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Abstract

In this paper we report on a surprising relation between the transfer operators for
the congruence subgroups Γ0(nm), n, m ∈ N, and some kind of Hecke operators on
the space of vector valued period functions for the groups Γ0(n). We study special
eigenfunctions of the transfer operators for the groups Γ0(nm) with eigenvalues ∓1
which are also solutions of the Lewis equations for these groups and which are
determined by eigenfunctions of the transfer operator for the congruence subgroup
Γ0(n). In the language of the Atkin–Lehner theory of old and new forms one should
hence call them old eigenfunctions or old solutions of the Lewis equation for Γ0(n). It
turns out that certain linear combinations of the components of these old solutions
for the group Γ0(nm) determine for any m a solution of the Lewis equation for the
group Γ0(n) and hence also an eigenfunction of the transfer operator for this group.
Our construction gives linear operators T̃n in the space of vector valued period func-

tions for the group Γ0(n) which are rather similar to the Hecke operators. Indeed, in
the case of the group Γ0(1) = SL(2, Z) these operators are just the well-known Hecke
operators on the space of period functions for the modular group, derived previously
using the Eichler–Manin–Shimura correspondence between period polynomials and
modular forms for this group, and its extension to Maass wave forms by Lewis and
Zagier.

1. Introduction

This paper has three main ingredients. The first is the transfer operator from stat-
istical mechanics which plays an important role in the ergodic theory of dynamical
systems and especially in the theory of dynamical zeta functions (see [14, 19]). Here
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we are interested in the transfer operators for the geodesic flow on the surfaces Γ\H

for Γ any of the congruence subgroups Γ0(n). These operators have been introduced
in [2, 3] in the study of the Selberg zeta function for these groups.
The second are certain functions holomorphic in the cut plane, introduced by

J. B. Lewis in [7] in his study of the Maass wave forms for PSL(2, Z). They were
later named period functions by Zagier (see [21]) because of their close relation to
the classical period polynomials in the Eichler–Manin–Shimura theory of periods for
cusp forms. Period functions for the modular group are solutions of the so called
Lewis equation

φ(z) = φ(z + 1) + λz−2sφ

(
1 +

1
z

)
(1·1)

with λ = ±1, which fulfill certain growth conditions at infinity depending on the
weight s. When this weight satisfies R(s) = 1/2, these solutions are in 1-1 corres-
pondence with the Maass cusp forms (see [9]). There is a simple relation between
the transfer operator for PSL(2, Z) and the period functions: they are just the ei-
genfunctions of this operator with eigenvalue ±1 (see [3]). When s is a negative
integer s = −n the space of polynomial solutions of the Lewis equation is in 1-1
correspondence with the space of period polynomials for PSL(2, Z) (see [21]). The
Eichler–Shimura–Manin theory of periods however tells us that this space of period
polynomials modulo a certain one dimensional space is isomorphic to the direct sum
of two copies of the space of cusp forms of weight 2n + 2 in the half plane.
The space of cusp forms is extensively studied in number theory and in particular

we have the Hecke algebra acting on it.
A Theorem by Choie and Zagier (see [4, section 3, theorem 2]) gives a criterion

to find an explicit realization of the corresponding Hecke operators when acting on
the space of period polynomials or more generally period functions. Generalizing
the description of Hecke operators for Maass wave forms by Manin in [11], Choie
and Zagier found (see [4, theorem 3]) an explicit form for these Hecke operators
in the space of period polynomials. Their matrices, however, from which the Hecke
operators are constructed via the well-known slash action of the group Matn(2, Z)
on smooth functions, have negative entries and hence their action is defined only for
entire weights.
The third important ingredient in our paper is a realization of the Hecke operators

on period functions for SL(2, Z) which we first learned from T. Mühlenbruch (to
appear in his thesis, see [18]). Here one uses matrices in the set

Sn �
{(

a b
c d

)
| a > c � 0, d > b � 0, ad − bc = n

}

such that the Hecke operators Tn have the form

Tn �
∑

A∈Sn

A (1·2)

acting on the period functions via the slash operator, and where the sum is taken in
the free abelian group generated by Sn. All the matrices from the set Sn have positive
entries and so one can define the Hecke operators on period functions for any weight
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s∈C. An analogous realization of the Hecke operators on modular symbols has been
given also by L. Merel in [17].
The relation between the transfer operator and the period functions was considered

originally only for the modular group SL(2, Z). In this case the Lewis equation is
a scalar equation for scalar functions and its solutions can be related explicitly to
the period functions of modular and Maass wave forms. Part of this theory has been
extended to more general Fuchsian groups. Chang and Mayer began in a series of
papers (see [3] and its references) to investigate the transfer operator approach to
congruence subgroups like Γ0(n), Γ0(n) or Γ(n). This lead them to transfer operators
acting in Banach spaces of vector valued holomorphic functions. The eigenfunc-
tions of these operators then fulfill general Lewis equations in vector spaces whose
dimension is just the index in SL(2, Z) of the corresponding subgroup.
In this paper we discuss special solutions of these Lewis equations for the con-

gruence subgroups Γ0(nm) for fixed n and m∈N arbitrary which are determined by
the solutions of the Lewis equation for the group Γ0(n). Hence our construction is
reminiscent of the theory of Atkin and Lehner of old and new forms (see [1]). The
exact connection, however, will only be discussed in a forthcoming paper.
To state our main results and to sketch the content of each section we have to

fix the notations used throughout the text. For each integer n let Matn(2, Z) (resp.
Mat∗(2, Z)) be the set of 2× 2-matrices with integer entries and determinant n (resp.
nonzero determinant) and Rn�Z[Matn(2, Z)] (resp. R�Z[Mat∗(2, Z)]) the set of
finite linear combinations (with coefficients in Z) of the elements of Matn(2, Z) (resp.
Mat∗(2, Z)). Note that R = �n∈Z\{0}Rn and Rn · Rm ⊆ Rnm. By definition we have

GL(2, Z) = Mat1(2, Z) �Mat−1(2, Z).

The following four elements of GL(2, Z) will play a prominent role in this paper:

I �
(
1 0
0 1

)
, M �

(
0 1
1 0

)
, T �

(
1 1
0 1

)
, Q �

(
0 −1
1 0

)
.

It turns out that instead of the groups Γ0(n) it is more convenient to use their
extensions Γ0(n) in GL(2, Z):

Γ0(n)�
{(

a b
c d

)
∈ GL(2, Z) | c ≡ 0 mod n

}
= Γ0(n) � Γ0(n)

(
1 0
0 −1

)
.

In Section 4 we recall the definition of the transfer operators for Γ0(n) and Γ0(n)
as used by Chang and Mayer in [2, 3], respectively by Manin and Marcolli in [10],
discuss briefly their relation and derive the Lewis equation for the eigenfunctions of
the operator ofManin andMarcolli. This operator is defined on a space of holomorphic
functions with values in the representation space of GL(2, Z) induced from the trivial
representation of Γ0(n). In order to describe and solve the corresponding Lewis
equation it turns out that the correct indexing of the components of these functions
by the set

In �Γ0(n)\GL(2, Z)

is very helpful. The group GL(2, Z) acts on this coset space on the right in a canonical
way. For two positive integers n and m the inclusion Γ0(nm) ⊆ Γ0(m) induces a
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canonical map

σn,m: Inm −→ Im.

The detailed structure of In will be studied in Section 5 (in particular see Propos-
itions 5·4 and 5·8). The different components of the Lewis equation can then be
written for i ∈ In as follows:

φi(z)− φiT−1 (z + 1)− λz−2sφiT−1M

(
1 +

1
z

)
= 0, (1·3)

where λ = ±1. These equations have to be solved simultaneously with functions φi

holomorphic in the cut plane C \ (−∞, 0] for all i ∈ In. Replacing i by iT−1MT and
z by 1/z, multiplying the resulting equation by λz−2s, and then subtracting it from
the original equation we get

φi(z) = λz−2sφiT−1MT

(
1
z

)
, i ∈ In. (1·4)

We then call φi and φiT−1MT a symmetric pair.
Let Iλ � (I − T − λTM )R be the right ideal generated by (I − T − λTM ) in R.

Consider then the following system of equations in the right R-module Iλ\R:

ψi − ψiT−1T − λψiT−1MTM ≡ 0 mod Iλ, ∀i ∈ In, (1·5)

which obviously is closely related to (1·3). Here the ψi’s are unknown elements inR.
The symmetry (1·4) for equations (1·5) reads

ψi = λψiT−1MT M, i ∈ In. (1·6)

Note the two different matrix actions in these equations: on the one hand matrices
act from the right on the index i of ψi and on the other hand matrices act from the
right on elements ψi via the ring multiplication of R. Moreover, in (1·3) we have the
familiar slash operation formally defined for s ∈ C and R ∈ R by Z-linear exten-
sion of

(φ |s R)(z) = |detR|s(cz + d)−2sφ(Rz) (1·7)

forR = (a b
c d) ∈ Mat∗(2, Z) withRz = (az + b)/(cz + d). Now suppose ψi, i∈ In, solves

(1·5) and φ is a solution of the Lewis equation (1·1) for SL(2, Z). For s an integer the
left-hand side of (1·5) can act on φ via the usual slash-operator and one obtains a
solution (φi)i∈In

of (1·3) by setting

φi � φ |s ψi

since φ |s Iλ = 0.
It is well known that 1/z is up to a constant factor the only solution of the scalar

Lewis equation (1·1) for λ = 1 and s=1 holomorphic in the complex z-plane cut
along (−∞, 0] (see [15]). It follows from a result by Manin and Marcolli (see [10,
proposition 4·2]) that for these parameter values (φi)i∈In

with φi(z) = 1/z for all
i ∈ In is, up to a trivial scalar factor, also the unique solution of (1·3) holomorphic in
the same domain. Hence, if (ψi)i∈In

solves (1·5), then there exists a constant κ such
that

1
z

∣∣∣∣ 1ψi = κ
1
z

∀i ∈ In
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must hold. Suppose furthermore that ψi =
∑

A∈Pi
A, where Pi is some finite subset of

Matn(2, Z). Then the above equality reads
∑

A∈Pi
1/(az + b)(cz + d) = κ(1/z), where

A = (a b
c d). The right-hand side of this expression obviously has a pole and a zero

only at 0 and ∞. Hence other poles and zeroes of the left-hand side must cancel.
This means, however, that the matrices A ∈ Pi have to be chosen in a very specific
way. Explicit calculations for the groups Γ0(n) for small n lead us to an operator
K:A �→ K(A) which attaches to every matrix A ∈ Pi another matrix KA whose
action just cancels the poles and zeros generated by the action of A. In all cases
considered only a finite number of matrices A were necessary to get the correct pole
and zero structure. We later found that an operator similar to K was indeed used
already by Choie and Zagier [4] and also by Mühlenbruch (see [18, lemma 9]) in their
completely different derivation of the Hecke operators. The explicit form of the map
K is given as

K : Sn \ Yn −→ Sn \ Xn(
a b
c d

)
�−→ T � d

b �Q

(
a b
c d

)
=

(
−c +

⌈
d
b

⌉
a −d +

⌈
d
b

⌉
b

a b

)
,

where

Xn �
{(

c a
0 n

c

)
, c | n, 0 � a <

n

c

}
, Yn �

{(
c 0
a n

c

)
, c | n, 0 � a < c

}

and where for a real r we have denoted by 	r
 the integer satisfying 	r
−1 < r � 	r
.
With the usual notation of Gauss brackets we obtain 	r
 = −[−r]. The inverse of K
is given by

K−1 :
(

a b
c d

)
�−→ MT � a

c �QM

(
a b
c d

)
=

(
c d

−a +
⌈

a
c

⌉
c −b +

⌈
a
c

⌉
d

)

(see Proposition 6·1). Borrowing terminology from algebraic geometry one might
call K a rational automorphism of Sn.
To each index i ∈ In we will attach a matrix (see Definition 5·9)

Ai =
(

c b
0 n

c

)
,

where c � 1, c | n and 0 � b < n
c
satisfy gcd(c, n

c
, b) = 1 . The numbers c and b are

then uniquely determined by the index i.
Starting nowwith amatrixAi ∈ Xn we applyK repeatedly until we get an element

of Yn where the iteration stops. Since K is injective, two such chains of elements in
Sn are either equal or disjoint. For i ∈ In we denote by ki the number such that
KjAi is well-defined for j � ki and Kki Ai ∈ Yn (see Definition 6·2). Obviously each
element in Xn � Yn forms a one-element chain so that ki = 0 for Ai ∈ Xn � Yn. Then
we have:

Theorem 1·1. The matrices

ψi =
ki∑
j=0

Kj(Ai), i ∈ Im

determine a solution of equations (1·5). Acting by these matrices through the slash operator
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on a solution φ of the Lewis equation (1·1) for the group SL(2, Z) with weight s gives a
solution of equation (1·3) for the group Γ0(m) with the same weight s.

