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Abstract

In this article we study good C∗ actions on Stein surfaces and we construct their
moduli by means of the resolution data of the dicritical singularity of the action. We
also classify C∗ transversal actions around a Riemann surface embedded in a two
dimensional manifold.

1 Introduction

A 2-dimensional complex analytic variety V , with a distinguished point p ∈ V , is called
a quasi-homogeneous complex surface singularity, if it admits a holomorphic action of the
complex multiplicative group C∗ = C\{0} such that every non-singular orbit accumulates
at p ∈ V (see for instance [16], page 67 and [5, 14]). Such an action is called a good
action. The study of algebraic quasi-homogeneous singularities is a main topic in the
theory of singularities. Saito in [13] gave an algebraic description of such singularities in
the local context. Orlik and Wagreich ([11], [12], [18]) studied the 2-dimensional affine
algebraic varieties embedded in Cn+1, with an isolated singularity at the origin, that are
invariant by an algebraic action of the form σQ(t, (z0, ..., zn)) = (tq0z0, ..., tqnzn) where
Q = (q0, ..., qn) ∈ Nn+1, i.e. all qi are positive integers. In particular they classified the
algebraic surfaces embedded in C3 endowed with such an action. In this paper we classify
the quasi-homogeneous surface singularities which are Stein analytic spaces of dimension
two, endowed with an analytic global C∗-action.

Let V be a Stein irreducible complex analytic space of dimension two with normal
singularities and ϕ : C∗ × V → V a holomorphic action of the group C∗ on V . Denote by
Fϕ the foliation on V induced by ϕ. The leaves of this foliation are the one-dimensional
orbits of ϕ, and its singularities are the fixed points of ϕ. We will assume that there exists
a dicritical singularity p ∈ V for the C∗-action, i.e. for some neighborhood p ∈ W ⊂ V
there are infinitely many leaves of Fϕ|W accumulating only at p. The closure of any
such a local leaf is an invariant local analytic curve called a separatrix of Fϕ through p.
Thus, a dicritical singularity exhibits infinitely many separatrices. On the other hand, the
singularity p ∈ V of a good action on V is clearly dicritical.

Two pairs (V, ϕ) and (V ′, ϕ′) are equivalent if there is a biholomorphic map f : V → V ′

such that f(ϕ(t, x)) = ϕ′(t, f(x)) for all t ∈ C∗ and x ∈ V . The set of all pairs (V, ϕ) up
to this equivalent relation is the moduli space which we study in the present paper:

Theorem 1. The moduli space of pairs (V, ϕ), where V is a normal Stein analytic space of
dimension two and ϕ is a C∗-action with isolated singularities with at least one dicritical
singularity, is the following data

1. A Riemann surface σ0 of genus g and s-points r1, r2, . . . , rs on σ0 considered up to
the automorphism group of σ0.

2. A line bundle L on σ0 with c(L) = −k ≤ −1.
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3. For each i = 1, 2, . . . , s a sequence of integers −kij , j = 1, 2, . . . , ni, kij ≥ 2, such
that

s∑
i=1

1
[ki1, k

i
2, . . . , k

i
ni

]
< k,

where

[ki1, k
i
2, ..., k

i
ni

] = ki1 −
1

ki2 − 1

...

.

Conversely, 1 , 2 and 3 imply the existence of a pair (V, ϕ).

The above data can be read from the minimal resolution of the desingularization at
p ∈ V of the foliation induced by ϕ. The proof of Theorem 1 will also provide us with
the fact that V is indeed an affine variety and ϕ is an algebraic action of the form σQ.
Therefore, the GAGA principle is valid for such actions and the algebraic and analytic
moduli in Theorem 1 are the same.

The proof of Theorem 1 consists of the following steps. We first analyze in §2 the
resolution of the singularity p ∈ V and obtain Theorem 2 which is an analytic version of
a theorem proved in [11]. It turns out that in the divisor of the resolution of p ∈ V there
is only one element, σ0, of arbitrary genus, on which C∗ acts transversely, i.e. the set of
fixed points of the lifted action is σ0 and there is a 1-dimensional local foliation, transverse
to σ0, invariant by the action. All other elements of the divisor are Riemann spheres and
are invariant under the lifted C∗-action. In §3 we show a theorem, which has independent
interest, that allows to linearize the lifted C∗-action in a neighborhood of σ0. The main
theorem of this section, Theorem 3, generalizes a theorem on the linearization of foliations
transverse to a Riemann surface embedded in a complex surface, published in [2], with the
peculiarity that if the foliation is invariant by a C∗-action then no hypothesis is required
on the self intersection number of σ0. In §4 we first introduce the linear model for the
resolution of p ∈ V and then extend the linearization obtained in the previous section to
the basin of attraction of p ∈ V . In §5 we prove that the basin of attraction of p ∈ V is
the whole space V . Finally, in §6 we prove our main theorem.

The authors are very grateful to Paulo Sad and Jorge Vitório Pereira for useful dis-
cussions on the topics of the present article and specially in the proof of Theorem 4.

2 Resolution of singularities

In order to prove Theorem 1 we first describe the resolution of the action ϕ, at p ∈ V and
then compare it with the resolution of a model good action.

