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Abstract

The purpose of this note is to prove a more precise version of the Chen’s π1 de Rham
theorem concerning the fundamental group F of a punctured Riemann surface. We
construct explicitly the dual spaces associate to the lower central series of F in terms
of iterated integrals along Lie elements. Our construction is purely combinatorial
which leads to a more general result in which the iterated integrals are axiomatically
defined.

1 Introduction

Let Γ = Γ̄ \ S where Γ̄ is a compact Riemann surface and S ⊂ Γ̄ a non-empty finite set of
points. Each holomorphic 1-form ω in Γ defines a linear map

∫
ω ∈ HomZ(H1(Γ, Z), C)

by integration: ∫
ω : H1(Γ, Z) → C : δ 7→

∫
δ
ω

and he classical de Rham theorem stipulates that HomZ(H1(Γ, Z), C) is generated by
such linear maps. The Chen’s de Rham theorem generalizes this fact as follows. The
fundamental group F = π1(Γ, ∗) is free finitely generated. For A,B ⊂ F we denote by
(A,B) the the subgroup of F generated by commutators (a, b) = aba−1b−1, a ∈ A, b ∈ B.
Define by induction the free abelian subgroups Fn = (F, Fn−1), F 1 = F . The Chen’s de
Rham theorem, e.g. [6], claims that for each n the vector space

HomZ(Fn/Fn+1, C)

is generated by iterated integrals of length n. As F 1/F 2 = H1(Γ, Z) then in the case n = 1
we get the usual de Rham theorem.

The purpose of the paper is to prove a more precise version of this ”π1 de Rham
theorem” by constructing explicitly the space HomZ(Fn/Fn+1, C) in terms of iterated
integrals along Lie elements of length n (see Theorem 1). It turns out that our construction
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is purely combinatorial, the only analytic ingredient in the proof being the usual de Rham
theorem. Therefore we can formulate our main result in algebraic terms as follows:

Let X = {x1, x2, ..., xm} be a set (which does not represent necessarily loops and
one-forms) and k ⊂ K two fields of characteristic zero. Denote by AssX the graded k-
algebra of associative but non-commutative polynomials in variables x1, x2, . . . , xm and
by LX ⊂ AssX the graded Lie algebra generated by x1, . . . , xm. Let also FX be a free
group generated by the elements of X. By an iterated integral we mean any map∫

: FX ×AssX → K
(δ, ω) 7→

∫
δ ω

which is k-linear in AssX and satisfies the four axioms given in the next section. It will
follow from these axioms that

∫
induces a well-defined map:

(1) F k
X/F k+1

X ×Assk
X → K, k = 1, 2, . . .

which is Z-linear in the first coordinate and k-linear in the second coordinate. Of course
an example of such a map is the usual path integrals of Chen mentioned above. Our main
result can be described as follows: If the vector space of Z-linear maps∫

ω : FX/F 2
X → K, where ω ∈ L1

X

δ 7→
∫
δ ω

is isomorphic to HomZ(FX/F 2
X ,K), then the vector space of Z-linear maps∫

ω : F k
X/F k+1

X → K, where ω ∈ Lk
X

δ 7→
∫
δ ω

is isomorphic to HomZ(F k
X/F k+1

X ,K) for all k = 1, 2, . . . . We also prove that
∫

ω, ω ∈
Assk

X is identically zero if and only if ω is a linear combination of shuffle elements.

Example 1. To illustrate the Theorem in the simplest case k = m = 2, consider an
elliptic curve with one removed point, and call it Γ. Its fundamental group F has two
generators δ1, δ2, and let ω1, ω2 be two holomorphic one-forms which generate H1(Γ, C).
The vector space Ass2

X , where X = {ω1, ω2}, is generated by the monomials

ω2
1, ω1ω2, ω2ω1, ω

2
2

and is of dimension four. The subspace L2
X is generated by

ω1ω2 − ω2ω1

and the subspace S2
X of shuffle products is generated by

ω2
1, ω1ω2 + ω2ω1, ω

2
2.