In the second part of the theorem we used the fact that the slash operator with
weight s an arbitrary complex number is indeed well defined. Details will be discussed
in Section 3.
Theorem 1·1 shows that any solution φ of the scalar Lewis equation (1·1) for

SL(2, Z) determines a solution (φ |s ψi)i∈In
of the Lewis equation (1·3) for Γ0(m).

The next step is to generalize this fact in the following way: for any solution (φi)i∈In

of the Lewis equation (1·3) for Γ0(n) we determine a solution (φi)i∈In m
of the Lewis

equation (1·3) for Γ0(nm), where m is any positive integer. To state our theorem
precisely we need the following proposition, which we will prove in Section 6:

Proposition 1·2. Let σn,m: Inm → Im be the canonical map. For any i ∈ Inm and
0 � j � kσn ,m (i) there exists a unique index ı̂ij ∈ In such that Aı̂i j

(KjAσn ,m (i))A
−1
i is

integer-valued and hence in SL(2, Z).

The main result of this paper is:

Theorem 1·3. Let {ψı̂}ı̂∈In
(resp. {φı̂}ı̂∈In

) be any solution of the Lewis equation (1·5)
(resp. (1·3)) for Γ0(n). Then

ψi �

kσn ,m (i )∑
j=0

ψı̂i j
KjAσn ,m (i), i ∈ Inm (1·8)

resp. φi �

kσn ,m (i )∑
j=0

φı̂i j
|s KjAσn ,m (i), i ∈ Inm

is a solution of the Lewis equation (1·5) (resp. (1·3)) for Γ0(nm). If {ψı̂}ı̂∈In
is the special

(old) solution of Theorem 1·1, then (1·8) coincides (modulo Iλ) with the special (old)
solution of Theorem 1·1 for Γ0(nm).

In the case n=1 the map σn,m is the identity map and Theorem 1·3 reduces to
Theorem 1·1.
Theorem 1·3 shows that any solution {φı̂}ı̂∈In

of the system of Lewis equations
(1·3) for the group Γ0(n) determines a solution {φi}i∈In m

of these equations for any of
the groups Γ0(nm). Furthermore one shows that certain linear combinations of the
components of any solution of the Lewis equations (1·3) for the groups Γ0(nm) for
fixed n and arbitrary m ∈ N define a solution of these equation for the group Γ0(n).
Combining this fact with Theorem 1·3 then allows us to define for any n a family of
linear operators {T̃n,m}m∈N mapping the space of solutions of the Lewis equations
for Γ0(n) to itself. For these operators we find:

Proposition 1·4. The linear operators T̃n,m mapping the space of solutions of the
Lewis equations (1·5) for the group Γ0(n) into itself are given by

(T̃n,mψ)ı̂ =
∑

l∈σ−1
m ,n (ı̂)

kσn ,m (l)∑
j=0

ψı̂l ,j
KjAσn ,m (l), ı̂ ∈ In.
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If {φı̂}ı̂∈In
is any solution of the Lewis equations (1·3) for the group Γ0(n), then the

functions {φ′
ı̂}ı̂∈In

given by

φ′
ı̂(z) =

∑
l∈σ−1

m ,n (ı̂)

kσn ,m (l )∑
j=0

φîl ,j
|s KjAσn ,m (l)(z), ı̂ ∈ In

also determine a solution of these equations for the group Γ0(n).

Note that in the above formulas the first sum is taken over l ∈ σ−1
m,n(ı̂) and not

l ∈ σ−1
n,m(ı̂). In the special case of the group Γ0(1) = GL(2, Z) the operators T̃m � T̃1,m

are closely related to the Hecke operators Tm on the period functions for SL(2, Z)
in (1·2):

Proposition 1·5. The operators T̃m and the Hecke operators Tm defined in (1·2) are
related through

Tm =
∑
d2|m

(
d 0
0 d

)
T̃ m

d2
.

In particular they coincide if and only if m is a product of distinct primes.

Here we have identified the matrices Tm and T̃ m
d2
with the operators they define via

the slash action. The operators T̃m have been constructed through special solutions
of the Lewis equation for the congruence subgroups Γ0(m). There immediately arises
the question if this is also the case for the Hecke operators Tm. Indeed, it turns
out that the operators T̃ m

d2
appearing in Proposition 1·5 above can also be related to

special solutions of the Lewis equation for the group Γ0(m): we show in Section 8
that any solution of the Lewis equation for the group Γ0(n) determines besides the
solution of Theorem 1·3 another trivial solution of the corresponding equation for
the group Γ0(nm) for arbitrarym ∈ N. Its components are just identical copies of the
former’s components (see Proposition 8·3). Taking then for the solution for the group
Γ0(n) the solution of Theorem 1·1 we get a solution for the group Γ0(nm). The sum of
its components gives µ-times the operator T̃n where µ is the index of Γ0(nm) in Γ0(n).
Thus also the operators T̃ m

d2
can be constructed from special solutions of the Lewis

equation and hence from special eigenfunctions of the transfer operator for the group
Γ0(m). The relation of our operators T̃n,m for general n with the Hecke operators
Tm for the congruence subgroups Γ0(n) will be discussed in another paper. The above
results depend in a crucial way on a modified one-sided continued fraction expansion
for rational numbers and closely related partitions of R described in section 2.
The technical results about the slash-operation are provided in section 3 and the

transfer operators for Γ0(n) and Γ0(n) are introduced in section 4. The indexing
coset space Γ0(n)\GL(2, Z) is studied in detail in section 5. In section 6 we derive
and discuss the operator K and in section 7 we construct our special solutions of the
Lewis equations. Finally, in section 8 we show how our results lead to a completely
new approach to the Hecke operators on the space of period functions for SL(2, Z)
which basically only uses the transfer operators for the congruence subgroups Γ0(n),
respectively Γ0(n).
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2. A modified continued fraction expansion

This section is inspired by the work of Mühlenbruch in [18] adapted appropriately
to our needs. Mühlenbruch introduces a modified continued fraction expansion for
positive rational numbers and attaches to each x∈Q+ a suitable chain of elements
of R called a partition of x. To explain his construction we begin by collecting some
facts which are standard in the theory of continued fractions (see [5]). Consider the
finite continued fraction expansion of x

x = [a0, a1, . . . , aN ]� a0 +
1

a1 + 1
a2 + ···+ 1

aN

and put pn/qn � [a0, a1, . . . , an] for 0 � n � N with gcd(pn, qn) = 1 and qn � 0. Then
the recursion formulas

pn = anpn−1 + pn−2 (2·1)
qn = anqn−1 + qn−2 (2·2)

hold. In particular, we have

q0 � q1 < · · · < qN . (2·3)

Moreover, the following equations
p0
q0

<
p2
q2

< · · · � x � · · · <
p3
q3

<
p1
q1

(2·4)

and

pnqn−1 − qnpn−1 = (−1)n−1, pnqn−2 − qnpn−2 = (−1)nan (2·5)

hold. We are going to fill the above sequence (2·4) with more rational numbers. We
do that for the left hand side of the sequence, the case we later use. Assume that n is
even. The sequence of numbers

[a0, a1, . . . , an−1, t] =
tpn−1 + pn−2
tqn−1 + qn−2

, for t = 0, . . . , an

is then strictly increasing from pn−2/qn−2 to pn/qn. We insert these numbers into the
left-hand side of (2·4) and obtain the longer sequence:

· · · <
pn−2
qn−2

<
pn−1 + pn−2
qn−1 + qn−2

< · · · <
(an − 1)pn−1 + pn−2
(an − 1)qn−1 + qn−2

<
anpn−1 + pn−2
anqn−1 + qn−2

=
pn

qn

< · · ·

(2·6)

Here we have used the convention 1/(a + 1/0) = 0. If we denote the rational numbers
xj in this sequence by xj = p′

j/q′j with gcd(p
′
j , q

′
j) = 1, then two consecutive numbers

p′
j/q′j < p′

j+1/q′j+1 satisfy q′j < q′j+1 and

p′
j+1q

′
j − p′

jq
′
j+1 = 1, (2·7)

where the last equality is a consequence of (2·5). Recall (see [5]) that for x ∈ Q+

there is a unique sequence a0, . . . , an ∈N such that an > 1 and x = [a0, . . . , an]: if
x = [b0, . . . , bm−1, 1] for b0, . . . , bm−1 ∈ N, then obviously x = [b0, . . . , bm−1 + 1], and
hence m = n + 1 and a0 = b0, . . . , an−1 = bn−1, an = bn + 1. This will be used in the
following definitions.



Transfer operators for Γ0(n) 89

Definition 2·1. Given x∈Q+, the modified continued fraction expansion of x is the
sequence xj , j = 0, 1, . . . recursively defined by:

(i) x0 � x = [a0, . . . , aN ] with aN > 1;
(ii) If xj−1 = [b0, . . . , bm] with bm > 1, then

xj �

{
[b0, b1, . . . , bm−1] if 2 � | m

[b0, b1, . . . , bm − 1] if 2 | m.

If xj−1 = 0, then xj = −∞ and the sequence stops.

Note that the length of the modified continued fraction expansion of x=
[a0, . . . , aN ] with aN > 1 is not greater than

∑N
i=1,even ai.

Proposition 2·2. Let x ∈ Q+ and x0, x1, . . . , xk−1, xk with x0 = x and xk = −∞ be
its modified continued fraction expansion. If xj = pj/qj with gcd(pj , qj) = 1 and qj � 0,
then we have pj−1qj − pjqj−1 = 1 for j = 1, . . . , k and q0 > q1 > · · · > qk−1 > qk = 0.

Proof. Suppose that xj−1 = pj−1/qj−1 = [b0, . . . , bm] with bm > 1. If m is odd we
have xj = pj/qj = [b0, . . . , bm−1] and the relation pj−1qj − pjqj−1 = 1 follows from
(2·5) applied to the continued fraction [b0, . . . , bm], whereas qj−1 > qj is a consequence
of the inequalities in (2·3) for [b0, . . . , bm].
In the case where m is even the same calculation leading to (2·7) can be used

to derive pj−1qj − pjqj−1 = 1 from the recursion relations for the continued fraction
[b0, . . . , bm]. Here qj−1 > qj follows also from the recursion relations for the continued
fraction [b0, . . . , bm].

Definition 2·3. A sequence x0, x1, . . . , xk−1, xk of rational numbers is called an ad-
missible sequence of length k + 1 if the following property holds: if xj = pj/qj , where
gcd(pj , qj) = 1 and qj � 0, then

det
(

qj−1 −pj−1
qj −pj

)
= 1 ∀j = 1, 2, . . . , k. (2·8)

Let x be a positive rational number. A partition P of x is an admissible sequence
x0, x1, . . . , xk−1, xk with x0 = x and xk = −∞. The number k + 1 is called the length
of the partition. We use the convention −∞ = −1/0, 0 = 0/1. A partition P of x is
called a minimal partition if

q0 > q1 > · · · > qk−1 > qk = 0. (2·9)
Remark 2·4. From (2·8) it follows that pj−1qj > pjqj−1 which implies xj−1 > xj

for all j = 1, 2, . . . , k. Moreover, (2·8) shows that the equation pj−1qj ≡ 1 mod qj−1
has a unique solution qj with 0 � qj < qj−1. Therefore each x ∈ Q+ has a unique
minimal partition, which we denote by Px. According to Proposition 2·2 the modified
continued fraction expansion of x ∈ Q+ satisfies (2·8) and (2·9). Therefore it agrees
with the minimal partition Px. We will show in Proposition 2·6 that there is indeed
no partition whose length is less than the length of the minimal partition which
justifies the name minimal partition.

Throughout this paper we will use the notations introduced in Definition 2·3.
Remark 2·5. Let x=x0, x1, . . . , xk−1, xk be a partition of x∈Q+ and xj = pj/qj with

gcd(pj , qj) = 1 and qj � 0.
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(i) The equation pk−1qk − pkqk−1 = 1 implies that −pk = 1 = qk−1. If the parti-
tion is minimal, Remark 2·4 and the construction of the modified continued
fraction expansion of x show, that in addition we have pk−1 = 0.

(ii) If qj−1 = qj for some j ∈{1, . . . , k − 1}, then (2·8) shows that qj−1 = qj = 1, i.e.,
xj = pj = pj−1 − 1 = xj−1 − 1.

