these vectors and compute β ∧ γ:

β ∧ γ := β ∧ Im(a1)dIm(x2)∧dIm(x3)∧·· ·∧ Im(a n
2
)dIm(xn)∧dIm(xn+1).

Comparing α with β ∧ γ , the proof of the proposition follows.

Remark 9.5.1 Proposition 9.5.4 and its proof fails for d odd, because in this case
Γβ is not transversal to Z1 if for some i

2(β2i+1−β2i)+1≡2d d.

Proposition 9.5.2 For d an even number we have

〈Z1,δβ 〉=
{
(−1)∑

n+1
i=1 βi if β1 = 0

0 otherwise.

After many days of strygling I failed to compute this intersection number. Let
me just report what I did. We know that only δβ with β1 = 0 passes through p. A
face Γβ+a of δβ with a1 = 0 passes also through p. Two such faces have common
edge if an only if the corresponding a’s differs only in one entry. For simplicity,
one may take the case n = 2, where we are dealing with vanishing cycles which are
two dimensional spheres. In this case we have four faces of δβ passing through p.
They have different intersection numbers with Z1 and I do not know how the total
intersection number depends on these four numbers.

I have computed the dimension of the Hodge loci passing through the algebraic
cycle in Proposition ??. For the singular code see here

Intersection of Aoki-Shioda cycle with vanishing cycles

For the intersection of the Aoki cycle with δβ , we did not find a closed formula and
so we had to compute it by hand.

Definition 9.5.1 A triple (β1,β2,β3) ∈ {0,1,2,3,4,5}3 is called admissible if it is
of the format (a1 +3b1,a2 +3b2,a3 +3b3), where a and b varies in

{a1,a2,a3}= {0,1,2}, bi ∈ {0,1}, b1 +b2 +b3 = 1 or 3 (9.10)

In othwer words, it belongs to the following set of 24 elements:

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Proposition 9.5.3 We have

〈Z2,δβ 〉= ∑
a∈{0,1}3

(−1)∑
3
i=1(1−ai)ε(β3 +a1,β4 +a2,β5 +a3).

http://w3.impa.br/~hossein/WikiHossein/files/Singular%20Codes/2015-04-RankOfMxij.txt


9.5 Intersection of vanishing and algebraic cycles 75

where

ε(β1,β2,β3) =

+1 if β is admissible and Im((ζ 4β2 −ζ 4β3)(ζ 2β3 −ζ 2β1))> 0
−1 if β is admissible and Im((ζ 4β2 −ζ 4β3)(ζ 2β3 −ζ 2β1))< 0
0 otherwise.

ε(B) = 1 if B is admissible and = 0 otherwise.

Proof. Let us define

g := −x6
1− x6

2

f := −1+ x6
3 + x6

4 + x6
5

A vanishing cycle δβ is a join of a vanishing cycles δ1 of f = t with a vanishing
cycle δ2 of g = t, see [Mov11] §6.5. We have

U = ∪t∈C f−1(t)×g−1(t)

and in f−1(0) and g−1(0) we have algebraic cycles

W1 : x2
3 + x2

4 + x2
5 = 1−

√
3x3x4x5 = 0

W2 : x1 + ix2 = 0,

respectively. By definition Z2 = W1×W2. The number of intersection points of Z2
with δβ is in one to one correpondance with the number of intersection points of W1
with δ1. We compute the latter intersections.

Let us take a face Γ of δ1 which is parameterized by (ζ1t
1
6

1 ,ζ2t
1
6

2 ,ζ3t
1
6

3 ), where
ζi’s are 6-th roots of unity and t1 + t2 + t3 = 1, ti ≥ 0. The intersection of W1 with Γ

is given by the equations 
ζ 2

1 t
1
3

1 +ζ
1
3

2 t
1
3

2 +ζ 2
3 t

1
3

3 = 0
(t1t2t3)

1
6 = (

√
3ζ1ζ2ζ3)

−1

t1 + t2 + t3 = 1.

This implies that t1 = t2 = t3 = 1
3 and

ζ
2
1 +ζ

2
2 +ζ

2
3 = 0, ζ1ζ2ζ3 = 1.

We conclude that ζi’s must be of the form:

(ζ1,ζ2,ζ3) = (ζ a1+3b1 ,ζ a2+3b2 ,ζ a3+3b3)

where a and b varie in (9.11). These are 24 intersection points with the face Γ . Note
that we have still argue that the intersections are transversal. We have to discuss the
signs too.
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Remark 9.5.2 The set theoretic intersection of Z2 with a δβ is a a union of
real one dimensional curves. Let us take a face of δ which is parameterized by

(ζ1t
1
6

1 , · · · ,ζ5t
1
6

5 ), where ζi’s are 6-th roots of unity. The last equation of Z2 implies
that t1 = t2 and ζ1 + iζ2 = 0. The other equations of Z2 result in discrete values for
other ti’s and ζi’s.

