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Introduction

Research framework

This thesis is about computing periods of algebraic cycles inside smooth hypersurfaces of
projective space, and its applications to variational Hodge conjecture.

Hodge conjecture was proposed in 1941 by Hodge (see [Hod41]) and reformulated in 1962
by Atiyah and Hirzebruch (see [AH62]). Despite that, it has seen few advances in its positive
direction. Variational Hodge conjecture was proposed by Grothendieck as a weak version of
the Hodge conjecture (see [Gro66]). And (as in the case of Hodge conjecture) few is known
about its veracity. Hodge conjecture claims that every Hodge cycle inside a smooth projective
variety is an algebraic cycle. On the other hand, variational Hodge conjecture claims that in
all proper families of smooth projective varieties with connected base, a flat section of its de
Rham cohomology bundle is an algebraic cycle at one point if and only if it is an algebraic
cycle everywhere. In other words, flat deformations of an algebraic cycle remain algebraic
inside the deformed smooth projective variety. In 1972, Bloch proved variational Hodge
conjecture for deformations of algebraic cycles supported in local complete intersections
which are semi-regular inside the corresponding smooth projective variety (see [Blo72]).
Semi-regularity is a strong condition, difficult to check in concrete examples (see [DK16]
for a discussion about examples of semi-regular varieties). In 2003, Otwinowska considered
variational Hodge conjecture for algebraic cycles inside smooth degree d hypersurfaces X of
the projective space Pn+1 of even dimension n. In this context, she proved that variational
Hodge conjecture is satisfied for algebraic cycles supported in one n

2
-dimensional complete

intersection Z of Pn+1 contained in X, and d >> 0 (see [Otw03]). This result was improved
by Dan in 2014, who removed the condition on the degree d provided that deg(Z) < d (see
[Dan14]). It is not known if the complete intersection subvarieties considered by Otwinowska
and Dan are semi-regular inside the corresponding hypersurface.

The computation of periods of algebraic cycles was considered by Deligne in 1982. He
proved that up to some constant power of 2π

√
−1, the periods of algebraic cycles belong to

the field of definition of the variety and the corresponding algebraic cycle (see [DMOS82]).
This problem was reconsidered in 2014 by Movasati, who explained how explicit computa-
tions of periods of algebraic cycles can be used to prove variational Hodge conjecture (see
[Mov17c]). His approach inspired the development of this thesis. In 2017, we computed the
periods of linear cycles inside Fermat varieties and used them to prove variational Hodge
conjecture for some combinations of linear cycles inside Fermat varieties (see [MV17]). In
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[Ser18], Sertöz implemented an algorithm for approximating periods of arbitrary Hodge cy-
cles inside hypersurfaces. Using this algorithm he performed reliable computations of the
Picard rank of certain K3 surfaces. In 2018, we were able to compute periods of complete
intersection algebraic cycles inside any smooth hypersurface (see [VL18, Theorem 1]) by
determining the primitive part of the Poincaré dual of the given complete intersection cy-
cle. This allowed us to improve the results in [MV17] to arbitrary degree and dimension by
removing the computer assisted argument (see [VL18, Theorem 2]).

Main results

Consider the even dimensional smooth hypersurface of the complex projective space

X = {F = 0} ⊆ Pn+1,

given by a homogeneous polynomial with deg F = d. Every n
2
-dimensional subvariety Z of

X determines an algebraic cycle
[Z] ∈ Hn(X,Z).

Recalling from Griffiths’ work [Gri69], each piece of the Hodge filtration is generated by the
differential forms

ωP := res

(
PΩ

F q+1

)
∈ F n−qHn

dR(X)prim,

for P ∈ C[x0, ..., xn+1]d(q+1)−n−2, where

Ω := ι∑n+1
i=0 xi

∂
∂xi

(dx0 ∧ · · · ∧ dxn+1) =
n+1∑
i=0

(−1)ixidx0 ∧ · · · d̂xi · · · ∧ dxn+1,

and res : Hn+1
dR (Pn+1 \X)→ Hn

dR(X) is the residue map.
We say that ∫

Z

ωP ∈ C

is a period of Z. Note that, since Z is a projective variety of positive dimension, it intersects
every divisor of X, so it is impossible to find an affine chart of X where to compute the
periods of Z. Since we are integrating over an algebraic cycle (consequently a Hodge cycle)
we just care about the (n

2
, n

2
)-part of ωP . Thus, we will fix q = n

2
, and we work with ωP

as an element of the quotient F
n
2Hn

dR(X)/F
n
2

+1Hn
dR(X) ' H

n
2
,n
2 (X) ' H

n
2 (X,Ω

n
2
X). After

Carlson-Griffiths’ work [CG80, page 7], we know

ωP =
1
n
2
!