For a partition P of x of length k + 1 given by x0, x1, . . . , xk−1, xk and any index
1 � l � k − 1, a simple calculation shows that for xj = pj/qj with gcd(pj , qj) = 1 for
j = 0, 1, . . . , k the sequence

x0, . . . , xl−1,
pl−1 + pl

ql−1 + ql

, xl, . . . , xk−1, xk (2·10)

defines a new longer partition P (l) of x. We call it a Farey extension of the partition
P . One can also introduce the inverse of this construction: if a partition P con-
tains a triple of the type pl−1/ql−1, (pl−1 + pl)/(ql−1 + ql), pl/ql, then one can delete
(pl−1 + pl)/(ql−1 + ql) and obtains in this way a shorter partition P̌ (l) of x called a
Farey reduction of P .

Proposition 2·6. Every partition P of a rational number x∈Q+ can be obtained
from the minimal partition Px of x by a finite number of Farey extensions P (l). The
minimal partition Px can be derived from any partition P by a finite number of Farey
reductions P̌ (l).

Proof. Given a partition x0, x1, . . . , xk−1, xk of xwith xj = pj/qj and gcd(pj , qj) = 1
it is enough to prove that if the sequence (qj)j=0,...,k is not decreasing, then there exists
a number l ∈ {1, . . . , k − 1} such that

pl

ql

=
pl+1 + pl−1
ql+1 + ql−1

.

Since qk = 0 there exists for (qj)j=0,...,k not strictly decreasing an index l ∈ {1, . . . , k−
1} such that

ql > ql+1 but ql � ql−1.

If ql > ql−1, then the triple xl−1, xl, xl+1 must be of the form
pl−1

ql−1
, e+mpl−1

f +mql−1
,

e+ (m−1)pl−1

f + (m−1)ql−1
, where m ∈ N and e

f
is the unique rational number such that

pl−1f − ql−1e = 1 and 0 � e < ql−1.
If ql = ql−1, then Remark 2·5 shows that ql−1 = ql =1 and xl−1, xl, xl+1 is of the

form pl−1

1 , pl−1 − 1
1 , pl+1

ql+1
. But then (2·8) shows that pl+1 = (pl−1 − 1)ql+1 − 1 so that

pl−1 + pl+1

ql−1 + ql+1
= pl−1 − 1,

which implies the claim also in this case.

Lemma 2·7. Let Px = (x0, x1, . . . , xk) be the minimal partition of x ∈ Q+. If xj =
p′

j

q′
j

with gcd(p′
j , q

′
j) = 1 and q′j � 0, then we have

(i) x < (p′
j−1 − p′

j)/(q
′
j−1 − q′j) for j = 1, 2, . . . , k.

(ii) 	(xq′j+1 − p′
j+1)/(xq′j − p′

j)
 = p′
j−1q

′
j+1 − p′

j+1q
′
j−1 for j = 1, 2, . . . , k − 1.

Proof. (i) Let x0 = [a0, . . . , aN ] be the continued fraction expansion of x with aN >
1. If pn and qn are the corresponding enumerators and denominators defined by (2·1)
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and (2·2), then Remark 2·4 shows that the sequence · · · >
p′

j−1

q′
j−1

>
p′

j

q′
j

>
p′

j+1

q′
j+1

> · · · is
the same as (2·6) which can also be rewritten as

· · · <
pn−2
qn−2

=
pn − anpn−1
qn − anqn−1

<
pn − (an − 1)pn−1
qn − (an − 1)qn−1

< · · · <
pn − pn−1
qn − qn−1

<
pn

qn

< · · · ,

(2·11)

where n is even. For two consecutive elements
p′

j

q′j
=
(k − 1)pn−1 + pn−2
(k − 1)qn−1 + qn−2

and
p′

j−1
q′j−1

=
kpn−1 + pn−2
kqn−1 + qn−2

in (2·11) we have
p′

j−1 − p′
j

q′j−1 − q′j
=
(kpn−1 + pn−2)− ((k − 1)pn−1 + pn−2)
(kqn−1 + qn−2)− ((k − 1)qn−1 + qn−2)

=
pn−1
qn−1

and since n is even (2·4) shows that this is larger than x.

(ii) There are two possible forms for three consecutive elements in the sequence (2·11).
The first is

p′
j−1

q′j−1
=

pn − (k − 1)pn−1
qn − (k − 1)qn−1

,
p′

j

q′j
=

pn − kpn−1
qn − kqn−1

,
p′

j+1

q′j+1
=

pn − (k + 1)pn−1
qn − (k + 1)qn−1

, (2·12)

where k = 1, 2, . . . , an − 1. Then, using (2·5) and n even, we obtain

p′
j−1q

′
j+1 − p′

j+1q
′
j−1

= (pn − (k − 1)pn−1)(qn − (k + 1)qn−1)− (pn − (k + 1)pn−1)(qn − (k − 1)qn−1)

= 2.

On the other hand, using k � 1 and pn−1 − xqn−1, xqn − pn > 0 (again recall that n
is even), we calculate⌈

(xq′j+1 − p′
j+1)

(xq′j − p′
j)

⌉
=

⌈
(x(qn − (k + 1)qn−1)− (pn − (k + 1)pn−1))

(x(qn − kqn−1)− (pn − kpn−1))

⌉

= 1 +
⌈

(pn−1 − xqn−1)
(k(pn−1 − xqn−1) + xqn − pn)

⌉
= 2.

Thus (ii) is proved for triples of the form (2·12).
The second type of triples appearing in (2·11) is

p′
j−1

q′j−1
=

pn + pn−1
qn + qn−1

,
p′

j

q′j
=

pn

qn

,
p′

j+1

q′j+1
=

pn − pn+1

qn − qn+1
(2·13)

with even n. This time we have

p′
j−1q

′
j+1 − p′

j+1q
′
j−1 = (pn + pn+1)(qn − qn−1)− (pn − pn−1)(qn + qn+1)

= an+1 + 2

and ⌈
(xq′j+1 − p′

j+1)

(xq′j − p′
j)

⌉
=

⌈
(x(qn − qn−1)− (pn − pn−1))

(xqn − pn)

⌉
= 1 +

⌈
(pn−1 − xqn−1)
(xqn − pn)

⌉
.
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But an easy calculation again using (2·5) shows that 	pn−1 − xqn−1

xqn − pn

= an+1 + 1 if and

only if pn + pn+1

qn + qn+1
� x < pn+1

qn+1
, which, according to (2·6), is indeed the case.

Definition 2·8. Consider an admissible sequence P = (x0, . . . , xk) of x0 = x ∈ Q+

with xj = pj/qj such that gcd(pj , qj) = 1 and qj � 0. To this partition we attach the
following element m(P ) of Z[R1] = Z[SL(2, Z)]

m(P ) =
(

q0 −p0
q1 −p1

)
+ · · · +

(
ql−1 −pl−1
ql −pl

)
+

(
ql −pl

ql+1 −pl+1

)
+ · · ·+

(
qk−1 −pk−1
qk −pk

)
.

(2·14)

Given two admissible sequences P1 = (x0, x1, . . . , xk) and P2 = (y0, y1, . . . , yl) with
xk = y0 we can define the join

P1 ∨ P2 = (x0, x1, . . . , xk, y1, . . . , yl) (2·15)

of P1 and P2, which is again admissible. Note that in this case we have

m(P1 ∨ P2) = m(P1) +m(P2). (2·16)

GL(2, Z) acts on rational numbers from the left in the usual way:(
a b
c d

)
x =

ax + b

cx + d
.

For the next lemma we will need the corresponding right action:

x

(
a b
c d

)
=

(
a b
c d

)−1

x =
dx − b

−cx + a

Lemma 2·9. Let P = (x0, x1, . . . , xk) be an admissible sequence and A= (a b
c d)∈

GL(2, Z) with
a

c
� xi, i = 0, 1, 2, . . . , k (2·17)

(which for c = 0 simply means a > 0). Then

P · A �

{
(x0A, x1A, . . . , xk−1A, xkA) for detA = 1

(xkA, xk−1A, . . . , x1A, x0A) for detA = −1

defines an admissible sequence with the property

m(P )A =

{
m(P · A) for detA = 1

Mm(P · A) for detA = −1,

where (m(P ), A) �→ m(P )A is the multiplication in R.

Proof. Condition (2·17) implies that for xj =
pj

qj
with gcd(pj , qj) = 1 and qj � 0,

the number xjA = dpj − bqj

aqj − cpj
is rational and gcd(dpj − bqj , aqj − cpj) = 1, since

(r, s)(pq) = 1 implies ((r, s)A)(A
−1(pq)) = 1. Moreover, for detA = 1 the matrix(

aqj−1 − cpj−1 −dpj−1 + bqj−1
aqj − cpj −dpj + bqj

)
=

(
qj−1 −pj−1
qj −pj

) (
a b
c d

)
(2·18)

has determinant 1, which implies that P · A is indeed admissible. The equality
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m(P )A = m(P ·A) is immediate from (2·18). The case detA = −1 can be treated
similarly.

3. The slash operator for complex weight s

Let F be the set of functions φ holomorphic in the domain C \ (−∞, r] for some
r = rφ which we call a branching point of φ. Note that this does not rule out that φ
extends to the point r as a holomorphic function. In F we have the usual addition
and multiplication of functions. If φ1, φ2 ∈ F , then one can find rφ1φ2 , rφ1+φ2 such that
rφ1φ2 , rφ1+φ2 � max{rφ1 , rφ2}. We fix the branch of log z in C\(−∞, 0] which coincides
with the ordinary logarithm on (0,∞) and set zs � es log z for z ∈ C \ (−∞, 0] and
s ∈ C. For each matrix (a b

c d) ∈ G with

G �
{(

a b
c d

)
∈ Mat∗(2, Z) | (c > 0 or (c = 0 & a, d > 0))

}

one has (cz+d)s ∈ F . If c = 0 and φ ∈ F , then also φ(az + b
d
) ∈ F . Consider the subset

DS of F × G consisting of those pairs (φ, (a b
c d)) such that there exists a branching

point rφ for φ with

a − crφ > 0 or (a − crφ = 0 and drφ − b < 0) (3·1)

If rφ = 0 this condition reads

a > 0 or (a = 0 and b > 0).

Proposition 3·1. Fix s ∈ C. Then the formula

(φ |s R)(z) = |detR|s(cz + d)−2sφ
(

az + b

cz + d

)
(3·2)

defines a map

DS −→ F
(φ, R) �−→ φ |s R.

If rφ is a branching point for φ satisfying (3·1) for R=
(a b

c d

)
∈ G, then

max
{

drφ − b

a − crφ

,−d

c

}

is a branching point for φ |s R, where we interprete −d/c as −∞ if c = 0.

Proof. Suppose that z > −d/c. Then

az + b

cz + d
> rφ ⇐⇒ (a − crφ)z > drφ − b

The condition (3·1) implies that z >
drφ−b

a−crφ
. Now the claim is immediate.

Remark 3·2. The slash-operation from Proposition 3·1 can be extended by linearity
to the subset DSZ of F × Z[G] consisting of those pairs (φ,

∑m
j=1 njRm) for which all

(φ, Rj) ∈ DS. In fact, suppose that (3·1) is satisfied for (φ, Rj) with branching points
rφ,j for φ, then (3·1) is satisfied for all (φ, Rj) with branching points minj rφ,j .
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Proposition 3·3. Suppose that R1, R2, R1R2 ∈G and (φ, R1), (φ |s R1, R2),
(φ, R1R2)∈DS. Then for each s ∈ C we have

(φ |s R1) |s R2 = φ |s (R1R2).

Proof. We argue by analytic continuation. Note first that for Rj = (
aj bj

cj dj
) we have

R1R2 =
(

a1a2 + b1c2 a1b2 + b1d2
c1a2 + d1c2 c1b2 + d1d2

)
and since R1, R2, R1R2 ∈ G the functions

((c1a2 + d1c2)z + (c1b2 + d1d2))−2s

and

(c2z + d2)−2s
(
c1

(
a2z + b2
c2z + d2

)
+ d1

)−2s
= (c2z + d2)−2s

( (c1a2 + d1c2)z + (c1b2 + d1d2)
c2z + d2

)−2s
are holomorphic on C \ (−∞, 0] and agree on (0,∞), hence agree everywhere. But
then

((φ |s R1) |s R2)(z)

= |detR2|s(c2z + d2)−2s(φ |s R1)
(

a2z + b2
c2z + d2

)
= |detR2|s(c2z + d2)−2s|detR1|s

(
c1

(
a2z + b2
c2z + d2

)
+ d1

)−2s
φ

(
a1

(
a 2z + b2
c2z + d2

)
+ b1

c1

(
a 2z + b2
c2z + d2

)
+ d1

)

= |detR1R2|s(c2z + d2)−2s
(
c1

(
a2z + b2
c2z + d2

)
+ d1

)−2s
φ

(
(a1a2 + b1c2)z + (a1b2 + b1d2)
(c1a2 + d1c2)z + (c1b2 + d1d2)

)
=

(
φ |s (R1R2)

)
(z)

proves the proposition.