2.1 Holomorphic foliations

We start with the resolution theorem for normal two dimensional singularities (see [8])
and the resolution theorem for holomorphic foliations (see [15], [4]) that combined together
assert, first, that there exists a proper holomorphic map ρ : Ṽ → V such thatD:=ρ−1(p) =⋃r
i=0 σi, is a finite union of compact Riemann surfaces σi intersecting at most pairwise

at normal crossing points, and then that Ṽ is an analytic space of dimension two with
no singularities near D. More precisely, the σi’s are compact Riemann surfaces without
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singularities such that if σi∩σj 6= ∅ then σi and σj have normal crossing and σi∩σj∩σk = ∅
if i 6= j 6= k 6= i. Moreover, the intersection matrix (σi · σj) is negative definite ([8])and
the restriction of ρ to Ṽ \D is a biholomorphism onto V \{p}. By means of this restriction
Fϕ induces a foliation F̃ϕ on Ṽ \D that can be extended to Ṽ as a foliation with isolated
singularities. Each one of these singularities can be written in local coordinates (x, y)
around 0 ∈ C2 in one of the following forms : (i) simple singularities: xdy−y(µ+· · · )dx = 0
, µ /∈ Q+, where the points denote higher order terms; (ii) saddle-node singularities:
xm+1dy − (y + axmy + · · · )dx = 0, a ∈ C, m ∈ N. A simple singularity has two invariant
manifolds crossing normally, they correspond to the x and y-axes. The saddle-node has
an invariant manifold corresponding to the y-axis and, depending on the higher order
terms, it may not have another invariant curve (see [10]). The resolution of Fϕ can be
obtained in such a way that the elements σi fall in two categories. Either σi is a dicritical
component, when F̃ϕ is everywhere transverse to σi, or a nondicritical component when
σi is tangent to F̃ϕ. In a similar way, by means of the restriction ρ to Ṽ \D the C∗- action
ϕ on V \{p} induces a C∗- action ϕ̃ on Ṽ \D that can be extended to D as a C∗- action
(see [12]). For this it is enough to observe that D ⊂ Ṽ is analytic of codimension one, Ṽ
is a normal analytic space and ϕ̃ is bounded in a neighborhood of D. We have therefore
that the orbits of ϕ̃ are contained in the leaves of the foliation F̃ϕ. Moreover, if we denote
by Fix(ϕ̃) the set of fixed points of ϕ̃, and by sing(F̃ϕ) the singular set of the foliation
F̃ϕ, we have that sing(F̃ϕ) ⊂ Fix(ϕ̃).

The divisor D forms a graph with vertices σi and sides the nonempty intersections
σi ∩ σj . A star is a contractible connected graph where at most one vertex, called its
center, is connected with more than two other vertices. A weighted graph is a graph
where at each vertex is associated its genus and its self-intersection number.

2.2 The star weighted graph structure

In this section we describe the resolution of p as a singular point of V and as a singularity
of Fϕ. This description is already in the paper [11].

Theorem 2. Let V be a normal Stein analytic space of dimension two and ϕ a C∗-action
on V with a dicritical singularity at p ∈ V . Then there is a resolution ρ : Ṽ → V of Fϕ
at the point p ∈ V such that

1. ρ−1(p) =
⋃r
i=0 σi is a weighted star graph centered at the Riemann surface σ0, of

genus g, and consisting of Riemann spheres σi, i > 0;

2. σ0 is the unique dicritical component of F̃ϕ = ρ∗Fϕ;

3. the pull-back action ϕ̃ on Ṽ is trivial on σ0 and nontrivial on each σi, i > 0 , i.e.
Fix(ϕ̃) ∩ σ0 = σ0, and Fix(ϕ̃) ∩ σi consists of two points for each i > 0;

4. The singular points of the foliation F̃ϕ are all simple, Fix(ϕ̃) = sing(F̃ϕ) ∪ σ0, and
sing(F̃ϕ) ∩ σ0 = ∅.

In the algebraic context in which V is affine and the C∗-action is algebraic, the above
theorem with items 1 , 2 and 3 is a result of Orlik and Wagreich (see [11]). Our proof uses
the theory of holomorphic foliations on complex manifolds instead of topological methods.
In order to prove Theorem 2 we need the following index theorem.
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2.3 The Index theorem

Let σ be a Riemann surface embedded in a two dimensional manifold S ; F a foliation on S
which leaves σ invariant and q ∈ σ. There is a neighborhood of q where σ can be expressed
by (f = 0) and F is induced by the holomorphic 1-form ω written as ω = hdf + fη. Then
we can associate the following index:

iq(F , σ) := −Residueq(
η

h
)|σ

relative to the invariant submanifold σ. In the case of a simple singularity as defined above
if σ is locally (y = 0) and q = 0, this index is equal to µ (quotient of eigenvalues). In the
case of a saddle-node, if σ is equal to (x = 0) and q = 0, this index is zero. At a regular
point q of F the index is zero. The index theorem of [4] asserts that the sum of all the
indices at the points in σ is equal to the self-intersection number σ · σ:∑

q∈σ
iq(F , σ) = σ · σ.

2.4 Proof of Theorem 2

By hypothesis, in the resolution of p ∈ V there is at least one dicritical component, say
σ0. Then the action ϕ̃ extends to σ0 as a set of fixed points. We claim that σ0 is the
unique dicritical component. Indeed, at each dicritical component the C∗- action ϕ̃ is
trivial. Since V is normal at p ∈ V , ρ−1(p) is connected ([8]), thus if there is another
dicritical component, say σi, then there would exist C∗- orbits of ϕ̃, with compact analytic
closure crossing σ0 and σi transversely contradicting the fact that V is Stein. Thus σ0 is
the only dicritical component, and the action ϕ̃ is trivial on σ0. The same argument shows
that there cannot be cycles of components of D, because this would imply the existence
of leaves starting and ending at σ0. Thus the graph associated to ρ is contractible.

A linear chain at a point q ∈ σ0 is a union of compact Riemann surfaces, elements of
the divisor D, say σ1, ..., σn such that σ1 ∩ σ0 = {q} and σi ∩ σj is nonempty if and only
if i = j − 1 and in this case it is a point, for j = 2, ..., n.