Clearly we have Ass2
X = L2

X ⊕ S2
X (Theorem 2). The abelian group F 2/F 3 is generated

by (δ1, δ2) = δ1δ2δ
−1
1 δ−1

2 ∈ F2 and the dual space HomZ(F 2/F 3, C) is generated by the
linear form (an iterated integral of length two)∫

ω1ω2 − ω2ω1 : F 2/F 3 → C.
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Finally, the map ∫
ω : F 2/F 3 → C

where ω ∈ Ass2
X , is the zero map, if and only if ω belongs to the space of shuffle products

S2
X .

The paper is organized as follows. In §2 we fix the notations and the definitions used
throughout the text. The main result of the present paper is formulated in section 3 and
it is proved in §4. §5 is dedicated to some applications and motivations of the methods of
the present article.

2 Notations and definitions

Let k be a field. All modules and algebras are taken over k, unless stated otherwise. For
a set X = {x1, x2, ..., xm}, let AssX be the graded free associative algebra on X. Its
elements are the non-commutative polynomials in xi with coefficients in k. Define a Lie
bracket in AssX by [x, y] = xy − yx, and let LX ⊂ AssX be the graded free Lie algebra
on X. Thus, for instance, x1, [x1, x2], [[x1, x2], x3] belong to LX but not 1, x1x2, x1x2x3.
AssX is the universal algebra of the Lie algebra LX , see [14] . The graded piece L1

X is
just the k-vector space generated by x1, x2, ..., xm, L2

X is the k-vector space generated by
[xi, xj ] etc. Each element of LX is called a Lie element. We denote by Assk

X (resp. Lk
X)

the homogeneous component of degree k of AssX (resp. LX).
Let FX be the free group on X, its elements are the words in the letters xi and

their formal inverses x−1
i . For x, y ∈ FX we define the commutator (x, y) = xyx−1y−1.

For A,B ⊂ FX we denote by (A,B) the the subgroup of FX generated by commutators
(a, b), a ∈ A, b ∈ B. Consider the lower central series Fn

X of FX , where Fn
X = (FX , Fn−1

X ),
F 1

X = FX . The associated graded Z-Lie algebra is given by

(2) grFX =
∞∑

n=1

grnFX , grnFX = Fn
X/Fn+1

X ,

[xF i+1
X , yF j+1

X ] = (x, y)F i+j+1
X .

The canonical map X → gr1FX which send xi to xi induces an isomorphism of Lie algebras

(3) φ : LX → (grFX)⊗Z k

(e.g.[14] Theorem 6.1). For two words ω1 · · ·ωr, ωr+1 · · ·ωr+s define the shuffle product
ω1 · · ·ωr ∗ ωr+1 · · ·ωr+s to be the sum of all words of length r + s that are permutations
of ω1 · · ·ωrωr+1 · · ·ωr+s such that both ω1 · · ·ωr and ωr+1 · · ·ωr+s appear in their original
order, e.g.

ω1ω2 ∗ ω3 = ω1ω2ω3 + ω1ω3ω2 + ω3ω1ω2.

Let K be a field extension of the field k.

Definition 1. An iterated integral is a map

(4)
∫

: FX ×AssX → K
(δ, ω) 7→

∫
δ ω

which is k-linear in the second variable and satisfies the four axioms:

3



A1 For every non-commutative polynomial ω ∈ AssX and δ ∈ FX ,
∫
1 ω ∈ k is the constant

term of ω and
∫
δ 1 = 1 for all δ ∈ FX . We use the convention ω1ω2 · · ·ωr = 1 for

r = 0.

A2 For α, β ∈ FX and ω1, ω2, . . . ωr ∈ Ass1
X∫

αβ
ω1 · · ·ωr =

r∑
i=0

∫
α

ω1 · · ·ωi

∫
β

ωi+1 · · ·ωr

A3 For α ∈ FX and ω1, ω2, . . . ωr ∈ Ass1
X∫

α−1

ω1ω2 · · ·ωr = (−1)r

∫
α

ωr · · ·ω1.