Remark 3·4. Set

G+ �
{(

a b
c d

)
∈ G | b, d � 0 and (a > 0 or (a = 0 and b > 0))

}

and

F0 � {φ ∈ F | 0 is a branching point of φ}.

Then G+ is a multiplicative subsemigroup of Mat∗(2, Z) and we have F0 × G+ ⊆ DS.
Moreover the slash-operation |s induces a semigroup action F0 × G+ → F0. In fact,
given R = (a b

c d) ∈ G+ and φ ∈ F0, Proposition 3·1 shows that 0 � max{− b
a
,−d

c
} is

a branching point for φ |s R. Then Proposition 3·3 implies the identity (φ |s R1) |s
R2 = φ |s (R1R2) for all R1, R2 ∈ G+. Of course we can extend the action to Z[G] ⊆ R
by linearity. Note, finally, that I, T, TM , MTM and M are contained in G+ and for
R ∈ G+, φ ∈ F0 the following equality is well defined

φ |s (I − T − λTM )R = (φ |s (I − T − λTM )) |s R.

4. Transfer operators for Γ0(n) and Γ0(n)

LetW be a µ-dimensional complex vector space and A, B ∈ AutC(W ). We assume
the isomorphisms An ∈AutC(W ) to be uniformly bounded in n∈N w.r.t. one and
hence any norm on AutC(W ). Consider the Banach space B(D) of holomorphic func-
tions in the disc D = {z ∈ C : |z − 1| < 3

2} which are continuous on D with the
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supnorm. Then the operator Ls:B(D)⊗ W → B(D)⊗ W with

Lsf (z) =
∞∑

m=1

(z +m)−2sAm−1Bf

(
1

z +m

)
(4·1)

is a nuclear operator for R(2s)> 1 in this Banach space and Ls extends to a mero-
morphic family of nuclear operators in the whole s-plane with possible poles of order
one at the points s = (1− k)/2 with k ∈ N0. The proof follows the same line of argu-
ment as in [2]. In fact, using the kth Taylor polynomial of f at 0 we have:

Lsf (z) = Ls+ k+1
2

f̃ (z) +
k∑

l=0

ζA,B(l + 2s, z + 1)
f l(0)

l!
, (4·2)

where

f̃ (z)� z−k−1
(

f (z)−
k∑

l=0

f l(0)
l!

zl

)

and

ζA,B(a, b) =
∞∑

n=0

An−1B

(b + n)a

is a kind of Hurwitz zeta function. The first term on the right-hand side in expression
(4·2) is holomorphic in R(s)> 1− (k + 1)

2 and the second term has poles of order one at
1− l
2 , l = 0, 1, . . . , k (the proof of this last statement is as for the usual Hurwitz zeta
function, [6], Chapter XIV). This proves our assertion.
By a direct calculation we have

Lsf (z)− (ALs)f (z + 1) = (z + 1)−2sBf

(
1

z + 1

)
.

Therefore any eigenvector f of Ls with eigenvalue λ satisfies the following three term
functional equation:

λ (f (z)− Af (z + 1)) = (z + 1)−2sBf

(
1

z + 1

)
.

It is convenient to make the change of variable z �→ z − 1 and introduce the new
function Φ(z) = f (z − 1). For λ� 0 the above equation then takes the form:

Φ(z)− AΦ(z + 1) = λ−1z−2sBΦ
(
1 +

1
z

)
. (4·3)

Since f is defined in the disk D, Φ is defined in the shifted disk {z : |z − 2| � 3
2}.

As in [3] one shows that any eigenfunction f of the operator Ls can be extended
holomorphically to the entire complex plane C cut along the line (−∞,−1]. Hence
the corresponding function Φ(z) is holomorphic in C\(−∞, 0]. In what follows we are
interested in solutions of (4·3) in the domain C \ (−∞, 0] for the eigenvalues λ = ±1.
In the scalar case µ = 1 with A, B = I equation (4·3) was introduced by J. Lewis in
[7]. The derivation of his equation via the transfer operator appeared independently
in [13]. There one can also find the conditions under which a holomorphic solution of
equation (4·3) determines an eigenfunction of the transfer operator with eigenvalue



96 Joachim Hilgert, Dieter Mayer and Hossein Movasati

λ. An interesting property of the solutions of equation (4·3) is described by the
following proposition:

Proposition 4·1. If λ = ±1 and (BA−1)2 = I, then any solution of equation (4·3) in
C \ (−∞, 0] satisfies

Φ(z) = λz−2sBA−1Φ
(
1
z

)
. (4·4)

Proof. The domain C \ (−∞, 0] is invariant under z �→ 1/z. We insert 1/z in (4·3),
multiply it by λz−2sBA−1 and then subtract the result from (4·3). Using the hypo-
theses we get equality (4·4).

Of special interest for the following is the case s = 1: for this let us suppose that A
and B are two invertible real matrices with non-negative entries which satisfy

AI = I = BI, (4·5)
where I is the µ-dimensional vector with all components equal to 1. This is for
instance the case for A and B permutation matrices. Then the vector Φ′ = Φ′(z)
with all entries equal to 1/z is obviously a solution of (4·3) with λ = 1 and s = 1.
Generalizing the analogous result for the scalar case µ = 1 in section 7·4 of [15] one
has

Proposition 4·2. Φ′ is up to a constant factor the unique solution of (4·3) for λ = 1
and s = 1 in the Banach space B(D) ⊗ W . There does not exist any other solution of
equation (4·3) in this space for the parameter values s = 1 and λ with | λ |= 1.
Proof. The proof is a straightforward adaption from [14, appendix C], and

section 1·2 in [10].

Induced representations. Let G be a group and H be a subgroup of finite index
µ = [G : H] of G. For each representation χ:H → End(V ) we consider the induced
representation χG:G → End(VG), where

VG � {f : G → V | f (hg) = χ(h)f (g) ∀g ∈ G, h ∈ H}
and the action of G is given by

(χG(g)f )(x) = f (xg) ∀x, g ∈ G.

If V = C and the initial representation is trivial, the induced representation χG is the
right regular representation ρ : G → GL(CH\G). In fact, in this case VG is the space
of complex valued left H-invariant functions on G or, what is the same, complex
valued functions on H\G, and the action is by right translation in the argument.
This also shows that we can view ρ as a homomorphism G → GL(ZH\G). Moreover,
for each g ∈ G the operators ρ(g)n ∈ EndC(CH\G) are uniformly bounded in n ∈ N.

Remark 4·1. One can identify VG with V µ using a set {g1, g2, . . . , gµ} of represen-
tatives for H\G, i.e.

H\G = {Hg1, Hg2, . . . , Hgµ}.
Then

VG −→ V µ

f �−→ (f (g1), . . . , f (gµ))
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is a linear isomorphism which transports χG to the linear G-action on V µ given by

g · (v1, . . . , vµ) =
(
χ
(
g1gg−1

k1

)
vk1 , . . . , χ

(
gµgg−1

kµ

)
vkµ

)
,

where kj ∈ {1, . . . , µ} is the unique index such that Hgjg = Hgkj
. To see this one

simply calculates

(χG(g)f ) (gj) = f (gjg) = f
(
gjgg−1

kj
gkj

)
= χ

(
gjgg−1

kj

)(
f
(
gkj

))
.

In the case of the right regular representation the identification VG � Cµ yields a
matrix realization

ρ(g) =
(
δ
(
gigg−1

j

))
i,j=1,...,µ

,

where δ(g) = 1 if g ∈ H and δ(g) = 0 otherwise. Note for the following that the matrix
ρ(g) is a permutation matrix for all g ∈ G.

In this paper we are primarily interested in the subgroups Γ0(n)⊆PSL(2, Z),
respectively their extensions Γ0(n) ⊆ GL(2, Z). The representation χ is in both cases
the trivial representation of Γ0(n), respectively Γ0(n). The transfer operators for
the groups Γ0(n) and Γ0(n) have been introduced by Chang and Mayer (see [2, 3]),
respectively Manin andMarcolli (see [10]). Taking in expression (4·1) forA the matrix
ρ(QT±1Q) and for B the matrix ρ(QT±1) we get the transfer operators Ls,± for Γ0(n)
whereas for A = ρ(T−1) and B = ρ(T−1M ) we have the transfer operator Ls for
the group Γ0(n). An easy calculation shows that the operators Ls,+Ls,− and L2s can
be conjugated by the matrix ρ((1 0

0 −1)). On the other hand it was shown in [2] that
the Selberg zeta function ZΓ0(n)(s) for the group Γ0(n) can be expressed in terms of
the Fredholm determinant of the operator Ls,+Ls,− as ZΓ0(n)(s) = det(1 − Ls,+Ls,−)
and hence also as ZΓ0(n)(s) = det(1 − L2s) = det(1 + Ls) det(1 − Ls). This shows that
using the operator Ls the Selberg zeta function for the group Γ0(n) factorizes as in
the case of the modular group and hence this transfer operator facilitates also the
discussion of the period functions for Γ0(n). In the following we will therefore use
this operator. The Lewis equation for Γ0(n) derived from the eigenfunction equation
for Ls then has the form

Φ(z)− ρ(T−1)Φ(z + 1)− λ−1z−2sρ(T−1M )Φ
(
1 +

1
z

)
= 0. (4·6)

For the transfer operators considered above one finds (BA−1)2 = I since
BA−1 = ρ(QTQT±1Q), respectively BA−1 = ρ(T−1MT ), and hence the two term
equation (4·4) holds. Note that the matrices in both examples are permutation
matrices and so also the scalar equations in (4·4) involve only two terms.

5. The indexing coset space

In this section we study the fine structure of In =Γ0(n)\GL(2, Z) as a right
GL(2, Z)-space. To do this we embed Γ0(n)\GL(2, Z) into a natural GL(2, Z)-space
with an action by a kind of linear fractional transformations. We start with
Z2 = Z×Z on which GL(2, Z) acts from the right via

(x, y)
(

a b
c d

)
= (ax + cy, bx + dy).
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We define an equivalence relation ∼n on Z × Z via

(x, y) ∼n (x′, y′) :⇐⇒ (∃k ∈ Z) gcd(k, n) = 1,
kx ≡ x′ mod n
ky ≡ y′ mod n.

Then the linearity of the action shows that it preserves∼n so that the space [Z×Z]n �
(Z×Z)/ ∼n of equivalence classes inherits a right GL(2, Z)-action. If, for fixed n, the
equivalence class of (x, y) is denoted by [x : y]n, then this action is given by

[x : y]n

(
a b
c d

)
= [ax + cy : bx + dy]n

which is of course very reminiscent of linear fractional transformations. Note, how-
ever, that even for n = p prime the space [Z × Z]p is not the projective space P1(Zp)
since we have not excluded the pairs of numbers both divisible by p.

Remark 5·1. The stabilizer of the point [0 : 1]n ∈ [Z × Z]n is Γ0(n) since (0, 1) ∼n

(c, d) if and only if c ≡ 0 mod n and gcd(d, n) = 1. Thus the orbit map

GL(2, Z) −→ [Z × Z]n
g �−→ [0 : 1]ng

factors to the equivariant injection

πn : Γ0(n)\GL(2, Z) −→ [Z × Z]n (5·1)

Γ0(n)
(

a b
c d

)
�−→ [c : d]n.

Now we set In � Im(π) ⊆ [Z × Z]n and note that In is GL(2, Z)-invariant.

Proposition 5·2. In = {[x : y]n | gcd(x, y, n) = 1}.

Proof. “⊇”: if gcd(x, y, n) = 1, set m � gcd(x, y) and x′ � x/m, y′�y/m. Then
gcd(m, n) = gcd(x′, y′) = 1 and one can find a, b∈Z such that ay′ + bx′ =1. Therefore
g � ( a −b

x′ y′ ) ∈ GL(2, Z) and

[0 : 1]ng = [x′ : y′]n = [mx′ :my′]n = [x : y]n.

“⊆”: if [x : y]n = [0 : 1]n(a b
c d) = [c : d]n, then there exist k, r, s∈Z such that gcd(k, n) =

1 and

kc − x = rn

kd − y = sn.

If now t = gcd(x, y, n), then t | gcd(c, d) = 1 since gcd(t, k) = 1 .