Lemma 1. Suppose that r1, r2, ..., rs are the crossing points at σ0 of the divisor D. Then
the divisor D consists of the union of σ0 and linear chains of Riemann spheres at each of
these crossing points.

Proof. Consider the divisor D at the point r1 renamed as p0. Let σ1 be such that p0 =
σ0∩σ1. We claim that the C∗-action ϕ̃ on σ1 is nontrivial with a fixed point at p0. Indeed
it can be represented in local coordinates (x, y), where (x = 0) = σ0, (y = 0) = σ1, by
the vector field Y = (Y1, 0) with Y1(0, y) = 0. Consider the restriction of the action ϕ̃
to the subgroup S1 ⊂ C∗. Then in the C-plane (y = y0) the S1-orbit of a generic point
(x, y0), x 6= 0, will turn l times around (0, y0) and this number, which is different from
zero, will be constant as y0 → 0. Therefore ϕ̃ extends to the x-axis σ1 as a nontrivial
C∗-action. Therefore σ1 is a Riemann sphere and there is another point p1 ∈ σ1 which is
fixed by ϕ̃. Since p1 is the unique singularity of F̃ϕ in σ1 we must have that the index of
F̃ϕ with respect to the invariant manifold σ1 at p1 is given by ([4])

ip1(F̃ϕ, σ1) = σ1.σ1 = −k1, k1 ∈ N.
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Therefore p1 cannot be a saddle-node, as in this case this index would be zero. This
implies that p1 is simple for F̃ϕ. Either the chain ends at σ1 or there is another component,
say σ2, such that {p1} = σ1 ∩ σ2. In this last case, p1 is simple. We claim that the action
ϕ̃ on σ2 is nontrivial. Indeed, let (x, y) be a system of coordinates in a neighborhood
N of p1 = (0, 0) such that (x = 0) = σ1 ∩ N , (y = 0) = σ2 ∩ N . By derivation along
the parameter of the group, the action ϕ induces a vector field Y on N . Assuming by
contradiction that ϕ is trivial on σ2 we would have Y (x, 0) = 0 and we can assume,
changing coordinates if necessary, that DY (x, 0) = diag(0, λx), λ0 6= 0. By continuity,
λx 6= 0 for x small enough. By the invariant manifold theorem for ordinary differential
equations, there is a fibration invariant by Y , transverse to σ2, whose fibers are the subsets
of N defined as τx = {(x, y); limt→0 ϕ(t, (x, y)) = (x, 0)}, τ0 = σ1. Thus σ2 is a dicritical
component of F̃ϕ, which is a contradiction. Therefore σ2 will be a Riemann sphere with
another fixed point p2 ∈ σ2 for the action ϕ̃. It is clear that the corresponding index will
be given by

ip2(F̃ϕ, σ2) = −k2 + 1/k1 6= 0, k2 = −σ2.σ2 ∈ N.

More generally, the linear chain will consist of a finite sequence of elements of the
divisor σ0, σ1, ..., σn such that σi, for i 6= 0, is a Riemann sphere where the action ϕ̃ is
nontrivial, and σi ∩ σi+1 = {pi} is a simple singularity of F̃ϕ for i = 1, ..., n − 1. Denote
by −ki = σi.σi, ki ∈ N. At each point pi the index of this singularity relative to σn is

ipj (F̃ϕ, σj) = −[kj , kj−1, ..., k1],

where we have a continued fraction

[kj , kj−1, ..., k1] = kj −
1

kj−1 − 1

. . .

.

We claim that the numbers [kj , kj−1, ..., k1], j = 1, ..., n, are all well defined and different
from zero. Indeed, this is a consequence of the fact that the intersection matrix (σi · σi)
is negative definite ([8]). Let M be a real symmetric n × n matrix and Q a non-singular
real n × n matrix. Then M is negative definite if and only if QtMQ is negative definite.
Given the matrix M = (σi · σj) we take Q as the matrix with one’s in the diagonal, a in
the (1, 2) entry, and zeros elsewhere. Then a convenient choice of a will yield a matrix
QtMQ with −k1 in the (1, 1) entry and zeros in the (1, 2) and (2, 1) entries. Repeating
this procedure we obtain that the following diagonal matrix

diag(−k1,−[k2, k1], ...,−[kn, kn−1, ..., k1])

is negative definite, proving the claim and the lemma.

Theorem 2 follows from the above discussion and Lemma 1.

3 Linearization around the dicritical divisor

Let D = {z ∈ C | |z| < 1} be the unit disk. In the previous section we saw that the
multiplicative pseudo group G = (C,D) − {0} acts on (Ṽ , σ0) and the flow of the action
ϕ is transverse to σ0. The purpose of this section is to show that such an action is
biholomorphically conjugated with the canonical G-action on the normal bundle to σ0 in
Ṽ .
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3.1 G-transverse actions to a Riemann surface

Let σ be a Riemann surface embedded in a surface S. We say that ψ is a transverse
G-action on (S, σ) if

1. For all a ∈ σ and t ∈ G we have ψ(t, a) = a.

2. There is a foliation F on (S, σ), transverse to σ such that each leaf of F is the closure
of {ψ(t, a) | t ∈ G} for some a ∈ (S, σ)− σ.

A typical example of a G-action is the following: We consider a line bundle L on σ and the
embedding σ ↪→ L given by the zero section. Now for every q ∈ N we have a transverse
G-action on (L, σ) given by (t, a) 7→ tqa. It turns out that up to biholomorphy these are
the only transverse G-actions.