{
PΩJ

FJ

}
|J |=n

2

∈ H
n
2 (U ,Ω

n
2
X). (1)

Where U is the Jacobian covering of X. For J = (j0, ..., jn
2
),

FJ := Fj0 · · ·Fjn
2
,
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where Fi := ∂F
∂xi

for every i = 0, ..., n+ 1, and

ΩJ := ι ∂
∂xjn

2

(· · · ι ∂
∂xj0

(Ω) · · · ) = (−1)
j0+···+jn

2
+(

n
2 +2

2 )

n
2∑
l=0

(−1)lxkl d̂xkl , (2)

for (k0, ..., kn
2
−l) the multi-index obtained from (0, 1, ..., n + 1) by removing the entries of

J . We ωP in Čech cohomology as in (1), but we denote the period by abuse of notation
as
∫
Z
ωP ∈ C, letting it be understood that we are identifying ωP with its image under the

isomorphism H
n
2 (U ,Ω

n
2
X) ' H

n
2
,n
2 (X) ⊆ Hn

dR(X).

The first result of this thesis is the formula of periods of linear cycles inside Fermat
varieties (see Theorem 2.4.1 and Corollary 2.4.1).

Theorem ([MV17]). Let Xd
n ⊆ Pn+1 be the n-dimensional Fermat variety of degree d, i.e

Xd
n = {F := xd0 + · · ·+ xdn+1 = 0}. Let ζ2d be a 2d-th primitive root of unity, and

P
n
2 := {x0 − ζ2dx1 = · · · = xn − ζ2dxn+1 = 0}.

Then∫
P
n
2

ω
x
i0
0 ···x

in+1
n+1

=

{
(2π
√
−1)

n
2

d
n
2 +1·n

2
!
ζ2d

n
2

+1+i0+i2+···+in if i2l−2 + i2l−1 = d− 2,∀l = 1, ..., n
2

+ 1,

0 otherwise.

Using this result we can verify variational Hodge conjecture for combinations of linear
cycles inside Fermat varieties. We divide these results into two parts. The first verification
(see Theorem 3.6.1) is for algebraic cycles supported in one complete intersection subvariety
of Fermat variety (this subvariety can be degenerated into a cycle that corresponds to sums
of linear cycles).

Theorem ([Otw03], [Dan14], [MV17]). Let d ≥ 2 + 4
n

, X ⊆ Pn+1 be the Fermat variety and
δ ∈ Hn(X,Z)alg be a complete intersection algebraic cycle δ = [Z], given by Z = {f1 = · · · =
fn

2
+1 = 0}, with

xd0 + · · ·+ xdn+1 = f1g1 + · · ·+ fn
2

+1gn
2

+1,

and deg fi = di. Then, variational Hodge conjecture is true for

1. d1 = d2 = · · · = dn
2

+1 = 1.

2. n = 2, 4 ≤ d ≤ 15, or n = 4, 3 ≤ d ≤ 6, or n = 6, 3 ≤ d ≤ 4.

These results were proved by Otwinowska in [Otw03] and by Dan in [Dan14] in more
general contexts, but we provide a different proof.

The second verification of variational Hodge conjecture (see Theorem 3.6.2) is for sums
of two linear cycles which are not supported in a complete intersection cycle (and so this
result does not follow from Otwinowska’s or Dan’s work).
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Theorem ([MV17]). If Pn
2 and P̌n

2 are two linear subspaces inside the Fermat variety X,
such that Pn

2 ∩ P̌n
2 = Pm, then V

[P
n
2 ]+[P̌

n
2 ]

= V
[P
n
2 ]
∩ V

[P̌
n
2 ]
, for all triples (n, d,m) in the

following list:

(2, d,−1), 5 ≤ d ≤ 14,

(4, 4,−1), (4, 5,−1), (4, 6,−1), (4, 5, 0), (4, 6, 0),

(6, 3,−1), (6, 4,−1), (6, 4, 0),

(8, 3,−1), (8, 3, 0),

(10, 3,−1), (10, 3, 0), (10, 3, 1),

where P−1 means the empty set. In particular, variational Hodge conjecture holds for δ =
[Pn

2 ] + [P̌n
2 ] in the above cases.