Lemma 5·3. Givenm, n ∈ Z and u, v ∈ Z such that c = um+ vn = gcd(m, n) one can
find t ∈ Z such that

gcd
(

u +
n

c
t, n

)
= 1.

Proof. Let n =
∏s

j=1 p
αj

j be the decomposition into prime factors and suppose that
they are arranged in such a way that c=

∏s
j=1 p

βj

j with αj =βj for j � s1 and αj > βj

for j > s1. Then um
c
+ v n

c
=1 implies that u cannot contain a prime factor pj with
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j > s1 so that gcd(u, n) =
∏s1

j=1 p
γj

j with 0 � γj � αj . We may assume w.l.o.g. that
γj > 0 for j � s2 and γj = 0 for s2 < j � s1, i.e.

gcd(u, n) =
s2∏

j=1

p
γj

j .

Now we pick t =
∏s1

j=s2+1
pj and comparing which pj divide respectively u, t, and n

c
,

we see that no pj divides u + n
c
t.

Proposition 5·4. Each element of In can be written as [c : d]n, c � 1, c | n. Here c is
determined uniquely, whereas d is determined only up to an integer multiple of n

c
. It is

possible to choose d = kd′ with d′ � 1, d′ | n, 1 � k < n and gcd(c, d′) = 1 = gcd(k, n).

Proof. For [x : y]n ∈ In set c = gcd(x, n) and choose u, v ∈ Z such that ux+vn = c.
Using Lemma 5·3 we can find t ∈ Z such that gcd(u + n

c
t, n) = 1. Set ν � u + n

c
t.

Then we have

νx = c + n
(
t
x

c
− v

)
≡ c mod n

so that with d � νy we obtain [x : y]n = [c : d]n. Now we set d′ � gcd(n, d) and
use Lemma 5·3 in order to find a ν′ with gcd(ν′, n) = 1 such that ν′d ≡ d′ mod n.
Choosing k ∈ {1, . . . , n − 1} such that kν′ ≡ 1 mod n we have d ≡ kd′ mod n
and find [x : y]n = [c : kd′]n. This proves the existence part of the proposition since
gcd(c, d′) = gcd(x, y, n) = 1.
To prove uniqueness suppose that [c : d]n = [c′ : d′]n. Then we have c = lc′+rn, d =

ld′+sn for some r, s, l ∈ Zwith gcd(l, n) = 1. If now c, c′ � 1, c, c′ | n the first equality
implies that c = c′ and l = −r n

c
+1. Inserting this l into the second equality we obtain

the uniqueness of d up to n
c
Z.

Unfortunately the parametrization of the elements of In by [c : d]n with c � 1 and
c | n is not unique as shown in Proposition 5·4. To achieve an unique parametrization
we proceed as follows:

Definition 5·5. For fixed n∈N and c∈{1, . . . , n} with c |n choose b ∈ {0, . . . , n
c
−

1}. We call the pair (c, b) n-admissible if there exists k ∈ {0, . . . , c− 1} with gcd(c, b+
k n

c
) = 1. For such a pair we set

dn(c, b)�min
{

c + b + k
n

c
: k ∈ {0, . . . , c − 1}, gcd

(
c, b + k

n

c

)
= 1

}
. (5·2)

Remark 5·6.
(a) If gcd(c, b) = 1, then dn(c, b) = c + b.
(b) If (c, b) is n-admissible, then gcd(c, b, n

c
) = 1.

(c) the pair (c, b) is n-admissible if and only if ∃k ∈ Z with gcd(c, b + k n
c
) = 1.

We need the following lemma1:

Lemma 5·7. Given the numbers a,b,c ∈ Z we have gcd(a, b, c) = 1 if and only if there
exists a k ∈ Z such that gcd(a, b + kc) = 1.

1 We thank Ch. Elsholtz for showing us how to prove this lemma.
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Proof. If gcd(a, b + kc) = 1 for some k∈Z, then there exist x, y ∈ Z such that
ax + (b + kc)y = 1 and hence gcd(a, b, c) = 1.
Conversely, if gcd(a, b, c) = 1 define

tab � gcd(a, b), tbc � gcd(b, c), tac � gcd(a, c),

respectively

ta �
a

tabtac

, tb �
b

tabtbc

, tc �
c

tactbc

.

Then gcd(tx, ty) = gcd(txy, txz) = gcd(tx, tyz) = 1 for all x � y � z ∈{a, b, c}. Obvi-
ously

a = tatabtac, b = tbtabtbc, c = tctactbc.

We claim that for k = ta

gcd(ta ,ta ,b )
we have gcd(a, b+kc) = 1. In fact we show that for

d = gcd(ta, ta,b) each factor occuring in a = kdta,bta,c occurs in precisely one of the
summands of b + kc:

1 = gcd(tac, b) = gcd(tac, b + kc),

1 = gcd(tab, kc) = gcd(tab, b + kc),

1 = gcd(k, b) = gcd(k, b + kc),

1 = gcd(d, kc) = gcd(d, b + kc).

Now we get a suitable parametrization of the elements in In:

Proposition 5·8. There is a bijection from the set

Pn =
{
(c, b) : c � 1, c | n, b ∈

{
0, . . . ,

n

c
− 1

}
, (c, b) n − admissible

}

to the set In. The map is given by

(c, b) �−→ [c : dn(c, b)]n

with dn(c, b) from Definition 5·5.

Proof. We show first that the above map is surjective. For any [x : y]n ∈ In by
Proposition 5·4 there exist an unique c � 1, c | n and a d′ with [x : y]n = [c : d′]n.
Define b ∈ {0, . . . , n

c
−1} through d′ ≡ (b+ c) mod n

c
. We claim (c, b) is n-admissible.

Indeed, from Proposition 5·2 we see gcd(c, d′, n) = 1. Assume λ = gcd(c, b, n
c
) > 1.

But λ | gcd(d′, n) and hence λ | gcd(c, d′, n). Hence by Lemma 5·7 there exists k ∈ Z

with gcd(c, b + k n
c
) = 1.

Note that d′ ≡ (b + c) mod n
c
and dn(c, b) ≡ (b + c) mod n

c
imply d′ = dn(c, b) + ln

c
.

Choose r, s, t∈Z with rd′ − sc − tn= l. An easy calculation then gives dn(c, b) =
d′−ln

c
= (1−n

c
r)d′+(s+tn

c
)n and trivially c = (1−n

c
r)c+rn.We claim gcd((1−n

c
r), n) =

1. Obviously gcd((1 − n
c
r), n

c
) = 1. Assume then gcd((1 − n

c
r), n) = m > 1. Then

gcd((1− n
c
r), c) = m. Since dn(c, b) = d′ − ln

c
= (1− n

c
r)d′ + (s + tn

c
)n the number m

divides also dn(c, b) and hence gcd(dn(c, b), c) > 1 in contradiction to the definition
of dn(c, b). Hence [c : d′]n = [c, dn(c, b)]n.
To show injectivity of the map (c, b) �→ [c : dn(c, b)]n let us assume (c′, b′) maps

to [c′ : dn(c′, b′)]n and [c : dn(c, b)]n = [c′ : dn(c′, b′)]n . Since c, c′ � 1 and c, c′ | n,
Proposition 5·4 shows c = c′. But b ≡ (dn(c, b) − c) mod n

c
and b′ ≡ (dn(c′, b′) − c)
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mod n
c
. By Proposition 5·4 we know that dn(c, b) ≡ dn(c′, b′) mod n

c
. Therefore also

b ≡ b′ mod n
c
and hence b = b′ since both b, b′ ∈ {0, . . . , n

c
− 1}.

The set Pn can be ordered lexicographically by saying (c, b) < (c′, b′) if and only if
c < c′ or c = c′ and b < b′.

Definition 5·9. Proposition 5·8 allows us to identify each element i ∈ In with a
pair (c, b) ∈ Pn. Then we set

Ai �
(

c b
0 n

c

)
, Bi �

(
n
c
0

b c

)
(5·3)

and define the rational number

xi �
b
n
c

.

Remark 5·10. In particular we now have an one to one correspondences between
the sets In, Pn and the subsets

X̃n =
{(

c b
0 n

c

)
∈ Sn : c | n, 0 � b <

n

c
, gcd

(
c, b,

n

c

)
= 1

}

Ỹn =
{(

c 0
b n

c

)
∈ Sn : c | n, 0 � b < c, gcd

(
c, b,

n

c

)
= 1

}

of the sets Xn and Yn from the introduction, where

Sn =
{(

a b
c d

)
∈ Matn(2, Z) : a > c � 0, d > b � 0,

}
.

Lemma 5·11. Given amatrix (c b
0 n

c
)with relatively prime c, b∈Z such that 1 � c, c | n

and (x y
z w) ∈ SL(2, Z), there is a unique integral matrix of the form (c

′ b′

0 n
c ′
) ∈ Xn such

that (
c′ b′

0 n
c′

)(
x y
z w

) (
c b
0 n

c

)−1

is integer-valued and hence in SL(2, Z). Moreover, we have gcd(c′, b′, n
c′ ) = 1, i.e. (

c′ b′

0 n
c ′
) =

Ai ∈ X̃n for a uniquely determined i ∈ In.

Proof. Fix an i ∈ In and suppose that Ai = (
c′ b′

0 n
c ′
). Then

Ai

(
x y
z w

)(
c b
0 n

c

)−1

=
1
n

(
c′x + b′z c′y + b′w

n
c′ z

n
c′ w

)(
n
c

−b
0 c

)

=
1
n

(
(c′x + b′z)n

c
(c′y + b′w)c − (c′x + b′z)b

n
c′

n
c
z n

c′ (wc − zb)

)
.

This matrix is integer valued if and only if the following four conditions are satisfied
(1) c | (c′x + b′z)
(2) c′ | n

c
z

(3) c′ | (cw − bz)
(4) n |

(
(c′y + b′w)c − (c′x + b′z)b

)
= c′(cy − bx) + b′(cw − bz).
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Claim. gcd(n
c
z, cw − bz) = gcd(n, cw − bz).

To prove this claim, pick a prime number p and let α be the maximal exponent such
that pα | gcd(n, cw − bz). Further let k � α be defined by pα−k | c and pk | n

c
. Then

gcd(b, c) = 1 shows

pα−k | gcd(c, cw − bz) = gcd(c, bz) = gcd(c, z),

so that pα | z n
c
which in turn yields pα | gcd(z n

c
, cw − bz). Thus we have gcd(n, cw −

bz) | gcd(z n
c
, cw − bz).

Conversely, if pα | gcd(z n
c
, cw − bz), then we can choose k such that pα−k | z and

pk | n
c
. But then gcd(w, z) = 1 shows

pα−k | gcd(z, cw − bz) = gcd(z, cw) = gcd(z, c),

which in turn yields pα | n and hence the claim.

Now we prove the existence of an i∈ In of the desired type. We choose
c′� gcd(n

c
z, cw − bz) which by definition satisfies (2) and (3). Note that the claim

implies gcd( n
c′ ,

cw − bz
c′ ) = 1. Therefore we can find b′ ∈ {0, . . . , n

c′ − 1} such that
n

c′

∣∣∣∣
(
(cy − bx) + b′

cw − bz

c′

)

which shows that c′, b′ satisfy (4). But (4) implies that c | (c′x + b′z)b so that in view
of gcd(c, b) = 1 we have (1). Note that (c

′ b′

0 n
c ′
) ∈ Xn and we have proven existence.

To prove the uniqueness part, we assume that(
c′ b′

0 n
c′

)(
x y
z w

)(
c b
0 n

c

)−1

,

(
c′′ b′′

0 n
c′′

)(
x y
z w

) (
c b
0 n

c

)−1

∈ SL(2, Z)

which implies that (c
′ b′

0 n
c ′
)(c

′′ b′′

0 n
c ′′

−1) ∈ SL(2, Z). But the calculation
(

c′ b′

0 n
c′

)(
c′′ b′′

0 n
c′′

)−1

=
1
n

(
n c′

c′′ −b′′c′ + c′′b′

0 nc′′

c′

)

shows that this is possible only if (c
′ b′

0 n
c ′
) = (c

′′ b′′

0 n
c ′′
). Here we use that |b′ − b′′| < n

c′ .