Theorem 3 (Linearization theorem). Let σ be a Riemann surface embedded in a surface
S and ψ a transverse G-action on (S, σ). Then ψ is linearizable in the sense that there
exist a biholomorphism h : (S, σ) → (N,σ), where N is the normal bundle to σ in S, and
a natural number q such that h(ψ(t, a)) = tqh(a) for any a ∈ (S, σ).

Notice that the linearization of ψ yields also the linearization of the associated foliation.
An immediate corollary of the above theorem is that non-linearizable neighborhoods do
not admit any transversal G-action. For instance, Arnold’s example in which σ is a torus of
self-intersection number zero in some complex manifold of dimension two is not linearizable
and so it does not admit any transversal G-action (see [1]).

3.2 Local linearization

Let S = (C2, 0) and 0 ∈ σ ⊂ S be a smooth curve in S. In a similar way as before we
define a G-action on (S, σ) transverse to σ and call it the local transverse G-action.

Lemma 2. Any local transverse G-action can be written in a local system of coordinates
in the form ψ(t, (x, y)) = (x, tqy).

Proof. We take a coordinates system (x, y) around 0 ∈ C2 such that the the foliation Fψ is
given by dx = 0 and σ is given by y = 0. In these coordinates the flow ψt of the C∗-action
is given by:

ψt : (C2, 0) → (C2, 0), ψt(x, y) = (x, pt,x(y)).

Since the orbits of ψ tend to σ when t tends to zero, pt,x is a holomorphic function in
t ∈ (C,D). We have also pt,x(0) = 0 because σ is the set of fixed points of ψ. We can
write pt,x(y) as a series

pt,x(y) =
∑
i=1

pi(t, x)yi.

Substituting the above term in ψ(t1t2, a) = ψ(t1, ψ(t2, a)) we obtain

p1(t1t2, x) = p1(t1, x)p1(t2, x), t1, t2 ∈ G, x ∈ (C, 0).

Since p1 is holomorphic at t = 0, the derivation of the above equality in t1 implies that
p1(t, x) = tq for some q ∈ N. Now, by the Theorem on the linearization of germs of
holomorphic mappings, there is a unique ft,x : (C, 0) 7→ (C, 0) which is tangent to the
identity, depends holomorphically on t, x and

f−1
t,x ◦ pt,x ◦ ft,x(y) = tqy.

The C∗-action ψ in the coordinates (x̃, ỹ) = (x, ft,x(y)) has the desired form.
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Now consider on S a foliation F which is transverse to σ (no G-action is considered).
Let ω be a 1-form on S such that

div(ω) = σ + nL0,

where n ∈ Z and L0 is the leaf of F through 0 ∈ S.

Lemma 3. Given a local system of coordinates x in σ, there is a unique system of coor-
dinates (x̃, ỹ) in S such that

1. The restriction of x̃ to σ is x;

2. The 1-form ω in (x̃, ỹ) is of the form x̃nỹdx̃.

Proof. For the proof of the existence we take a coordinates system (x̃, ỹ) in a neighborhood
of 0 in S such that σ and F in this coordinate system are given respectively by ỹ = 0
and dx̃ = 0 and x̃ |σ= x. We write ω = px̃nỹdx̃, where p ∈ OS , p(0) 6= 0. By changing
the coordinates (x̃, ỹ) → (x̃, pỹ) we obtain the desired coordinate system. The uniqueness
follows from the fact that any local biholomorphism f : (C2, 0) → (C2, 0) which is the
identity in ỹ = 0 and f∗x̃nỹdx̃ = x̃nỹdx̃ is the identity map.

3.3 Construction of differential forms

Consider a Riemann surface σ embedded in a two dimensional manifold S. We take a
meromorphic section s of the normal bundle N of σ in S and set

div(s) =
∑

nipi, ni ∈ Z, pi ∈ σ.

Lemma 4. For a transverse G-action ψ on (S, σ), there is a meromorphic function u on
(S, σ) such that

1.
div(u) = σ −

∑
nipi, ni ∈ Z, pi ∈ σ,

2.
u(ψ(t, a)) = tqu(a), a ∈ (S, σ), t ∈ G.

Let ṽ be an arbitrary meromorphic function on σ and v its extension to S along the foliation
F . The 1-form

ω = udv

has the properties:

1. ω induces the foliation F ;

2. The divisor of ω is σ +K, where K is F-invariant.

3. ψ∗t ω = tqω, t ∈ G, where ψt(x) = ψ(t, x).

Proof. In a local coordinate system (xα, yα) in a neighborhood Uα of a point pα of σ in S
one can write the G-action as follows

ψ(t, (xα, yα)) = (xα, tqyα),
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where σ ∩Uα = {yα = 0}. The meromorphic function uα = x−nα yα, where n = ni if p = pi
for some i and n = 0 otherwise, satisfies the conditions 1, 2 in Uα. We define uαβ := uα

uβ
.

Now L := {uαβ} ∈ H1(S, π−1O∗σ) = H1(σ,O∗σ), where π : S → σ is the projection along
the fibers. On the other hand, the line bundle associated to σ in S and then restricted
to σ is the normal bundle of σ in S and so by definition L restricted to σ is the trivial
bundle. This means that there are aα ∈ π−1O∗σ(Uα) such that uαβ = aα

aβ
. Now, uα

aα
define

a meromorphic function on S with the desired properties.

Remark 1. In the case in which we have a transverse foliation F without any transverse
ψ action, the linearization of F requires σ · σ < min(2 − 2g, 0), where g is the genus of
σ (see [2, 3]). In this case, in order to construct u with the first property we used this
hypothesis and proved that the restriction map Pic(X) → Pic(σ) is injective. As we saw
in the proof of Lemma 4, in the presence of a transverse G-action we do not need any
hypothesis on σ · σ.

