Dear Movasati,

The first sentence of your introduction is ambiguous: on a variety of dimension n, here $n=1$, canonical bundle often means Ω^{n}. I hope you mean not Ω^{1} of the moduli space, but the bundle ω on the moduli stack of elliptic curves whose fiber at E is $\operatorname{Lie}(E)^{\vee}$. I guess "tensor product" is a misprint for "tensor power".

Why do you say "there is no way to generalize the first interpretation" when you essentially do just that? As you tell, an elliptic curve E defines a torsor P under the Borel subgroup B of SL(2): $\left(\right.$| $*$ |
| :---: |
| 0 |
| |$)$: the space of $\left(\omega_{1}, \omega_{2}\right)$ you consider. Any linear representation of B defines a vector bundle on the moduli stack M of elliptic curves, and you show that (forgetting the condition at ∞) quasi-modular forms can be identified with the sections of a vector bundle so constructed (on a covering of M corresponding to Γ). Bundles attached to representations of B should be thought as vector bundles deduced from the vector bundle \mathcal{H} of de Rham cohomology (fiber $H_{\mathrm{DR}}^{1}(E)$ at E), with the multilinear algebra structures it carries: the cup product, with value in \mathcal{O}, and the Hodge filtration, $F^{1} \subset \mathcal{H}$.

The $\S 4$ definition of quasi-modular forms tries to hide that they can be viewed as sections of the bundle of n-jets of sections of $\omega^{\otimes(m-2 n)}$: the object with a nice transformation law is $\left(f_{0}, \ldots, f_{n}\right)$, and corresponds point by point to such an n-jet. Near z_{0}, one has a local coordinate z, as well as a trivialization of ω, and to an n-jet, viewed as an n-jet of function: $\sum_{0}^{n} \varphi_{i}\left(z-z_{0}\right)^{i}$, one attaches φ_{n} (the last coefficient).

For an elliptic curve E, it amounts to the same to deform E, or to move the line F^{1} in $H_{\mathrm{DR}}^{1}(E)$, and if one identifies the moduli space near E with the space of F near (F^{1} of E), the fiber of ω at F is the line F itself. In algebraic geometry, this remains true for formal deformations, in char.0, and expresses the fact that the Gauss Manin connection induces $F \xrightarrow{\sim}(\mathcal{H} / F) \otimes \Omega^{1}$.

If E is $\mathbb{C} /\langle 1, z\rangle$, in $H^{1}(E, \mathbb{Z}) \otimes \mathbb{C}$ and for a natural basis of $H^{1}(E, \mathbb{Z}), F$ is spanned by $(1, z)$ and has a supplement G spanned by $(0,1)$. Near E, one moves F to the line spanned by $(1, z)+\lambda(0,1)$. This is the trivialization of ω near E used, and the local coordinate used, to speak of the last coefficient of an n-jet.

What you do is to observe that if one chooses any supplement G to F at E, it again makes sense to take the last coefficient of an n-jet of section of $\omega^{\otimes k}$. It is an element of $\omega^{\otimes(k+2 n)}$ depending on G. You tell that one should use all G, rather than at z one adapted to z. The space of all G is an affine line $\left(\mathbb{P}\left(H_{\mathrm{DR}}^{1}(E)\right)\right.$ minus the point " F "), and at any point of the moduli stack, functions of G of degree $\leq n$ correspond one to one to n-jets at that point.

Best,
P. Deligne
P.S. Concordance with your notations: the pairs $\left(\omega_{1}, \omega_{2}\right)$ you consider are determined by ω_{2} alone, subject to $\omega_{2} \notin F^{1}$. Instead of considering $f(G)$ with value in $\omega^{\otimes m}$, you use the $\omega_{1}=$ " $1 / \omega_{2}$ " attached to ω_{2} and the scalar function $f\left(\omega_{2}\right):=f\left(\right.$ line $\left.\left\langle\omega_{2}\right\rangle\right) / \omega_{1}^{\otimes m}$. The condition becomes an homogeneity condition and degree $\leq \cdots$ on the affine lines $\omega_{2}+F^{1}$. Your vector field is of course the Gauss Manin connection in disguise: the choice of ω_{2} at a point p of the moduli stack defines a tangent vector at p (as $\omega^{\otimes 2} \simeq \Omega^{1}$), and the GaussManin connection lifts it to a vector at ω_{2} on the bundle H_{DR}^{1}. So described, the bundle with fiber $H_{\mathrm{DR}}^{1}-F^{1}$ on the moduli stack, and the vector field, make sense in any characteristic _ better, over \mathbb{Z}. Only the use of the Weierstrass form creates trouble for $p=2,3$. The jet interpretation is another matter: trouble can be expected for n-jets when $n \geq p$.