It remains to prove that gcd(c′, b′, n
c′ ) = 1. Suppose that p ∈ N is prime and divides

gcd(c′, b′, n
c′ ). Note that from p | c′ and (3) one derives p | (cw − bz), whereas p | n

c′

and (4) together with p | b′ imply

p

∣∣∣∣
(

cy − bx + b′
cw − bz

c′

)

so that p | (cy − bx). Multiplication by x and z respectively, yields

p | cwx − bzx

p | cyz − bzx

and xw − yz = 1 shows p | c. But then we have p | bz and p | bx so that in view of
gcd(x, z) = 1 we obtain p | b which contradicts gcd(c, b) = 1 and therefore proves the
lemma.
Let n and m be two positive integers and σ � σn,m: Inm → Im be the canonical

map.
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Lemma 5·12. For all i ∈ Inm the matrix AiA
−1
σ(i) is of the form (

c′′ b′′

0 n
c ′′
) with c′′, b′′ ∈ Z

such that 1 � c′′ | n and gcd(c′′, b′′, n
c′′ ) = 1.

Proof. Let us write

i = [c : d]nm, σ(i) = [c′ : d′]m, c | nm, c′ | m.

Then [c : d]m = [c′ : d′]m and so m | (cd′ − c′d). Moreover, by Lemma 5·4 (in fact, see
the first line of the proof which says how to find c′) we have c′ = gcd(c, m) so that
c′ | c and c

c′ | n. Now

AiA
−1
σ(i) =

(
c b
0 nm

c

)(
c′ b′

0 m
c′

)−1

=
(

c
c′

c′b− cb′

m

0 c′

c
n

)
=:

(
c′′ b′′

0 n
c′′

)
.

Using the notation from Proposition 5·8 we see that there exist k, k′ ∈ Z such that
d = b + c + k nm

c
and d = b′ + c′ + k′ m

c′ . Therefore

c′b − cb′ = c′d − cd′ − kn
c′

c
m + k′m

c

c′

is divisible by m. Thus it only remains to show gcd(c′′, b′′, n
c′′ ) = 1. Note first that

c = c′c′′ implies gcd(c′′, m) = 1. If now p ∈ N is prime and divides gcd(c′′, b′′, n
c′′ ),

then p does not divide m, whence p | c′b − cb′. But then p | c implies first p | c′b, and
then p | b. On the other hand p | n

c
c′ implies p | n

c
and hence also p | nm

c
. But we have

(c b
0 n m

c
) ∈ X̃nm so that gcd(c, b, nm

c
) = 1. This contradiction proves the claim.

Note that in the above lemma we do not have necessarily 0 � b′′ < n
c′′ . Thus

gcd(c′′, b′′, n
c′′ ) = 1 does not yield (

c′′ b′′

0 n
c ′′
) ∈ X̃n!

Definition 5·13. Fix an l∈ Inm and a matrix (x y
z w)∈SL(2, Z). Then, using

Lemma 5·12, we can write

AlA
−1
σ(l) =

(
c b
0 n

c

)

with gcd(c, b, n
c
) = 1. Then one can find a k ∈ Z with gcd(c, b+k n

c
) = 1. Set b̃ � b+k n

c
.

Then one can apply Lemma 5·11 to (c b̃
0 n

c
) and finds a unique (c

′ b′

0 n
c ′
) ∈ Xn such that(

c′ b′

0 n
c′

)(
x y
z w

) (
c b̃
0 n

c

)−1

is integral. Moreover, the same lemma also shows that (c
′ b′

0 n
c ′
) ∈ X̃n and hence defines

an element i ∈ In. We say that i is associated with (x y
z w) and the index l.

Lemma 5·14. For any j ∈ In the following matrices are in GL(2, Z):
(i) AjTA−1

jT , (this is of the form T s with s ∈ Z);
(ii) AjMTMA−1

jT ;
(iii) AjT−1MT−1MT MTMA−1

j ;
(iv) AjT−1MT MA−1

j .

Proof. To simplify the notation we define for r ∈ Z and m ∈ N the number
(r)m ∈ {0, . . . , m − 1} via

(r)m ≡ r mod m.
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Let us write the index j ∈ In in the form

j = [c : ic′]n, (5·4)
with c, c′ | n and gcd(c, c′) = 1 = gcd(i, n). It is enough to prove that the above
matrices in the lemma are all integer-valued.

(i) Note first that AjT = (
c (c′i) n

c
0 n

c

) and Aj = (
c (ic′ − c) n

c
0 n

c

) and so

AjTA−1
jT = T s

where

s �

(
(c′i − c) n

c
+ c − (c′i) n

c

)
n
c

∈ Z. (5·5)

(ii) We have jM = [ic′ : c] = [c′ : ı̂c], where ı̂ is a natural number such that iı̂ ≡
1 mod n.

AjMTMA−1
jT =

(
c′ (ı̂c − c′) n

c ′

0 n
c′

) (
1 1
1 0

)(
c (c′i) n

c

0 n
c

)−1

=
1
n

(
(cı̂ − c′) n

c ′
+ c′ c′

n
c′ 0

)
.

(
n
c

−(c′i) n
c

0 c

)

=




(
(cı̂−c′) n

c ′
+ c′

)
c

−
(
(cı̂−c′) n

c ′
+ c′

)
(c′i) n

c
+ cc′

n

n
cc′ − (c′i) n

c

c′


 .

Since c and c′ are relative prime and divide n we have cc′ | n so that c | n
c′ and

c′ | n
c
. But then

c | (c′ + (ı̂c − c′) n
c ′

iff c | (c′ + ı̂c − c′)

and the latter is evident. Similarly c′ | (ic′) n
c
reduces to c′ | ic′ which is clear and

n |
(
−

(
c′ + (ı̂c − c′) n

c ′

)
(ic′) n

c
+ cc′

)
reduces to n | (−ı̂cic′ + cc′) which again is evident. Thus the entries of the above
matrix are all integral.

(iii) To prove the third item suppose that j(1 2
0 −1)

−1 has the form (5·4). Then j =

[c : 2c − ic′] and jT−1MT−1MT = j( 2 1
−1 0) = [ic

′ : c] = [c′ : ı̂c]. We have

AjT−1MT−1MT MTMA−1
j =

(
c′ (ı̂c − c′) n

c ′

0 n
c′

) (
1 0
1 1

)(
c (c − ic′) n

c

0 n
c

)−1

=
1
n

(
c′ + (ı̂c − c′) n

c ′
(ı̂c − c′) n

c ′
n
c′

n
c′

) (
n
c

−(c − ic′) n
c

0 c

)

=


 c′ + (ı̂c− c′) n

c ′
c

−
(

c′+(ı̂c− c′) n
c ′

)
(c− ic′) n

c
+(ı̂c− c′) n

c ′
c

n

n
cc′

−(c− ic′) n
c
+c

c′


 .

With the same reasoning as before one can shows that the above matrix is integer
valued.
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(iv) Let us finally prove the fourth statement. Let jT−1 be of the form (5·4). Then
j = [c : ic′ + c] and jT−1MT = j(−1 0

1 1) = [ic
′ : ic′ + c] = [c′ : c′ + ı̂c]. We have

AjT−1MT MA−1
j =

(
c′ (ı̂c) n

c ′

0 n
c′

)(
0 1
1 0

)(
c (ic′) n

c

0 n
c

)−1

=


 (ı̂c) n

c ′
c

−(ı̂c) n
c ′
(ic′) n

c
+ cc′

n

n
cc′ − (ic′) n

c

c′


 .

With the same reasoning as before one can shows that the above matrix is integer
valued.

Lemma 5·15. With the notations of Lemma 5·14 we have

xjM

(
AjMTMA−1

jT

)
= xj

(
AjTA−1

jT

)
, (−∞)

(
AjMTMA−1

jT

)
= xjT .

The join Pxj M
(AjMTMA−1

jT )
∨

Pxj
(AjTA−1

jT ) is well-defined and is a partition of xjT .

Proof. We write j in the canonical form (5·4) and use the following notations

X =: AjMTMA−1
jT , z � xjM =

(cı̂ − c′) n
c ′

n
c′

, x � xj =
(c′i − c) n

c

n
c

, y � xjT =
(c′i) n

c

n
c

.

Suppose that Pz is given by (z = z0, . . . , zm). According to Remark 2·4 we have
z = z0 > z1 > . . . > zm. Note that for X and Pz condition (2·17) is satisfied. In fact,
the number a

c
in (2·17) is((

(cı̂−c′) n
c ′
+c′

)
c

)
(

n
cc′

) = z +
c′2

n
> z � zj ∀j = 0, . . . , m.

Now Lemma 2·9 shows that Pz · X exists and since detX = −1 the first element of
Pz · X is given by

zmX = −∞X =
− (c′i) n

c

c′

− n
cc′

=
(c′i) n

c

n
c

= y,

whereas the last element of Pz · X is given by

z0X =
(cı̂ − c′) n

c ′
n
c′




(
(cı̂− c′) n

c ′
+ c′

)
c

−
(
(cı̂− c′) n

c ′
+ c′

)
(c′i) n

c
+ cc′

n

n
cc′ − (c′i) n

c

c′




=
(c′i) n

c
− c

n
c

=
(c′i − c) n

c

n
c

−
(
(c′i − c) n

c
+ c − (c′i) n

c

)
n
c

= x − s.

Note that for T sthe number a
c
in (2·17) is 10 =∞. Since detT s = 1, Lemma 2·9 shows
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that Px · T s exists, starts with xT s = x − s and ends at −∞T s = −∞. Thus the join
(Pz · X) ∨ (Px · T s) exists and is a partition of y.

6. The operator K

Proposition 6·1. The formula

K

(
a b
c d

)
= T 	 d

b 
Q
(

a b
c d

)
=

(
−c +

⌈
d
b

⌉
a −d +

⌈
d
b

⌉
b

a b

)
(6·1)

defines a bijection K:Sn \ Yn → Sn \ Xn with inverse given by the formula

K−1
(

a′ b′

c′ d′

)
= MT � a ′

c ′ �QM

(
a′ b′

c′ d′

)
=

(
c′ d′

−a′ + 	a′

c′ 
c′ −b′ + 	a′

c′ 
d′

)
. (6·2)

Proof. We denote the right-hand side of (6·1) by (a
′ b′

c′ d′). The condition (a b
c d) ∈

Sn \ Yn implies

a > c � 0, d > b > 0, ad − bc = n.

From this it is clear that c′ > 0 so that
(a′ b′

c′ d′
)
is not contained in Xn. To show that

it is in Sn we note

a′ =
⌈

d
b

⌉
a − c � a − c � a = c′ > 0,

0 � b′ =
⌈

d
b

⌉
b − d =

( ⌈
d
b

⌉
− d

b

)
b < b = d′

and

a′d′ − b′c′ =
(
− c +

⌈
d
b

⌉
a
)
b −

(
− d +

⌈
d
b

⌉
b
)
a = ad − bc = n.

Thus K is well defined. That

MT � a ′
c ′ �QMT � d

b �Q

(
a b
c d

)
=

(
a b
c d

)

follows from

MT �r�QMT �s�Q =
(

1 0
r − s 1

)

and 	a′

c′ 
 = 	d
b

 which in turn is a consequence of a′

c′ = − c
a
+ 	d

b

 and −1 < − c

a
� 0.

Similarly we see that

MT � d ′′
b′′ �QMT � a ′

c ′ �Q

(
a′ b′

c′ d′

)
=

(
a′ b′

c′ d′

)
,

where (a
′′ b′′

c′′ d′′) denotes the right-hand side of (6·2). All that remains to be seen is
that (a

′′ b′′

c′′ d′′) ∈ Sn \ Yn if (
a′ b′

c′ d′) ∈ Sn \ Xn, but that can be checked similarly as the
well-definedness of K.

An operator slightly different from the above operator K was used also by Choie
and Zagier in [4] and by Mühlenbruch in [18] in their derivation of the Hecke
operators within the Eichler, Manin and Shimura theory of period polynomials. In
the following we will use the operator K to attach to any index i ∈ In a sequence
of elements in Rn which are closely related to the minimal partition of the rational
number xi (cf. Definition 5·9).
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Definition 6·2. For i ∈ In we denote by ki the natural number with the property

that Kj(Ai) (cf. Definition 5·9) is well-defined for j � ki and Kki (Ai) ∈ Yn. We call

Ai, K(Ai), . . . , Kki (Ai)

the chain associated with i ∈ In.

If Ai ∈ Xn � Yn, then clearly Ai forms a chain in itself so that ki = 0 in this case.

Lemma 6·3. Let i= [c : d]n ∈ In and Pxi
= (x0, x1, . . . , xk−1, xk) be the minimal

partition of x0 =xi = b
n
c
(cf. Definition 5·9 and Remark 2·4). Suppose that xj =

pj

qj
,

gcd(pj , qj) = 1, and qj � 0. Then we have ki = k − 1 and

Kj(Ai) =
(

qk−1−j −pk−1−j

qk−j −pk−j

)
Ai ∀j = 0, . . . , k − 1.