3.4 Holomorphic equivalence of neighborhoods

Now we consider two embeddings of σ with transverse foliations.

Lemma 5. Let σ be a Riemann surface embedded in two surfaces Si, i = 1, 2 and let Fi
be a foliation transverse to σ on Si induced by a 1-form ωi such that the divisor of ωi is
σ +Ki, where Ki is Fi-invariant and K1 and K2 restricted to σ coincide. Then there is
a unique biholomorphism h : (S1, σ) → (S2, σ) such that h∗ω2 = ω1.

Proof. Using Lemma 3 we conclude that for a point a ∈ σ there is a unique h : (S1, σ, a) →
(S2, σ, a) such that h restricted to σ is the identity map and h∗ω2 = ω1. The uniqueness
implies that these local biholomorphisms coincide in their common domains and so they
give us a global biholomorphism h : (S1, σ) → (S2, σ) with the desired property.

3.5 Proof of the linearization theorem

Let us now prove Theorem 3. Take i = 1, 2 . Let σ be a Riemann surface embedded in
two surfaces Si and let ψi be a transverse G-action on (Si, σ) with the multiplicity q and
corresponding foliation Fi. By Lemma 4 we can construct a 1-form ωi with the properties
1, 2, 3. By construction of ωi, if div(ωi) = σ +Ki then Ki restricted to σ depends only
on ṽ and s and so we can take the Ki’s so that K1 |σ= K2 |σ. Now Lemma 5 implies
that there is a unique biholomorphism h : (S1, σ) → (S2, σ) such that h∗ω2 = ω1. We
claim that h conjugates also the ψi’s. Fix t ∈ G and let ψi,t : (Si, σ) → (Si, σ) be a
biholomorphism defined by

ψi,t(a) := ψi(t, a), a ∈ (Si, σ).

We have
h∗ψ∗2,tω2 = h∗tqω2 = tqω1 = ψ∗1,tω1 = ψ∗1,th

∗ω2.

Since by Lemma 5 the sole f : (S2, σ) → (S2, σ) such that f∗ω2 = ω2 is the identity map,
we conclude that h∗ψ∗2,t = ψ∗1,th

∗ and so h(ψ1(t, a)) = ψ2(t, h(a)).
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4 Linearization in the attraction basin

In this section we associate to the foliation F̃ϕ a linear model and prove a linearization
result based on the existence of the G-action transverse to σ0.

4.1 The linear model

We can associate to the pair (F̃ϕ, Ṽ ) a linear model constructed as follows. Let L be the
normal bundle of σ0 in Ṽ . We denote by L−1 the dual of L. We can glue L and L−1

together and obtain a compact projective manifold L̄ in the following way: Let {Uα}α∈I
be an open covering of σ0 and zα (resp. z′α) a holomorphic without zero section of L (resp.
L−1) on Uα. Then

zα = gαβzβ, z
′
α = g−1

αβ z
′
β, L = {gαβ}α,β∈I ∈ H1(S,O∗).

For a point a ∈ Lp, p ∈ Uα, a 6= 0p we define the point 1
a ∈ L

−1
p by setting

1
a

=
zα(p)
a

z′α(p).

The map a→ 1/a does not depend on the chart Uα and gives us a biholomorphism between
L− σ0 and L−1 − σ∞, where σ0 (resp. σ∞) is the zero section of L (resp. L−1).

For each point r0i = ri ∈ σ0, i = 1, 2, . . . , s we denote by r∞i the unique intersection
point of σ∞ and L̄r0i

. By various blow ups starting from r∞i in the chain σ0, L̄r0i
, σ∞, we

can create a chain of divisors

σ0, σ
i
1, σ

i
2, . . . , σ

i
ni
, σ̃, τ imi

, τ imi−1, . . . , τ
i
1, σ∞

such that

σij · σij = −kij , j = 1, 2, . . . , ni, σ̃ · σ̃ = −1, −lij := τ ij · τ ij < −1, j = 1, 2, . . . ,mi.

The chain of self-intersections of the divisors in the blow-up process is given by:

(−k, 0, k), (−k,−1,−1, k−1), (−k,−2,−1,−2, k−1), . . . , (−k,−ki1,−1,−2, · · · ,−2︸ ︷︷ ︸
ki
1−1 times

, k−1)

(−k,−ki1,−2,−1,−3,−2, · · · ,−2︸ ︷︷ ︸
ki
1−2 times

, k−1), · · · , (−k,−ki1,−ki2, · · · ,−kini
,−1, limi

, · · · , li2, li1, k−1).

Repeating this construction at each point ri, i = 1, ..., s we obtain a surface X. Let

D∞ = σ∞ +
s∑
i=1

mi∑
j=1

τ ij , D0 = σ0 +
s∑
i=1

ni∑
j=1

σij .

Now, Ṽ := X − D∞ is the desired linear model variety. In L̄ we have a canonical C∗
action whose orbits are the fibers of L. It gives us a C∗-action λ̃ on Ṽ. We denote by F̃λ
the associated foliation on Ṽ. The pair (Ṽ, F̃λ) will be called the linear approximation of
(Ṽ , F̃ϕ).

In order to proceed with our discussion we need some definitions: A divisor Y =∑l
i=1 Yi in a two-dimensional surface X is a support of a divisor with positive (resp.
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negative) normal bundle if there is a divisor Ỹ :=
∑l

i=1 aiYi, where the ai, i = 1, 2, . . . , l
are positive integers, such that Ỹ · Yj > 0( resp. < 0), for j = 1, . . . , l.

