
December 5, 2008

Dear Movasati,

The first sentence of your introduction is ambiguous: on a variety of dimension n, here

n = 1, canonical bundle often means Ωn. I hope you mean not Ω1 of the moduli space, but

the bundle ω on the moduli stack of elliptic curves whose fiber at E is Lie(E)∨. I guess

“tensor product” is a misprint for “tensor power”.

Why do you say “there is no way to generalize the first interpretation” when you es-

sentially do just that? As you tell, an elliptic curve E defines a torsor P under the Borel

subgroup B of SL(2): ( ∗ ∗
0 ∗ ): the space of (ω1, ω2) you consider. Any linear representation

of B defines a vector bundle on the moduli stack M of elliptic curves, and you show that

(forgetting the condition at ∞) quasi-modular forms can be identified with the sections of a

vector bundle so constructed (on a covering of M corresponding to Γ). Bundles attached to

representations of B should be thought as vector bundles deduced from the vector bundle

H of de Rham cohomology (fiber H1
DR(E) at E), with the multilinear algebra structures it

carries: the cup product, with value in O, and the Hodge filtration, F 1 ⊂ H.

The §4 definition of quasi-modular forms tries to hide that they can be viewed as sections

of the bundle of n-jets of sections of ω⊗(m−2n): the object with a nice transformation law

is (f0, . . . , fn), and corresponds point by point to such an n-jet. Near z0, one has a local

coordinate z, as well as a trivialization of ω, and to an n-jet, viewed as an n-jet of function:
n∑

0

ϕi(z − z0)
i, one attaches ϕn(the last coefficient).

For an elliptic curve E, it amounts to the same to deform E, or to move the line F 1 in

H1
DR(E), and if one identifies the moduli space near E with the space of F near (F 1 of E),

the fiber of ω at F is the line F itself. In algebraic geometry, this remains true for formal

deformations, in char.0, and expresses the fact that the Gauss Manin connection induces

F ∼→ (H/F ) ⊗ Ω1.



If E is C/ 〈1, z〉, in H1(E, Z) ⊗ C and for a natural basis of H1(E, Z), F is spanned by

(1, z) and has a supplement G spanned by (0, 1). Near E, one moves F to the line spanned

by (1, z)+λ(0, 1). This is the trivialization of ω near E used, and the local coordinate used,

to speak of the last coefficient of an n-jet.

What you do is to observe that if one chooses any supplement G to F at E, it again

makes sense to take the last coefficient of an n-jet of section of ω⊗k. It is an element of

ω⊗(k+2n) depending on G. You tell that one should use all G, rather than at z one adapted

to z. The space of all G is an affine line (P(H1
DR(E)) minus the point “F”), and at any point

of the moduli stack, functions of G of degree ≤n correspond one to one to n-jets at that

point.

Best,

P. Deligne

P.S. Concordance with your notations: the pairs (ω1, ω2) you consider are determined by
ω2 alone, subject to ω2 /∈ F 1. Instead of considering f(G) with value in ω⊗m, you use
the ω1 = “1/ω2” attached to ω2 and the scalar function f(ω2) := f(line 〈ω2〉)/ω

⊗m

1 . The
condition becomes an homogeneity condition and degree ≤ · · · on the affine lines ω2 + F 1.
Your vector field is of course the Gauss Manin connection in disguise: the choice of ω2 at
a point p of the moduli stack defines a tangent vector at p (as ω⊗2 ≃ Ω1), and the Gauss-
Manin connection lifts it to a vector at ω2 on the bundle H1

DR. So described, the bundle with
fiber H1

DR − F 1 on the moduli stack, and the vector field, make sense in any characteristic
better, over Z. Only the use of the Weierstrass form creates trouble for p = 2, 3. The jet

interpretation is another matter: trouble can be expected for n-jets when n ≥ p.
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