A4 For α ∈ FX and ω1, ω2, . . . ωr+s ∈ Ass1
X we have

(5)
∫

α
ω1 · · ·ωr

∫
α

ωr+1 · · ·ωr+s =
∫

α
ω1 · · ·ωr ∗ ωr+1 · · ·ωr+s

where
ω1 · · ·ωr ∗ ωr+1 · · ·ωr+s =

∑
ωk1ωk2 · · ·ωkr+s

is the shuffle product of ω1 · · ·ωr and ωr+1 · · ·ωr+s.

Let {δ1, δ2, . . . , δm} be a set which generates FX freely and {ω1, ω2, . . . , ωm} be a basis
of the k-vector space Ass1

X . A1, A2, A3 imply that every iterated integral can be written
as a polynomial in

(6)
∫

δj

ωi1ωi1 · · ·ωir , j = 1, 2, . . . ,m, i1, i2, . . . , ir ∈ {1, 2, . . . ,m}.

Therefore by A4 the map (4) defines an iterated integral if and only if the numbers∫
δj

ωi1ωi2 · · ·ωir = aj(i1, . . . , ir) ∈ k

satisfy the ”shuffle relations”

(7) aj(i1, . . . , ir)aj(ir+1, . . . , ir+s) =
∑

aj(k1, . . . , kr+s)

where (k1, . . . , kr+s) runs through all shuffles of (i1, . . . , ir) and (ir+1, . . . , ir+s). The exis-
tence of such numbers aj(i1, . . . , ir) is, however, not obvious.

Example 2. Let {δ1, δ2, . . . , δm} be a set which generates FX freely and {ω1, ω2, . . . , ωm}
be a basis of the k-vector space Ass1

X . We set

(8) aj(i1, . . . , in) =
∫

δj

ωi1ωi2 · · ·ωin = 0 if at least one of ωis is not ωj

aj(j, . . . , j) =
∫

δj

ωn
j =

1
n!

.
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The verification that the numbers aj(i1, . . . , in) define an iterated integral is straight-
forward. This iterated integral can be interpreted as Chen’s iterated integrals in the
following way: We take the Ceyley diagrams (see [11]) which is the topological space
Y := ∪m−1

i=0 Zi ×R×Zm−i−1 ⊂ Rm. Each element δ of the free group FX is represented by
a path δ̃ in Y with the starting point 0 ∈ Rn and the end point in some element of Zm.
Each element ω of AssX can be interpreted as a differential form ω̃ substituting dyi by xi,
where (y1, y2, . . . , ym) is the coordinate system in Rm. Now,

∫
δ ω is the classical Chen’s

iterated integral
∫
δ̄ ω̃.

Example 3. As in the Introduction, let Γ be a punctured Riemann surface with free
finitely generated fundamental group FX = π1(Γ, ∗). Let {ω1, ω2, . . . , ωm} be a collection
of holomorphic one forms on Γ such that their classes in the de Rham cohomology of Γ
form a basis. The Chen’s iterated integral

aj(i1, . . . , in) =
∫

δj

ωi1ωi2 · · ·ωin

where δ1, δ2, . . . , δm generates FX freely, satisfies the shuffle relations (7), see [5, 6], and
hence defines an iterated integral in the sense of Definition 1(in order to follow the termi-
nology used in this text we may identify ωi with xi).

3 Statement of the result

Let α, β ∈ FX and ω ∈ Ass1
X = L1

X . Then A3 implies that every iterated integral (1)
satisfies ∫

αβ
ω =

∫
α

ω +
∫

β
ω,

∫
αβα−1

ω =
∫

α
ω,

∫
(α,β)

ω = 0.

More generally,

(9) ∀α ∈ Fn+1
X , ω ∈ Assm

X , such that m ≤ n holds true
∫

α
ω = 0

Therefore the iterated integral
∫

induces a map

(10)
∫

: grkFX ×Assk
X → C

(δ, ω) 7→
∫
δ ω

which is Z-linear in the first argument and k-linear in the second argument.
Suppose that ω ∈ Assk

X is a shuffle product of ω1, ω2:

ω = ω1 ∗ ω2, ω1 ∈ Assk1
X , ω2 ∈ Assk2

X , k1 + k2 = k

and α ∈ grkFX . Then A4 and (9) imply∫
α

ω = 0.