We say that the normal bundle of the divisor Ỹ in X is positive (resp. negative).
Observe that the normal bundle N of a divisor is positive (resp. negative) if and only if
N restricted to each irreducible component of the divisor is positive (resp. negative) (see
[7] Proposition 4.3). In fact the above number is the Chern class of N |Yi (see [8] p. 62).

Lemma 6. The following assertions are equivalent:

1. The divisor D∞ is a support of divisor with positive normal bundle.

2. The self-intersection matrix of D0 is negative definite.

3.
s∑
i=1

1
[ki1, k

i
2, . . . , k

i
ni

]
< k.

4.
s∑
i=1

1
[li1, l

i
2, . . . , l

i
mi

]
> s− k.

Proof. 1 ⇒ 2 . From [7] Theorem 4.2 it follows that one can make a blow down of the
divisor D0 and so the self intersection matrix of D0 is negative definite.

2 ⇒ 3 . We remark that the diagonalization of the intersection matrix of D0 by the
procedure given in Lemma 1 leads to

diag(. . . ,−kini
,−[kini−1, k

i
ni

], ...,−[ki1, k
i
2, ..., k

i
ni

], . . . ,−k +
s∑
i=1

1
[ki1, k

i
2, . . . , k

i
ni

]
).

Recall that kij > 1 for i = 1, . . . , s; j = 1, . . . , ni.
3 ⇒ 4 . Using the index theorem we have

1
[kini

, kini−1, . . . , k
i
1]

+
1

[limi
, limi−1, . . . , l

i
1]

= 1.

Notice that the order of the continued fraction is the inverse of the one we need. However
we have that: if

−k,−ki1,−ki2, . . . ,−kini
,−1,−limi

,−limi−1, . . . ,−li1, k − 1

is obtained by blow-ups as we explained then

−k,−kini
,−kini−1, . . . ,−ki1,−1,−li1,−li2, . . . ,−limi

, k − 1

is also obtained by blow-ups. This can be proved by induction on the number of blow-ups.
Notice that to create each branch of the star we have done only one blow-up centered at a
point of σ∞ (the first blow-up) and so after obtaining the desired star the self intersection
of σ0 is k − s.

4 ⇒ 1 . We are looking for natural numbers a and aij , j = 1, 2, . . . ,mi, i = 1, 2, . . . , s
such that the normal bundle of Ỹ = aσ∞ +

∑s
i=1

∑mi
j=1 a

i
jτ
i
j is ample, i.e Ỹ · σ > 0 for

σ = σ∞ and all σij . These inequalities are translated into:

−lijaij + aij−1 + aij+1 > 0, ai0 := n, aimi+1 := 0,

10



a(k − s) +
s∑
i=1

aimi
> 0.

We rewrite these inequalities in the following way:

a

ai1
> [li1,

ai1
ai2

] > . . . > [li1, l
i
2, . . . , l

i
mi−1,

aimi−1

aimi

] > [li1, l
i
2, . . . , l

i
mi−1, l

i
mi

],

s∑
i=1

1
a
ai
1

> s− k.

The existence of positive rational numbers
ai

j

ai
j−1

follows from the hypothesis 4. Notice that

lij are all greater than 1 and so the [li1, l
i
2, . . . , l

i
mi−1, l

i
mi

]’s are positive.

We denote by V the variety obtained by the blow down of the divisor D0 in Ṽ. We
also denote by λ the C∗-action on V corresponding to λ̃ in Ṽ.

Proposition 1. The variety V is affine algebraic and the C∗- action λ is given by a good
action in some affine coordinates.

Proof. Since the self intersection matrix of D0 is negative definite, by Lemma 6 we have
that D∞ is the support of a divisor Y with positive normal bundle. By [7] Theorem
4.2 there exists a birational morphism f : X → X̃ ⊂ Pν such that f is an isomorphism
in a Zariski open neighborhood of D∞ and af(Y ) for some big positive integer a is a
hyperplane section. We have f = [f0 : f1 : . . . : fν ], where f0, f1, . . . , fν is a C-basis of
H0(X,OX(aY )) for a > 0 big enough. Here OX(aY ) is the sheaf of meromorphic functions
u on X with div(u)+aY > 0. Since C∗ acts on H0(X,OX(aY )) we can take fi’s such that
fi(λ(x, t)) = tqifi(x) for some qi ∈ N. It turns out that f is an isomorphism in X − D0

and the divisor D0 is mapped to a point of p ∈ V.

4.2 Existence of a global linearization

We introduce the attraction basin Bp of p, by the flow ϕ, as

Bp = {ϕ(t, z); t ∈ C∗; z ∈ U},

where U ⊂ V is the image of a neighborhood Ũ of σ0 in Ṽ by the resolution map ρ. A
theorem of Suzuki in [17] asserts that the foliation Fϕ admits a meromorphic first integral.
This implies that the singularities of F̃ϕ are linearizable, and together with Theorem 2,
that Bp contains an open neighborhood of p. This fact will be proved again during the
construction of the conjugacy map between C∗-actions. We aim to construct a conjugacy
between ϕ on Bp and λ on V establishing the following theorem:

Theorem 4. The set Bp is an open subset of V and there is a biholomorphism h : Bp → V
which is a conjugacy between the actions ϕ and λ, i.e.,

h(ϕ(t, z)) = λ(t, h(z)), for every (t, z) ∈ C∗ ×Bp.