Remark 9.5.3 The algebraic cycle

−x0 + x1 = x2
2 + x2

3 + x2
4 = x3

5−
√
−3x2x3x4.

intersects the vanishing cycle δβ , β1 = 0 in just one point and for β1 6= 0 it does not
intersects it. This intersection is not a smooth point of δβ and hence, even after tak-
ing a smooth cycle homotop to δβ , it may not be transversal and so the intersection
point might be multiple.

With the action of the group G and S6 we can produce more algebraic cycles.
For this topic see the draft May 2015. A singular code can be found here.

Intersection of linear vanishing cycles

In the Singular code below, still we have to inset the algebraic numbers contributed
by Bβ . For d = 3 these numbers can be computed easily.

LIB "foliation.lib";
intvec mlist=4,4,4; int n=size(mlist)-1; int d=lcm(mlist);
list wlist; //weights of variables
for (int i=1; i<=size(mlist); i=i+1)

{ wlist=insert(wlist, (d div mlist[i]), size(wlist));}
ring r=(0,z), (x(1..n+1)),wp(wlist[1..n+1]);
poly cp=cyclotomic(2*d); cp=subst(cp, x(1),par(1));
minpoly =number(cp);
list komak=MixedHodgeFermat(mlist);
list mhf=komak[1]; list I=komak[3];

//mhf serves as the elements of the cohomology
//I serves as the elements of the homology

list deX; for (i=1; i<=n+1; i=i+1)
{ deX=deX+mhf[i];}

int cmu=size(deX);int mu=size(I); list Il=I[1..cmu];
matrix intermat=IntersectionMatrix(Il);
matrix permat=PeriodMatrix(deX,Il, par(1)ˆ2);

intvec aa=0,0,0,0; intvec pp=0,1,2,3;
matrix Per=PeriodsLinearCycle(mlist, aa, pp,z);
int honu=(cmu-ncols(Per)) div 2;
matrix Per2[1][cmu]; Per2[1,honu+1..honu+ncols(Per)]=Per;

matrix myinter=Per2*inverse(permat)*transpose(intermat);

http://w3.impa.br/~hossein/WikiHossein/files/Singular%20Codes/2015-05-codimensionHL-CompleteIntersections.txt
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Algebraic cycle I

In this section we assume that n is even and we describe a set of algebraic cycles
of dimension n

2 which induce elements in Hn(X ,Z). A trivial algebraic cycle in X is
obtained by an intersection of P n

2+1 with X .

Z : x0 = x2 = · · ·= xn−4 = xn−2 = 0.

In other words, the algebraic cycle Z is induced by the polarization X ⊂ Pn+1. We
have

〈Z,Z〉= d.

For an algebraic cycle Zi of dimension n
2 in X let us define

Ži := Zi−
〈Z2,Z〉
〈Z,Z〉

Z

This is charactrized by the fact that 〈Ži,Z〉 = 0 and so Ži induces an element [Ži] ∈
Hn(X ,Z)0. The very special format of the Fermat variety gives us also projective
varieties P n

2 inside X :

Z1 : x0− x1 = x2−ζ2dx3 = x4−ζ2dx5 = · · ·= xn−ζ2dxn+1 = 0.

This cycle is obtained by the factorization

F =(x0−x1)g0(x0,x1)+(x2−ζ2dx3)g2(x2,x3)+(x4−ζ2dx5)g4(x4,x5)+· · ·+gn(xn,xn+1).

where ζ2d is the 2d-th primitive root of unity. The algebraic cycles Z1 intersects Z
transversely in the point [0; · · · ;0;0;1;ζ2d ] (this is the intersection of n+1 codimen-
sion one linear sub space of Pn+1) and so

〈Z1,Z〉= 1.

We work in the affine chart x0 = 1. The sets Z1 and δβ intersect each other at the
point p := (1,0, · · · ,0,0) ∈ Cn+1. This point is not a smooth point of δβ and this
make our analysis of its intersection number with Z1 harder.

Proposition 9.5.4 For d an even number, the intersection number of Z1 with Γβ at
p is given by (−1)a, where a is the number of 2i’s such that

Im(ζ
1+2β2i+1−2β2i
2d )< 0.