Thus the vector space Sk
X generated by shuffle products

Sk
X = Span{ω1 ∗ ω2 : ω1 ∈ Assk1

X , ω2 ∈ Assk2
X , k1 + k2 = k}.

is in the kernel of the bilinear map (10).
The main result of the paper is the following:
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Theorem 1. Let
∫

be an iterated integral in the sense of Definition 1.

(a) If the induced bilinear map

(11)
∫

: grkFX × Lk
X → K

(δ, ω) 7→
∫
δ ω

is non-degenerate for k = 1, then then it is non-degenerate for all k ∈ N.

(b) Let ω ∈ Assk
X . The linear map

(12)
∫

ω : grkFX → K
δ 7→

∫
δ ω

is the zero map, if and only if ω ∈ Sk
X .

4 Proof of Theorem 1

In AssX we consider the canonical k-bilinear symmetric product given by

〈xi1xi2 · · ·xir , xj1xj2 · · ·xjs〉 =
{

1 i1 = j1, . . . , ir = jr, r = s
0 otherwise

Theorem 2. Sk
X and Lk

X are orthogonal vector subspaces of Assk
X and for all k ∈ N

Assk
X = Lk

X ⊕ Sk
X .

This is a (geometric) reformulation of the following result of Ree [13, Theorem 2.2].

Theorem 3. A polynomial

(13) ω =
∑
n>0

∑
a(i1, i2, . . . , in)xi1xi2 · · ·xin ∈ AssX

is a Lie element (i.e. belongs to LX) if and only if for all (i1, . . . , ir) and (j1, . . . , js) we
have:

(14)
∑

a(k1, k2, . . . , kr+s) = 0

where (k1, . . . , kr+s) runs through all shuffles of (i1, . . . , ir) and (j1, . . . , js).

Proof of the equivalence of Theorem 2 and Theorem 3: Without lose of generality we
can assume that ω in (13) is homogeneous of degree n. The proof follows from the equality:

〈ω, xi1xi2 · · ·xir ∗ xj1xj2 · · ·xjs〉 =
∑

a(k1, k2, . . . , kr+s)

where xi1xi2 · · ·xir ∗ xj1xj2 · · ·xjs , r + s = n is a shuffle element and (k1, . . . , kr+s) runs
through all shuffles of (i1, . . . , ir) and (j1, . . . , js). Note that we can formulate Theorem 2
in the following way: The polynomial ω is a Lie element if and only if it is orthogonal to
all shuffles xi1xi2 · · ·xir ∗ xj1xj2 · · ·xjs , r + s = n.

To prove Theorem 1 we note that as the map (11) is non-degenerate for k = 1, then
it can be ”diagonalized” as follows: We fix a set of generators {δ1, δ2, . . . , δm} for FX and
find Ω = {ω1, . . . , ωm} ⊂ Ass1

X such that
∫
δi

ωj = 1 if i = j and = 0 otherwise. Now,
AssX is freely generated by Ω. Therefore we shall suppose, without loss of generality, that

(15)
∫

xi

xj = 〈xi, xj〉 = 0 if i 6= j and 0 otherwise.

The formula (15) generalizes as follows:
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Proposition 1. We have

(16)
∫

δ
ω = 〈ω, φ−1δ〉, ∀ω ∈ Assk

X , δ ∈ grkFX .

where φ is the isomorphism (3).

Proof. The proof is by induction on k. For k = 1 it follows from (15). If δ = (a, b), where
a ∈ F p

X , b ∈ F q
X , p + q = k > 1, then A2 implies∫

(a,b)
xj1xj2 · · ·xjk

=
∫

a
xj1 · · ·xjp

∫
b
xjp+1 · · ·xjk

−
∫

b
xj1 · · ·xjq

∫
a
xjq+1 · · ·xjk

= 〈φ−1(a), xj1 · · ·xjp〉〈φ−1(b), xjp+1 · · ·xjk
〉

−〈φ−1(b), xj1 · · ·xjq〉〈φ−1(a)xjq+1 · · ·xjk
〉

= 〈φ−1(a)φ−1(b), xj1 · · ·xjpxjp+1 · · ·xjk
〉

−〈φ−1(b)φ−1(a), xj1 · · ·xjqxjq+1 · · ·xjk
〉

= 〈φ−1(a)φ−1(b)− φ−1(b)φ−1(a), xj1xj2 · · ·xjk
〉

= 〈φ−1((a, b)), xj1xj2 · · ·xjk
〉.