11



Proof. It will be enough to show that there is a conjugacy between ϕ̃ on B̃p := ρ−1(Bp)
and λ̃ on Ṽ. We start by defining the conjugacy in a neighborhood of σ0. An immediate
consequence of Theorem 3 is that there is a biholomorphic conjugacy h : Ũ → Ũ between
the restrictions of ϕ̃ and λ̃, where Ũ is a neighborhood of σ0 in Ṽ and Ũ is a neighborhood
of σ0 in Ṽ. The conjugacy h extends along the flows ϕ̃ and λ̃ as follows: For a point
z′ ∈ B̃p\D there is t ∈ C∗ such that z := ϕ(t, z′) ∈ Ũ . We define h(z′) by the equality
h(z′) = λ̃(t−1, h(z)). It remains to extend h to a neighborhood of the invariant manifolds
of the fixed points of ϕ̃ in

⋃r
i=1 σi. These points are all simple and lie in the linear

chains starting at r1, ..., rs in σ0. Fix the linear chain starting at r1=p0. The linear chain
consists of a finite sequence of elements of the divisor σ0, σ1, ..., σn such that σi for i 6= 0
is a Riemann sphere where the action ϕ̃ is nontrivial, and σi ∩ σi+1 = {pi} is a simple
singularity of ϕ̃ for i = 1, ..., n− 1. Since at each σi, i > 0, ϕ̃ has two singularities, there
is another fixed point of ϕ̃, pn ∈ σn. The conjugacy h is already defined on σ1\{p1}.
The next lemma will imply that h extends to σ2\{p2}. Proceeding by induction and
having already extended h to σn\{pn} the next lemma will apply again to extend h to
the remaining invariant manifold of pn. The same procedure can be followed on the other
linear chains starting at r1, ..., rs in σ0.

Before stating our Lemma we remark that the C∗-action ϕ̃ around each singularity pi
is linearizable i.e. there are natural numbers q1, q2 and coordinates (x, y) around pi such
that in these coordinates the C∗-action ϕ̃ is given by

ϕ̃(t, (x, y)) = (tq1x, t−q2y), q1, q2 ∈ N (4.1)

(around pi the separatrix σi is attracting and σi+1 is repelling). In other words, the cor-
responding vector field is linearizable. This fact follows from generalizations of a theorem
due to Cartan, see [9] Theorem 7. This theorem states that any group of holomorphic
automorphisms of a bounded domain D in Cn with the fixed point 0 ∈ D can be linearized
using a change of coordinates around 0 tangent to the identity. The idea behind the proof
of Cartan’s Theorem is simple and in our case is as follows: In order to remain in the
local context around pi take the action of S1 ⊂ C∗ on an open neighborhood of pi. The
group S1 acts also in the two dimensional vector space Mpi/M2

pi
, where Mpi is the set

of germs of holomorphic functions around pi and so we can take two germs of functions
f1, f2 ∈ Mpi and find two integers q1, q2 ∈ Z such that ϕ̃∗t fj = tqjfj mod M2

pi
, j = 1, 2

for all t ∈ S1. We define

gj :=
∫ 1

0

ϕ̃∗
e2πiθfj

e2πiθqj
dθ, j = 1, 2

Now (x̃, ỹ) = (g1, g2) is the desired change of coordinates. Note that q1 is positive because
by our construction σi is attracting for pi. Note also that q2 is negative, otherwise all the
orbits around pi are separatrices of pi. We replace q2 by −q2 and obtain (4.1) for t ∈ S1.
Since two holomorphic functions which coincide on S1, coincide also in their common
definition domain we get (4.1) for t in a neighborhood of S1 in C∗.

It only remains to prove the following lemma.

Lemma 7. Let h be a biholomorphism between neighborhoods of (C − {0}) × {0} in C2

which is a self-conjugacy of the C∗-action (4.1) . Then h extends to a neighborhood of the
origin 0 ∈ C2 as a biholomorphic map.

Proof. Let h = (h1, h2). We prove that the hi’s extend to (C2, 0) − {x = 0} and are
bounded near the origin and so h extends to 0. A similar argument for h−1 implies
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that h is a biholomorphism. Fix a transversal section Σ = {x = x0} near 0 ∈ C2. For
(x, y) ∈ (C2, 0), x 6= 0, |x| ≤ |x0| we have

h1(x, y) =
x

x0
h1(x0, (

x

x0
)

q2
q1 y), h2(x, y) = (

x

x0
)
−q2
q1 h2(x0, (

x

x0
)

q2
q1 y).

These equalities extend h to (C2, 0) − {x = 0} and show that h1 and h2 are bounded.
Indeed, h leaves {y = 0} invariant and so h2 = yh̃2, where h̃2 is a holomorphic function

in a neighborhood of (C − {0}) × {0} in C2. Therefore, h2(x, y) = yh̃2(x0, ( xx0
)

q2
q1 y) is

bounded. Notice also that the extension is one valued because h1 and h2 are already
defined as one-valued functions in a neighborhood of (C− {0})× {0} in C2.

Remark 2. We observe that, as a consequence of Theorem 2 the singularity p ∈ V is
absolutely dicritical in the sense that there is a neighborhood W of p in V such that every
leaf of F intersecting W contains a separatrix of F through p. In other words, for every
leaf L of the restriction F

∣∣
W

the union L ∪ {p} is a separatrix of F through p.

5 Basins of attraction of dicritical singularities

Let ϕ be a holomorphic action of C∗ on a normal Stein space V of dimension two and let Fϕ
be the foliation by orbits on V . In [17] Suzuki has shown that: 1. The closure of each leaf
of Fϕ is an analytic subset of V , 2. There exists a Riemann surface S and a holomorphic
surjective map π : V \sing(Fϕ) → S such that the fibers of π are Fϕ invariant and the set
of points s ∈ S such that π−1(s) is not irreducible has measure zero in S. It follows that
the closure of a leaf L is the union of L with some points of sing(Fϕ) as separatrices. Note
that for an arbitrary C∗-action on a variety each leaf of Fϕ is biholomorphic to either C∗
or torus. Since Stein varieties do not contain compact subvarieties of positive dimension,
we conclude that all the leaves are biholomorphic to C∗. The same argument shows that
the closure of each leaf L of Fϕ contains at most one point in V . The main result of this
section is the following.

