Dear Movasati,

The first sentence of your introduction is ambiguous: on a variety of dimension n, here n = 1, canonical bundle often means Ω^n . I hope you mean not Ω^1 of the moduli space, but the bundle ω on the moduli stack of elliptic curves whose fiber at E is $\text{Lie}(E)^{\vee}$. I guess "tensor product" is a misprint for "tensor power".

Why do you say "there is no way to generalize the first interpretation" when you essentially do just that? As you tell, an elliptic curve E defines a torsor P under the Borel subgroup B of SL(2): $\binom{*}{0} \stackrel{*}{*}$: the space of (ω_1, ω_2) you consider. Any linear representation of B defines a vector bundle on the moduli stack M of elliptic curves, and you show that (forgetting the condition at ∞) quasi-modular forms can be identified with the sections of a vector bundle so constructed (on a covering of M corresponding to Γ). Bundles attached to representations of B should be thought as vector bundles deduced from the vector bundle \mathcal{H} of de Rham cohomology (fiber $H^1_{\mathrm{DR}}(E)$ at E), with the multilinear algebra structures it carries: the cup product, with value in \mathcal{O} , and the Hodge filtration, $F^1 \subset \mathcal{H}$.

The §4 definition of quasi-modular forms tries to hide that they can be viewed as sections of the bundle of *n*-jets of sections of $\omega^{\otimes (m-2n)}$: the object with a nice transformation law is (f_0, \ldots, f_n) , and corresponds point by point to such an *n*-jet. Near z_0 , one has a local coordinate z, as well as a trivialization of ω , and to an *n*-jet, viewed as an *n*-jet of function: $\sum_{n=1}^{n} \varphi_i (z - z_0)^i$, one attaches φ_n (the last coefficient).

For an elliptic curve E, it amounts to the same to deform E, or to move the line F^1 in $H^1_{\text{DR}}(E)$, and if one identifies the moduli space near E with the space of F near (F^1 of E), the fiber of ω at F is the line F itself. In algebraic geometry, this remains true for formal deformations, in char.0, and expresses the fact that the Gauss Manin connection induces $F \xrightarrow{\sim} (\mathcal{H}/F) \otimes \Omega^1$.

If E is $\mathbb{C}/\langle 1, z \rangle$, in $H^1(E, \mathbb{Z}) \otimes \mathbb{C}$ and for a natural basis of $H^1(E, \mathbb{Z})$, F is spanned by (1, z) and has a supplement G spanned by (0, 1). Near E, one moves F to the line spanned by $(1, z) + \lambda(0, 1)$. This is the trivialization of ω near E used, and the local coordinate used, to speak of the last coefficient of an n-jet.

What you do is to observe that if one chooses any supplement G to F at E, it again makes sense to take the last coefficient of an *n*-jet of section of $\omega^{\otimes k}$. It is an element of $\omega^{\otimes (k+2n)}$ depending on G. You tell that one should use all G, rather than at z one adapted to z. The space of all G is an affine line ($\mathbb{P}(H^1_{\mathrm{DR}}(E))$) minus the point "F"), and at any point of the moduli stack, functions of G of degree $\leq n$ correspond one to one to *n*-jets at that point.

Best,

P. Deligne

P.S. Concordance with your notations: the pairs (ω_1, ω_2) you consider are determined by ω_2 alone, subject to $\omega_2 \notin F^1$. Instead of considering f(G) with value in $\omega^{\otimes m}$, you use the $\omega_1 = (1/\omega_2)$ attached to ω_2 and the scalar function $f(\omega_2) := f(\operatorname{line} \langle \omega_2 \rangle)/\omega_1^{\otimes m}$. The condition becomes an homogeneity condition and degree $\leq \cdots$ on the affine lines $\omega_2 + F^1$. Your vector field is of course the Gauss Manin connection in disguise: the choice of ω_2 at a point p of the moduli stack defines a tangent vector at p (as $\omega^{\otimes 2} \simeq \Omega^1$), and the Gauss-Manin connection lifts it to a vector at ω_2 on the bundle H_{DR}^1 . So described, the bundle with fiber $H_{\mathrm{DR}}^1 - F^1$ on the moduli stack, and the vector field, make sense in any characteristic _ better, over \mathbb{Z} . Only the use of the Weierstrass form creates trouble for p = 2, 3. The jet interpretation is another matter: trouble can be expected for n-jets when $n \geq p$.