Remark 1. For an arbitrary iterated integral map, the same proof implies that for every
δ ∈ grkFX such that

φ−1(δ) =
∑

a(i1, i2, . . . , ik)xi1xi2 · · ·xik ∈ grkLX

holds

(17)
∫

δ
ωj1ωj2 · · ·ωjk

=
∑

i1,i2,...,ik

a(i1, i2, . . . , ik)
∫

xi1

ωj1

∫
xi2

ωj2 . . .

∫
xik

ωjk

Proof of Theorem 1: The part (b) follows from Propositions 2 and 1. Let δ ∈ grkFX

and
φ−1(δ) =

∑
a(i1, i2, . . . , ik)xi1xi2 · · ·xik ∈ grkLX

where in the above sum each non-commutative monomial xi1xi2 · · ·xik is repeated only
once. Then δ 6= 0 if and only if

〈φ−1(δ), φ−1(δ)〉 =
∑

|a(i1, i2, . . . , ik)|2 6= 0.

Therefore for every δ ∈ grkFX there exists ω ∈ Lk
X , namely ω = Φ−1(δ), such that∫

δ
ω 6= 0.

Here we have used strongly the fact that the characteristic of k is zero.
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Remark 2. A canonical basis of the k-vector spaces Lk
X

∼= grkFX is given by basic
commutators (see for instance [7, 14]). By definition of 〈·, ·〉 if the number of some xi, i =
1, 2, . . . ,m used in two basic commutators ω1 and ω2 are different then 〈ω1, ω2〉 = 0. The
basic commutators of weight 1 and 2 are dual to each other with respect to the bilinear
map 〈·, ·〉. However, this is not the case for weight 3 and the number of generators m
bigger than 2. For instance, we have

〈[y, [x, z]], [z, [x, y]]〉 = 2

For m = 2 the basic commutators of weight 3 (resp. 4) are orthogonal to each other. In
m = 2 and r = 5 the orthogonality fails. There are two couples in which the number of x
is equal to 2 (resp. 3). In fact we have

〈[y, [x, [x, [x, y]]]], [[x, y], [x, [x, y]]]〉 = −28, 〈[y, [y, [x, [x, y]]]], [[x, y], [y, [x, y]]]〉 = −14

The basic commutators are implemented in Axiom in [8]. This and the implementation
of 〈·, ·〉 can be found in the second name author’s homepage. The above calculations is
done using Axiom.

5 Iterated integrals and plane holomorphic foliations

The results of the present paper have applications to the so called infinitesimal 16th Hilbert
problem (the problem of finding the number of the limit cycles of a plane vector field close
to an integrable one) and it was in fact motivated by it. In this section we discuss briefly
this relation.

Let f be a polynomial of degree d in two variables x, y and suppose, for simplicity,
that the highest order homogeneous piece g of f is a product of distinct homogeneous
lines, i.e g = Π(x − aiy), ai 6= aj . Let also C ⊂ C be the set of the critical values of f .
The cohomology fiber bundle ∪t∈C\CH1({f = t}, C) and the corresponding Gauss-Manin
connection whose flat sections are generated by sections with images in ∪t∈C\CH1({f =
t}, Z) is encoded in the global Brieskorn module H = Ω1

df∧Ω0+dΩ0 , where Ωi is the set of
polynomial i-forms in C2 as follows. We note first that H is a C[t]-module ( t.[ω] = [fω])
generated freely by