Proof. Recall the definition of b∈{0, . . . , n
c
−1} attached to i= [c : d]n in Definition

5·9. We assume c � 1, c | n and hence

Ai =
(

c b
0 n

c

)
.

We claim(
qj−1 −pj−1
qj −pj

)
Ai =

(
cqj−1 bqj−1 − n

c
pj−1

cqj bqj − n
c
pj

)
∈ Sn ∀j = 1, . . . , k. (6·3)

In fact, using Lemma 2·7(i) and minimality of the partition we find(
bqj −

n

c
pj

)
−

(
bqj−1 −

n

c
pj−1

)
= (qj − qj−1)

(
b
n
c

− pj−1 − pj

qj−1 − qj

)
> 0,

whereas
b
n
c

= x0 � xj−1 =
pj−1
qj−1

implies bqj−1 − n
c
pj−1 � 0 and even

bqj −
n

c
pj > 0 ∀j = 1, . . . , k. (6·4)

Since the determinant condition is trivially satisfied we have proved (6·3). But there
is more detailed information available: since p0

q0
= b

n
c
and cq1 < cq0 we have(

q0 −p0
q1 −p1

)(
c b
0 n

c

)
=

(
cq0 bq0 − n

c
p0

cq1 bq1 − n
c
p1

)
=

(
cq0 0
cq1 bq1 − n

c
p1

)
∈ Yn.

Moreover, Remark 2·5 shows that (qk−1−pk−1
qk −pk

) = (1 0
0 1), so that(

qk−1 −pk−1
0 pk

) (
c b
0 n

c

)
=

(
c b
0 n

c

)
∈ Xn.

On the other hand, by (6·4) none of the (qj−1 −pj−1
qj −pj

)Ai in (6·3) with j = 1, . . . , k − 1
can be in Xn � Yn since qj � 0 for these j. Now it suffices to prove

K :
(

qj −pj

qj+1 −pj+1

)
Ai �−→

(
qj−1 −pj−1
qj −pj

)
Ai. (6·5)
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To prove (6·5) note first that for an arbitrary matrix A ∈ Sn \ Yn we have

K(A)A−1 = T � d ′
b′ �Q,

where A = (a
′ b′

c′ d′). For A � ( qj −pj

qj+1 −pj+1
)Ai by Lemma 2·7(ii) we have

	d′

b′ 
 =
⌈

bqj+1 −
n
c
pj+1

bqj − n
c pj

⌉
= 	xqj+1 − pj+1

xqj − pj

 = pj−1qj+1 − pj+1qj−1

and using (16) we calculate(
qj−1 −pj−1
qj −pj

)
Ai

((
qj −pj

qj+1 −pj+1

)
Ai

)−1

=
(

qj−1 −pj−1
qj −pj

) (
−pj+1 pj

−qj+1 qj

)

=
(

pj−1qj+1 − pj+1qj−1 −1
1 0

)
= T (pj−1qj+1−pj+1qj−1)Q

= T � d ′
b′ �Q

proving

K(A) =
(

qj−1 −pj−1
qj −pj

)
Ai

and hence the claim.

Remark 6·4. A construction rather similar to the one in Lemma 6·3 has been used
also by L. Merel in [16], where he discussed the connection between the ordinary
Hecke operators for the group Γ0(n) and continued fractions.

Now we can prove Proposition 1·2.

Proposition 6·5. Let σ � σn,m : Inm → Im be the canonical map. For any i ∈ Inm

and 0 � j � kσ(i) there exists an unique index ı̂i,j ∈ In such that Aı̂i ,j
(Kj(Aσ(i)))A−1

i is
integer valued and hence in SL(2, Z).

Proof. We apply Lemma 6·3 to σ(i) ∈ Im. Then

Kj
(
Aσ(i)

)
=

(
qkσ (i )−1−j −pkσ (i )−1−j

qkσ (i )−j −pkσ (i )−j

)
Aσ(i)

so that

Kj
(
Aσ(i)

)
A−1

i =
(

qkσ (i )−1−j −pkσ (i )−1−j

qkσ (i )−j −pkσ (i )−j

)(
AiA

−1
σ(i)

)−1
.

According to Lemma 5·12 we have AiA
−1
σ(i) = (

c′′ b′′

0 n
c ′′
) with c′′, b′′ ∈Z such that 1 � c′′ |

n and gcd(c′′, b′′, n
c′′ ) = 1.

Following the procedure in Definition 5·13 we find an index ı̂i,j ∈ In such that

Aı̂i ,j

(
qkσ (i )−1−j −pkσ (i )−1−j

qkσ (i )−j −pkσ (i )−j

)(
c′′ b′′′

0 n
c′′

)−1

∈ SL(2, Z),
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where b′′′ = b′′ + k n
c′′ is relatively prime to c′′. Note that(

c′′ b′′′

0 n
c′′

)−1

=
((
1 k
0 1

)(
c′′ b′′

0 n
c′′

))−1

=
(
AiA

−1
σ(i)

)−1 (
1 −k
0 1

)

which implies

Aı̂i ,j

(
qkσ (i )−1−j −pkσ (i )−1−j

qkσ (i )−j −pkσ (i )−j

) (
c′′ b′′′

0 n
c′′

)−1

=Aı̂i ,j

(
qkσ (i )−1−j −pkσ (i )−1−j

qkσ (i )−j −pkσ (i )−j

)(
AiA

−1
σ(i)

)−1 (
1 −k
0 1

)

=Aı̂i ,j
Kj

(
Aσ(i)

)
A−1

i

(
1 −k
0 1

)
.

Thus ı̂i,j ∈ In also satisfies

Aı̂i ,j
Kj

(
Aσ(i)

)
A−1

i ∈ SL(2, Z).

This proves the existence statement. Uniqueness is shown as in the proof of Lemma
5·11.

7. Special solutions for generalized Lewis equations

From now on we fix an index i ∈ Inm, a solution (ψı̂)ı̂∈Im
of the Lewis equation

(1·5) for Γ0(m) and (φı̂)ı̂∈Im
a solution of the functional Lewis equation (1·3). We

assume that 0 is a branching point of each φı̂. Let σ =σm,n: Inm → In to be the
canonical map.
Let P = (x0, x1, . . . , xk), x0 = xσ(i), xk = −∞ be an arbitrary partition of xσ(i) and

m(P ) =
∑k−1

j=0 (
qj −pj

qj+1 −pj+1
) be the associated sum (see Definition 2·8). Using Lemmas

5·12 and 5·11 we conclude that for every 0 � j � k − 1 there is a unique index
ı̂ij ∈ Im associated to ( qj −pj

qj+1 −pj+1
) and i, i.e. the matrix

Xij � Aı̂i j

(
qj −pj

qj+1 −pj+1

)(
AiA

−1
σ(i)

)−1
(7·1)

is integer-valued and hence belongs to SL(2, Z). We define

ψi(P )�
k−1∑
j=0

ψı̂i j

(
qj −pj

qj+1 −pj+1

)
Aσ(i)

φi(P ) =
k−1∑
j=0

φı̂i j |s

((
qj −pj

qj+1 −pj+1

)
Aσ(i)

)
.

The slash operator in the definition of φi(P ) is well-defined and the branching point
of φi(P ) is zero. One can see these facts using Remark 3·4 and(

qj −pj

qj+1 −pj+1

)
Aσ(i) =

(
qjcσ(i) qjdσ(i) − pj

n
cσ (i )

qj+1cσ(i) qj+1dσ(i) − pj+1
n

cσ (i )

)
∈ G+, (7·2)
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where Aσ(i) = (
cσ (i ) dσ (i )
0 n

cσ (i )
). Here we have used qj , qj+1 � 0, pjqj+1 − pj+1qj = 1 and

xσ(i) =
dσ (i )

n
cσ (i )

= p0
q0

> pj

qj
, pj+1

qj+1
(see Remark 2·4). If P = Pxσ (i ) is the minimal partition

of xσ(i) we set

ψi � ψi(Pxσ (i ) ) =
kσ (i )∑
j=1

ψı̂i j
KjAσ(i), i ∈ Inm, (7·3)

φi � φi(Pxσ (i ) ) =
kσ (i )∑
j=1

φı̂i j
|s KjAσ(i), i ∈ Inm. (7·4)

Lemma 7·1. For any two partitions P1 and P2 of xσ(i) and any solution (ψı̂)ı̂∈Im
(resp.

(φı̂)ı̂∈Im
) of the Lewis equation (1·5) (resp. (1·3)) for Γ0(m) we have

ψi(P1) ≡ ψi(P2) mod Iλ (resp.φi(P1) = φi(P2)).

Proof. We are going to prove the statement for (φı̂)ı̂∈Im
. The proof of the state

ment for (ψı̂)ı̂∈Im
is the same. We only write ψı̂ instead of φı̂ and do not write the

symbol |s.
By Proposition 2·6 it is enough to prove the lemma for a partition P and its Farey

extension P (l). Define Ql = (
ql−1 −pl−1
ql −pl

). Note that by (7·2) we have QlAσ(i) ∈ G+ (put
l = j + 1). We have

φi(P (l))− φi(P ) = φi1 |s T
(
QlAσ(i)

)
+ φi2 |s MTM

(
QlAσ(i)

)
− φi3 |s

(
QlAσ(i)

)
= φi1 |s T

(
QlAσ(i)

)
+ λφi2T−1MT |s TM

(
QlAσ(i)

)
− φi3 |s

(
QlAσ(i)

)
,

where i1(resp. i2 and i3) is associated to the matrix TQl(resp. MTMQl and Ql) and
the index i (see Definition 5·13). In fact, we use (1·4) to obtain

φi2 |s MTM (QlAσ(i)) = (φi2 |s M ) |s TM
(
QlAσ(i)

)
= λφi2T−1MT |s TM

(
QlAσ(i)

)
.

(7·5)
SinceM, MTMQlAσ(i), TMQlAσ(i) ∈ G+, by Remark 3·4 the first equality in (7·5) is
well-defined. We continue

φi(P (l))−φi(P ) = φi1 |s T |s
(
QlAσ(i)

)
+λφi2T−1MT |s TM |s

(
QlAσ(i)

)
−φi3 |s

(
QlAσ(i)

)
=

(
φi1 |s T +λφi2T−1MT |s TM − φi3

)
|s

(
QlAσ(i)

)
.

Since T, TM, QlAσ(I) ∈ G+, the first equality is well-defined.
Now to finish the proof of our lemma it is enough to prove that i3 = i1T,

i2T
−1MT = i1M or equivalently

i1 = i3T
−1, i2 = i3T

−1MT−1MT.

By definition of i3 the matrix Ai3Ql(AiA
−1
σ(i))

−1 is in SL(2, Z). Now if we prove that
Ai3T−1TQl(AiA

−1
σ(i))

−1 and Ai3T−1MT−1MT MTMQl(AiA
−1
σ(i))

−1 are in SL(2, Z) then by
the uniqueness in Lemma 5·11 the above equalities are proved.

Ai3T−1TQl

(
AiA

−1
σ(i)

)−1
=

(
Ai3T−1TA−1

i3

)(
Ai3Ql

(
AiA

−1
σ(i)

)−1)
Ai3T−1MT−1MT MTMQl

(
AiA

−1
σ(i)

)−1
=

(
Ai3T−1MT−1MT MTMA−1

i3

)(
Ai3Ql

(
AiA

−1
σ(i)

)−1)
.

Now by Lemma 5·14(i), (iii) the matrices Ai3T−1TA−1
i3
and Ai3T−1MT−1MT MTMA−1

i3

are integer-valued and our lemma is proved (in the first one put j = i3T
−1).
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Proof of Theorem 1·3. We first prove the second statement. Set σ � σn,m.

ψi =
kσ (i )∑
j=0

ψı̂i j
KjAσ(i) =

kσ (i )∑
j=0

m
(
Pxı̂ij

)
Aı̂i j

(
qj −pj

qj+1 −pj+1

)
Aσ(i)

=


kσ (i )∑

j=0

m(Pxı̂ij
)Xij


 Ai =


m


kσ (i )∨

j=0

Pxı̂ij
Xij





 Ai

where Xij is given in (7·1). We must check that the last equality is well-defined, i.e.

xı̂i j
Xij = (−∞)Xi(j−1), j = 1, 2, . . . , kσ(i)

and the inequality (2·17) is true for Xij and xı̂i j
.

Let us write Aı̂i j
= (

cij dij

0 n
cij
) and AiA

−1
σ(i) = (

c d
0 n

c
). Then xı̂i j

= dij
n

cij

and

Xij =
1
n

(n
c
(cijqj + dijqj+1) −d(cijqj + dijqj+1)− c(cijpj + dijpj+1)

n
c

n
cij

qj+1 − n
cij
(qj+1d + pj+1c)

)
.