Theorem 5. Let ϕ be a holomorphic action of C∗ on a normal Stein space V of dimension
two. If p ∈ V is a dicritical singularity of Fϕ then the attraction basin of p is V . In other
words, every orbit of ϕ on V \ {p} accumulates on p.

Proof. Let π : V \sing(Fϕ) → S be as above. The function π ◦ ρ extends to a function π̃
which is defined on σ0 and its restriction to σ0 is one to one outside a measure zero subset
of S. The Riemann surface S is compact, otherwise there would exist a non-constant
holomorphic function on S and hence on σ0 which is a contradiction. We conclude that
π̃ is a biholomorphism. The proof of Theorem 5 will be a consequence of the assertions
below:

The point p is the only dicritical singularity of ϕ: If there is another dicritical singu-
larity of ϕ, namely p′, then in the resolution ρ′ of p′ we find a Riemann surface σ′0 with
the property that F̃ϕ is transverse to σ′0. As before, π ◦ρ′ |σ′0 is an isomorphism. This and
Suzuki’s theorem implies that a generic fiber π−1(s), s ∈ S is a separatrix for both p and
p′. Since each leaf of Fϕ has only one accumulation point in V we get a contradiction.
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We have V = B̄p: If this was not the case, then we would have a nonempty open set U
in S such that for all s ∈ U , π−1(s) has a component in Bp and another in V − B̄p which
is a contradiction.

The set ∂Bp contains no isolated point : Each leaf of Fϕ in Bp cannot be a separatix
of a singularity p′ ∈ V distinct from p. If p′ is an isolated point of ∂Bp, its separatrices
are in Bp and hence they are separatrices of p which is a contradiction.

∂Bp does not contain a closed leaf in V : Suppose that L0 ⊂ ∂Bp is a closed leaf of
Fϕ. We know that L0 is biholomorphic to C∗ and it is an analytic smooth curve in V .
Since V is Stein there is a holomorphic function h ∈ O(V ) such that {h = 0} = L0 in
V ([6], Theorem 5, p.99). Since L0 is a real surface diffeomorphic to a cylinder S1 × R,
we can take a generator γ : S1 → L0 of the homology of L0 and a holomorphic one-form
α on L0 such that

∫
γ α = 1. Again because V is Stein by Cartan’s lemma there is a

holomorphic one-form α̃ on V which extends α. Since Fϕ has a meromorphic first integral
on V , the holonomy of L0 is finite, say of order n. Let Σ be a small transverse disc to Fϕ
with Σ ∩ L0 = {p0} ⊂ γ(S1). Then there is a fixed power of γ, say γp0 := nγ, which has
closed lifts γ̃z to the leaves Lz of Fϕ that contain the points z ∈ Σ. Thus, for z ∈ Σ close
enough to p0 we have

∣∣ ∫
γ̃z
α̃−

∫
γ̃p0

α̃
∣∣ < 1

2 , but γ̃p0 = nγ and
∫
γ̃p0

α̃ = n. We conclude that∫
γ̃z
α̃ 6= 0. On the other hand, L0 ⊂ ∂Bp and so there are leaves L of Fϕ with nonempty

intersection with Σ as above and which satisfy L ⊂ Bp . Such a leaf L accumulates on
p and therefore L ∪ {p} is a holomorphic curve biholomorphic to C and thus with trivial
homology, yielding a contradiction.

∂Bp does not contain a leaf which is not closed in V : Suppose there is a leaf L0 ⊂ ∂Bp
such that L̄0 = L0∪{p′}, where p′ is a nondicritical singularity of ϕ. Since V is Stein there
is a holomorphic function f ∈ O(V ) such that {f = 0} = L0 in V ([6], Theorem 5, p.99).
Define the meromorphic one-form α = df

f on V , the polar set of α is L0. Given a transverse
disc Σ ∼= D to Fϕ with Σ∩L0 = {p0} we consider a simple loop γ : S1 → Σ around p0 ∈ Σ
such that

∫
γ α = 2π

√
−1. We can assume that γ(S1) ⊂ Bp because Σ \ (Σ ∩ ∂Bp) ⊂ Bp.

We have a biholomorphic map between Bp and V which can be contracted to a point.
Therefore, H1(Bp,R) = 0 and it follows that

∫
γ α = 0 yielding a contradiction.

We conclude that ∂Bp is empty.

6 Proof of Theorem 1

Let us be given a pair (V, ϕ) as in Theorem 1. By Theorem 5 the basin of attraction
of the dicritical singularity p is the whole space V , i.e Bp = V . By Theorem 4 there is
a biholomorphic conjugacy h : V → V between ϕ and λ. Finally, by Proposition 1 the
variety V is affine and the the action λ of C∗ on V in some affine coordinates is good. Note
that this proof gives an alternative proof of Proposition 1.1.3, page 207 in [11].

We conclude that each data in Theorem 1 gives us a linear model variety (V, λ) and
in a similar way we can prove that two linear models are biholomorphic if and only their
corresponding data are the same. This finishes the proof.

Remark 3. As a consequence of our Theorem 1 we obtain that if V is a two-dimensional
Stein space with a C∗-action having a dicritical singularity at p ∈ V then p ∈ V is a
quasi-homogeneous surface singularity.
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