ωi := xi1yi2(xdy − ydx), i = (i1, i2) ∈ I

where {xi1yi2 , i ∈ I} is a basis of monomials for the C-vector space C[x,y]
〈fx,fy〉 . In particular

the rank of H equals the dimension of H1({f = t}, Z) for generic t. The Gauss-Manin
connection of the family of curves f(x, y) = t, t ∈ C with respect to the parameter t
becomes an operator ′ : H → 1

∆H which satisfies the Leibniz rule, where ∆ = ∆(t) is the
discriminant of the polynomial f(x, y)− t. In the basis ω = (ωi)i∈I (written in a column)
it is of the form

ω′ =
1
∆

Aω,

where A is a m×m matrix with entries in C[t] and m = #I (for proofs see [1, 10]).
The above construction has a natural generalization based on the π1 de Rham theorem

(Theorem 1), which we describe now. Let Ft, t ∈ C\C be the fundamental group of
the fiber {f = t} (it was denoted FX in section 3). Consider the trivial fiber bundle
∪t∈C\CgrkFt ⊗Z C and its Z-dual ∪t∈C\C ǧrkFt ⊗Z C. Both of them have a canonical flat
connexion defined as follows.
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Let X = {ωi}i∈I , k = C(t) and K the field of locally analytic multi-valued functions on
C\C. The Gauss-Manin connection on Ass1

X extends canonically to a derivation operator

∂

∂t
=′: AssX → 1

∆
AssX

which respects both the graduation of AssX , the direct sum decomposition AssX = LX ⊕
SX , and satisfies the Leibniz rule (ab)′ = a′b+ab′, a, b ∈ AssX . In particular for monomials
in AssX it is given by:

ωi1ωi2 · · ·ωir →
r∑

j=1

ωi1ωi2 · · ·ωij−1ω
′
ijωij+1 · · ·ωr.

The induced map ′ : LX → 1
∆LX , where LX is the k-vector space LX

∼= AssX
SX

, is the
desired generalization of the usual (algebraic) Gauss-Manin connexion.

The above construction has applications to the so called infinitesimal 16th Hilbert
problem (the problem of finding the number of the limit cycles of a plane vector field close
to an integrable one). Namely, let f be a polynomial as above and let ω be a polynomial
one-form in C2. Consider the holomorphic foliation on C2 defined by

df + εω = 0, ε ∼ 0.

Let b be a regular value of f and δ ∈ Fb. There is a number k such that δ represents a
not zero element in grkFb. We consider the holonomy map hε along δ

hε(t) = t +
∞∑
i=1

εiMi(t)

along the path δ. It is known [3, 2, 9] that M1 = · · · = Mk−1 = 0 and Mk is an iterated
path integral

(18) Mk(t) =
∫

δt

ω(ω(· · · (ω(ω)′︸ ︷︷ ︸
k−1 times

)′ · · · )′)′

where δt ∈ Ft is the path over δ in the fiber {f = t}. If the function Mk is not identically
zero then its zeros correspond to limit cycles of the deformed foliation. In particular the
deformation df + εω ” destroys” the family of cycles δt in the sense that the holonomy
map hε is not the identity map (h0 = id). In this relation the following claim can be
conjectured

For an arbitrary f of degree d and any family of cycles δt in the fibers of f , there is a
small perturbation ω of df such that deg(ω) = d− 1 and the perturbed holonomy along δt

is not the identity map.
We note that the proof of the above conjecture (for d > 3) presented in [4] contains

a gap (the statement in the 9th line of p. 280 is false). We present the following purely
algebraic approach to the above geometric problem in a weaker version. As we explained
we consider the deformation df + εω, ω ∈ C〈X〉, where C〈X〉 ⊂ Ass1

X is the C-vector
space generated by the elements of X. Now, it is enough to provethe following claim

The set
{∆k−1ω(ω(· · · (ω(ω)′︸ ︷︷ ︸

k−1 times

)′ · · · )′)′ | ω ∈ C〈X〉}
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generates the k-vector space AssX
SX

.
If the claim were true this would imply that the k-th order Poincar-Pontryagin-

Melnikov function Mk is not identically zero, which on its turn would show that the
holonomy map is not the identity map. The claim trivially holds true in the case k = 1, 2.
We conjecture that it holds true for any k.
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