Proof. Using the action of G on U we can assume that β = 0 and Z1 is given by

Z1 : x0− x1 = x2−a1x3 = x4−a2x5 = · · ·= xn−a n
2
xn+1 = 0.
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where ai = ζ
1+2β2i+1−2β2i
2d . The tangent space of the Fermat variety X at the point p,

is the linear subspace of Cn+1 given by x1 = 0. Therefore, the orientation of X at p
is given by

α := dRe(x2)∧dIm(x2)∧·· ·∧dRe(xn+1)∧dIm(xn+1).

Here, by abuse of classical notations, we consider d(Re(x2)) and d(Im(x2)) the
vector in the real tangent space of X at p given by (0,1,0 · · · ,0) and (0, i,0,1, · · · ,0),
respectively. The orientation of Γβ , β = 0 at p is given by

β := dRe(x2)∧·· ·∧dRe(xn+1).

The tangent space of Z1 at p has a basis of the form (0,a1,1,0, · · · ,0), (0, ia1, i,0, · · · ,0), · · · .
Let us make wedge γ of all these vectors and compute β ∧ γ:

β ∧ γ := β ∧ Im(a1)dIm(x2)∧dIm(x3)∧·· ·∧ Im(a n
2
)dIm(xn)∧dIm(xn+1).

Comparing α with β ∧ γ , the proof of the proposition follows.

Remark 9.5.4 Proposition 9.5.4 and its proof fails for d odd, because in this case
Γβ is not transversal to Z1 if for some i

2(β2i+1−β2i)+1≡2d d.

Proposition 9.5.5 For d an even number we have

〈Z1,δβ 〉=
{
(−1)∑

n+1
i=1 βi if β1 = 0

0 otherwise.

Proof. After many days of strygling I failed to compute this intersection number.
Let me just report what I did. We know that only δβ with β1 = 0 passes through p.
A face Γβ+a of δβ with a1 = 0 passes also through p. Two such faces have common
edge if an only if the corresponding a’s differs only in one entry. For simplicity,
one may take the case n = 2, where we are dealing with vanishing cycles which are
two dimensional spheres. In this case we have four faces of δβ passing through p.
They have different intersection numbers with Z1 and I do not know how the total
intersection number depends on these four numbers.

I have computed the dimension of the Hodge loci passing through the algebraic
cycle in Proposition ??. For the singular code see here******

Algebraic cycles II

Aoki in [Aok87] describes some new algebraic cycles for the Fermat variety. In the
case of Fermat sextic fourfold this is:

Z2 : x2
3 + x2

4 + x2
5 = x3

0−
√

3x3x4x5 = x1 + ix2 = 0.

http://w3.impa.br/~hossein/WikiHossein/files/Singular%20Codes/2015-04-RankOfMxij.txt
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The fact that Z2 is inside X follows from:

−x6
0 + x6

1 + · · ·+ x6
5 = x6

1 + x6
2 +

(x2
3)

3 +(x2
4)

3 +(x2
5)

3−3x2
3x2

4x2
5 +

−(x3
0)

2 +(
√

3x3x4x5)
2

The basic idea behind this algebraic cycle is the following from high school algebra

x3 + y3 + z3−3xyz = (x+ y+ z)(x+ζ3y+ζ
2
3 z)(x+ζ

2
3 y+ζ3z).

The algebraic cycles Z2 intersects Z transversely at six points [0;0;0;a1;a2;a3],
where {a1,a2,a3}= {0,1, i} (this set is a complete intersection of type (1,1,1,2,3)).
Therefore,

〈Z2,Z〉= 6.

For the intersection of Z2 with δβ , we did not find a closed formula and so we
had to compute it by hand.

Definition 9.5.2 A triple (β1,β2,β3) ∈ {0,1,2,3,4,5}3 is called admissible if it is
of the format (a1 +3b1,a2 +3b2,a3 +3b3), where a and b varies in

{a1,a2,a3}= {0,1,2}, bi ∈ {0,1}, b1 +b2 +b3 = 1 or 3 (9.11)

In othwer words, it belongs to the following set of 24 elements:

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Proposition 9.5.6 We have

〈Z2,δβ 〉= ∑
a∈{0,1}3

(−1)∑
3
i=1(1−ai)ε(β3 +a1,β4 +a2,β5 +a3).

where

ε(β1,β2,β3) =

+1 if β is admissible and Im((ζ 4β2 −ζ 4β3)(ζ 2β3 −ζ 2β1))> 0
−1 if β is admissible and Im((ζ 4β2 −ζ 4β3)(ζ 2β3 −ζ 2β1))< 0
0 otherwise.

ε(B) = 1 if B is admissible and = 0 otherwise.