We have
n
c
(cijqj + dijqj+1)

n
c

n
cij

qj+1
= xı̂i j

+
qj

qj+1

c2ij
n

> xı̂i j

and so by Remark 2·4 the condition (2·17) is satisfied in our case. Now

xı̂i j
Xij =

dij
n

cij

(
1
c
(cijqj + dijqj+1)

−d(cij qj + dij qj+1)− c(cij pj + dij pj+1)
n

1
c

n
cij

qj+1 − 1
cij
(qj+1d + pj+1)c

)

=
− 1

cij
(qj+1d + pj+1)c

(
dij
n

cij

)
+ d(cij qj + dij qj+1) + c(cij pj + dij pj+1)

n

− 1
c

n
cij

qj+1

(
dij
n

cij

)
+ 1

c
(cijqj + dijqj+1)

=
d
n
c

+
pj

qj

c
n
c

=
− n

ci (j − 1)
(qjd + pjc)

−n
c

n
ci (j − 1)

qj

= (−∞)Xi(j−1)

and

xı̂i0Xi0 =
d
n
c

+
p0
q0

c
n
c

=
d
n
c

+
dσ(i)

m
cσ (i )

c
n
c

= xi

where Aσ(i) = (
cσ (i ) dσ (i )
0 m

cσ (i )
). In the second equality we have used xσ(i) =

p0
q0
= dσ (i )

m
cσ (i )

. The
last equality is derived from the equality AiA

−1
σ(i) = (

c d
0 n

c
). We have also

(−∞)Xikσ (i ) =
d
n
c

+
−1
0

c
n
c

= −∞.

Therefore
∨kσ (i )

j=1 Pxı̂ij
Xij is a partition of xi and so by Lemma 7·1 the second state-

ment is proved.
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Now let us prove the first part. We prove the statement for (ψı̂)ı̂∈In
. The proof of

the other is similar. We are going to prove that ψiT +λψiMTM = ψiT for all i ∈ Inm.

ψiT + λψiMTM =
kσ (i )∑
j=0

ψı̂i j
KjAσ(i)T +

kσ (iM )∑
j=0

λψı̄i j
KjAσ(iM )TM

=

(
kσ (i )∑
j=0

ψı̂i j
Qj

(
Aσ(i)TA−1

σ(iT )

)

+
kσ (iM )∑

j=0

ψı̄i j T−1MT MQ′
j

(
Aσ(iM )TMA−1

σ(iT )

))
Aσ(iT ),

where Qj � (
qkσ (i )−1−j −pkσ (i )−1−j

qkσ (i )−j −pkσ (i )−j
) and Q′

j � (
q′

kσ (iM )−1−j −p′
kσ (iM )−1−j

q′
σ (iM )−j −p′

σ (iM )−j
). Here ı̂ij is asso-

ciated to Qj and i, and ı̄ij is associated to Q′
j and iM . Now

kσ (i )∑
j=0

Qj

(
Aσ(i)TA−1

σ(iT )

)
+

kσ (iM )∑
j=0

MQ′
j

(
Aσ(iM )TMA−1

σ(iT )

)
= m

(
Pxσ (i )

)(
Aσ(i)TA−1

σ(iT )

)
+Mm

(
Pxσ (iM )

)(
Aσ(iM )TMA−1

σ(iT )

)
= Mm

(
Pxσ (iM )

)(
Aσ(iM )TMA−1

σ(iT )

)
+m

(
Pxσ (i )

)(
Aσ(i)TA−1

σ(iT )

)
= m

(
Pxσ (iM )

(
Aσ(iM )TMA−1

σ(iT )

) ∨
Pxσ (i )

(
Aσ(i)TA−1

σ(iT )

))
.

The last equality is well-defined, i.e.(
xσ(iM )

)(
Aσ(iM )TMA−1

σ(iT )

)
= xσ(i)

(
Aσ(i)TA−1

σ(iT )

)
(7·6)

(note that Aσ(iM )TMA−1
σ(iT ) has determinant −1). Also, what is inside m(.), name it

P , is a partition of xσ(iT ), i.e.

(−∞)
(
Aσ(iM )TMA−1

σ(iT )

)
= xσ(iT ). (7·7)

The equalities (7·6) and (7·7) are proved in Lemma 5·15 (Put j = σ(i) and replace n
withm).We claim that the index ı̂ij (resp. ı̄ijT−1MT ) is associated toQj(Aσ(i)TA−1

σ(iT ))
(resp. MQ′

j(Aσ(iM )TMA−1
σ(iT ))) and iT . If our claim is true then

ψiT + λψiMTM = ψi(P )

and by Lemma 7·1 the proof is finished. Our claim is equivalent to the fact that the
matrices

Aı̂i j
Qj

(
Aσ(i)TA−1

σ(iT )

)(
AiT A−1

σ(iT )

)−1
=

(
Aı̂i j

Qj

(
AiA

−1
σ(i)

)−1)(
AiTA−1

iT

)
and

Aı̄i j T−1MT MQ′
j

(
Aσ(iM )TMA−1

σ(iT )

)(
AiT A−1

σ(iT )

)−1
=

(
Aı̄i j T−1MT MA−1

ı̄i j

)(
Aı̄i j

Q′
j

(
AiMA−1

σ(iM )

)−1)
(AiMTMA−1

iT )

are integer-valued. Thanks to Lemma 5·14 our claim is true.
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8. Hecke operators

In [21, 22] D. Zagier derived a representation of the Hecke operators on the space
of period polynomials for the group PSL(2, Z) by transferring the action of the
classical Hecke operators on the space of cusp forms via the Eichler–Shimura–Manin
isomorphism to the space of period polynomials. In his thesis Mühlenbruch ([18])
found another representation for these operators in terms of matrices with nonneg-
ative entries which allowed him to extend their action to the space of period functions
with arbitrary weight. It turns out that the special solutions of the Lewis equations
for the congruence subgroups Γ0(n) we constructed in Theorem 1·1 are closely related
to the Hecke operators for PSL(2, Z) in the form given by Mühlenbruch.
Indeed, since both the maps T : In → In and MT : In → In are invertible, any

solution Φ of the Lewis equation (1·3) for Γ0(n) given by φi = φi(z), i ∈ In, determines
a solution φ̃ = φ̃(z) of the Lewis equation (1·1) for the group PSL(2, Z) with

φ̃(z) =
∑
i∈In

φi(z). (8·1)

Clearly, it can happen that this function vanishes identically. This just signals that
the corresponding solution φi, i∈ In for the group Γ0(n) is not related to any solution
φ of the group PSL(2, Z) and hence is either in analogy to the Atkin–Lehner theory
of old and new forms a new solution of the Lewis equation for Γ0(n) or related to a
new solution for one of the groups Γ0(l) with l | n. The special solution, however, de-
termined in Theorem 1·1 leads to a nontrivial solution φ̃ which furthermore depends
linearly on the solution φ of equation (1·1). This shows that the map H̃n:φ �→ φ̃ with
φ̃ as defined in equation (8·1) determines a linear operator in the space of period
functions of the group PSL(2, Z). To determine the explicit form of the operator
H̃n we have to characterize the matrices Kj(Ai) appearing in the definition of the
solutions ψi in Theorem 1·1 in more detail.
From the definition of the operator K in Proposition 6·1 it is obvious that all

matrix elements of A ∈ Sn \ Yn have greatest common divisor 1 if and only if
the matrix elements of the matrix K(A) have this property. Since the entries of
the matrix Ai in Definition 5·9 for i ∈ In have greatest common divisor 1 all the
matrices appearing in the definition of ψi in Theorem 1·1 have this property.
Consider next any matrix A ∈ Sn\Xn whose entries have greatest common divisor

1. If A= (a b
c d), then K−1A = (a

′ b′

c′ d′) with c′ < c and hence there exists j ∈ N with
K−jA ∈ Xn. But from Proposition 5·8 it follows that any matrix A in Xn whose
entries have only 1 as a common divisor appears as Ai for some i ∈ In. This shows
that any matrix A in the set Sn whose entries have no common divisor besides 1
appears exactly once in one of the components ψi in Theorem 1·1.
Denote then by T̃n the matrix

T̃n �
∑

A∈Sn ;gcd(a,b,c,d)=1

A, A =
(

a b
c d

)
.

Then one finds for the operator H̃n acting on the space of period functions φ for the
group PSL(2, Z)

H̃nφ = φ |s T̃n.

Summarizing we have shown:
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Theorem 8·1. For any solution φ = φ(z) of the Lewis equation (1·1) for PSL(2, Z)
with arbitrary weight s the function φ̃ = φ̃(z) = (H̃nφ)(z) = (φ |s T̃n)(z) is also a solution
of equation (1·1) with weight s.

Comparing the operators T̃n with the Hecke operators Tn of Mühlenbruch and
Zagier in (1·2) we find as a corollary:

Corollary 8·2. The operators T̃n and the Hecke operators Tn defined in (1·2) are
related through

Tn =
∑
d2|n

(
d 0
0 d

)
T̃ n

d2
.

The operators coincide if and only if n is a product of distinct primes.

The operators T̃n have been constructed from special solutions of the Lewis equa-
tion (3) for the group Γ0(n). It turns out that also the Hecke operators Tn can be
derived in this way. To achieve this consider any n1, n2 ∈ N with n1 = mn2. Denote
again for fixed m and n2 the canonical surjective map σm,n2 : [Z × Z]n1 → [Z × Z]n2
by σ. This map is equivariant with respect to the right action of the group GL(2, Z),
i.e.

σm,n2 ([x : y]n1 )A = σm,n2 ([x : y]n1A), ∀A ∈ GL(2, Z), [x : y]n1 ∈ [Z × Z]n1 . (8·2)

Then we can prove:

Proposition 8·3.
(i) If the matrices ψi, i ∈ In1 , solve (1·5) for n = n1 = mn2, then ψ̃j �

∑
i∈σ−1(j) ψi,

j ∈ In2 , solve (1·5) for n = n2.
(ii) If ψ̃j , j ∈ In2 , solve (1·5) for n=n2, then ψi � ψ̃σ(i), i∈ In1 , solve (1·5) for n = n1 =

mn2.

Proof. (8·2) implies that the fibers σ−1(j) of σ are invariant under the action of
GL(2, Z), and in particular T−1 and T−1M .

Proposition 8·3 shows that for any d with d2 | n any solution Ψ̃ = (ψ̃i)i∈I n
d2
of

equation (1·5) for the group Γ0( n
d2
) determines a solution for this equation for the

group Γ0(n) whose components coincide with the components for the former group.
Indeed, any component shows up µ-times, where µ is the index of Γ0(n) in Γ0( n

d2
).

Obviously, a similar statement holds for the solutions Φ̃ = (ϕ̃i)i∈I n
d2
of equation (1·3).

Taking for Φ̃ the special solution ϕ |s ψi, i ∈ I n
d2
, determined in Theorem 1·1 we

therefore get

Corollary 8·4. For any solutionϕ of the Lewis equation (1·1) for the groupPSL(2, Z)
with weight s the functions ϕ̃j,d � ϕ |s ψσd2, n

d2
(j), j ∈ In define a solution Φd of the Lewis

equation (1·3) for the group Γ0(n) with weight s.

Hence also the function ϕ̃d with

ϕ̃d �
1
µ

∑
j∈In

ϕ̃j,d = ϕ |s T̃ n
d2

defines a solution of the Lewis equation (1·1) for the group PSL(2, Z). Obviously
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the matrix inducing this solution φ̃d coincides with the matrix T̃ n
d2
. This shows that

indeed the Hecke operator Tn on the period functions of PSL(2, Z) for arbitrary
weight s can be derived from special solutions of the Lewis equation for the group
Γ0(n) with weight s.
The extension of the above approach to the group Γ0(n) for arbitrary n is straight-

forward: given any solution Φ= (ϕi)i∈In
of the Lewis equation (1·3) for the group

Γ0(n), Theorem 1·3 together with Proposition 8·3 allow us to construct for any n a
family of linear operators T̃n,m, m = 1, 2, . . . mapping this solution to a new solution
of equation (1·3). The explicit form of these operators is given by

(T̃n,mΦ)ı̂(z) =
∑

l∈σ−1
m,n (ı̂)

kσn ,m (l )∑
j=0

ϕîl ,j
|s KjAσn ,m (l)(z), ı̂ ∈ In.

The relation of these operators to the familiar Hecke operators on modular forms
for the congruence subgroups Γ0(n) will be discussed in a forthcoming paper.
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