Proof. Let us define

g := −x6
1− x6

2

f := −1+ x6
3 + x6

4 + x6
5

A vanishing cycle δβ is a join of a vanishing cycles δ1 of f = t with a vanishing
cycle δ2 of g = t, see [Mov11] §6.5. We have



80 9 Garbage

U = ∪t∈C f−1(t)×g−1(t)

and in f−1(0) and g−1(0) we have algebraic cycles

W1 : x2
3 + x2

4 + x2
5 = 1−

√
3x3x4x5 = 0

W2 : x1 + ix2 = 0,

respectively. By definition Z2 = W1×W2. The number of intersection points of Z2
with δβ is in one to one correpondance with the number of intersection points of W1
with δ1. We compute the latter intersections.

Let us take a face Γ of δ1 which is parameterized by (ζ1t
1
6

1 ,ζ2t
1
6

2 ,ζ3t
1
6

3 ), where
ζi’s are 6-th roots of unity and t1 + t2 + t3 = 1, ti ≥ 0. The intersection of W1 with Γ

is given by the equations 
ζ 2

1 t
1
3

1 +ζ
1
3

2 t
1
3

2 +ζ 2
3 t

1
3

3 = 0
(t1t2t3)

1
6 = (

√
3ζ1ζ2ζ3)

−1

t1 + t2 + t3 = 1.

This implies that t1 = t2 = t3 = 1
3 and

ζ
2
1 +ζ

2
2 +ζ

2
3 = 0, ζ1ζ2ζ3 = 1.

We conclude that ζi’s must be of the form:

(ζ1,ζ2,ζ3) = (ζ a1+3b1 ,ζ a2+3b2 ,ζ a3+3b3)

where a and b varie in (9.11). These are 24 intersection points with the face Γ . Note
that we have still argue that the intersections are transversal. We have to discuss the
signs too.

Remark 9.5.5 The set theoretic intersection of Z2 with a δβ is a a union of
real one dimensional curves. Let us take a face of δ which is parameterized by

(ζ1t
1
6

1 , · · · ,ζ5t
1
6

5 ), where ζi’s are 6-th roots of unity. The last equation of Z2 implies
that t1 = t2 and ζ1 + iζ2 = 0. The other equations of Z2 result in discrete values for
other ti’s and ζi’s.

Remark 9.5.6 The algebraic cycle

−x0 + x1 = x2
2 + x2

3 + x2
4 = x3

5−
√
−3x2x3x4.

intersects the vanishing cycle δβ , β1 = 0 in just one point and for β1 6= 0 it does not
intersects it. This intersection is not a smooth point of δβ and hence, even after tak-
ing a smooth cycle homotop to δβ , it may not be transversal and so the intersection
point might be multiple.

With the action of the group G and S6 we can produce more algebraic cycles.
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More on ν invariant

Theorem 9.5.1 There are infinite number of components of the Noether-Lefschetz
locus passing through the Fermat point. The union of all these components is dense
in T both in the sense of Zariski and usuall topology.

Proof of Theorem ?? and Theorem ??

Theorem ?? follows from Green-Voisin’s theorem, see [Gre88, Gre89, Voi88],
which says that the set of surfaces X ⊂ P3 containing a linear P1 is a component of
the Noether-Lefschetz loci and it is the only component attaining the minimum codi-
mension d−3. In order to see this we take a fixed P1 ⊂ X and assume that it is pa-
rameterized by 0∈T. We consider the local Noether-Lefschetz loci A in a neighbor-
hood of 0 ∈ T corresponding to Hodge cycle deformations of δ0 = [P1] ∈H2(X ,Z).
From the above mentioned result of Green and voisin it follows that any component
Ai of A parameterizes surfaces with a linear rational curve. For each Ai we have an
analytic family of rational curves P1

t ⊂ Xt for t ∈ Ai. We put t = 0 and for each i
we get a linear ratinal curve P1

i ⊂ X0 which are all homologous to the original P1.
Furthermore, they are distinct. In order to finish the proof it remains to prove that:
Let X ⊂ P3 be a smooth surface of degree d ≥ 4 which contains two distinct linear
rational curves P1

1,P1
2. Then the homology classes [P1

1], [P1
2]∈H2(X ,Z) are also dis-

tinct. Two such line have positive intersection, whereas by adjunction formula, the
self intersection of P1

i ’s are negative.
Voisin in [Voi89] has shown that for d≥ 5 the second biggest component of NLLd

is of codimension 2d−7, which consists of those surfaces containing a conic. This
gives an affirmative answer to Conjecture ?? for n = 2 and d1 = 1,d2 = 2. Further
partial results in this direction are due to Cox [Cox90] for elliptic surfaces, Debarre
and Laszlo [DL90] for abelian varieties and Voisin [Voi90] for surfaces of degree
d = 6,7.
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