These cycles are not known to be semi-regular inside Fermat variety either. All the
applications we present in this thesis rely on computer assistance, and so they are verified
for certain degrees and dimensions.

The main result of this thesis is the computation of periods of algebraic cycles [Z] ∈
Hn(X,Z) for Z ⊆ X a complete intersection inside Pn+1 (see Theorem 2.6.1).

Theorem ([VL18]). Let X ⊆ Pn+1 be a smooth degree d hypersurface of even dimension
n given by X = {F = 0}. Suppose that Z := {f1 = · · · = fn

2
+1 = 0} ⊆ X is a complete

intersection inside Pn+1 (i.e. I(Z) = 〈f1, ..., fn
2

+1〉 ⊆ C[x0, ..., xn+1]) and

F = f1g1 + · · ·+ fn
2

+1gn
2

+1.

Define
H = (h0, ..., hn+1) := (f1, g1, f2, g2, ..., fn

2
+1, gn

2
+1).

Then ∫
Z

ωP =
(2π
√
−1)

n
2

n
2
!

c · (d− 1)n+2 · d1 · · · dn
2

+1, (3)

where di = deg fi, ωP is given by (1), and c ∈ C is the unique number such that

P · det(Jac(H)) ≡ c · det(Hess(F )) (mod JF ).

Where JF := 〈F0, ..., Fn+1〉 ⊆ C[x0, ..., xn+1] is the Jacobian ideal associated to F .

This result says that the primitive part of the Poincaré dual of the algebraic cycle [Z] ∈
Hn(X,Z) is given (up to a non-zero constant factor) by

[Z]pd = res

(
det(Jac(H))Ω

F
n
2

+1

)
∈ H

n
2
,n
2 (X)prim.

Using this fact we can improve our previous verification of variational Hodge conjecture
for combinations of linear cycles inside Fermat varieties to arbitrary degree and dimension
(by removing the computer assisted argument).
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Theorem ([VL18]). Let X ⊆ Pn+1 be the Fermat variety of even dimension n and degree
d ≥ 2 + 4

n
. Let Pn

2 , P̌n
2 ⊆ X be the two linear subvarieties such that Pn

2 ∩ P̌n
2 = Pm given by

Pn−m := {xn−2m − ζ2dxn−2m+1 = · · · = xn − ζ2dxn+1 = 0},

P
n
2 := {x0 − ζ2dx1 = · · · = xn−2m−2 − ζ2dxn−2m−1 = 0} ∩ Pn−m,

P̌
n
2 := {x0 − ζα0

2d x1 = · · · = xn−2m−2 − ζαn−2m−2

2d xn−2m−1 = 0} ∩ Pn−m,

where ζ2d ∈ C is a primitive 2d-root of unity, and α0, α2, ..., αn−2m−2 ∈ {3, 5, ..., 2d − 1}.
Then, for m < n

2
− d

d−2
, a, b ∈ Z \ {0} and δ := a[Pn

2 ] + b[P̌n
2 ] ∈ Hn(X,Z) we have

Vδ = V
[P
n
2 ]
∩ V

[P̌
n
2 ]
,

and the Hodge locus Vδ is smooth and reduced. In particular, variational Hodge conjecture
holds for δ in these cases. On the other hand, for m ≥ n

2
− d

d−2
, the Zariski tangent space of

Vδ has dimension strictly bigger than the dimension of V
[P
n
2 ]
∩ V

[P̌
n
2 ]

(which is always smooth

and reduced).

We decided not to include this result in the thesis in order to keep it as short as possible,
but the interested reader can find it in [VL18, Theorem 2].

Content description

In what follows we detail the content of this thesis.

Chapter 1 is introductory. Its purpose is to present Griffiths’ theory on the cohomology
of hypersurfaces, and introduce the language and notations we will use along the rest of the
text. Since this is one of the first thesis in Hodge theory developed at IMPA, we tried to
keep it self-contained. This is why we also added an Appendix recalling hypercohomology
(which is highly used in our work). The reader who wants to get quickly to the main results
of this thesis, and is acquainted with hypercohomology and algebraic de Rham cohomology,
could just read Theorems 1.5.1, 1.5.2 and 1.6.1 before going to Chapter 2.

Griffiths’ Theorems 1.5.1 and 1.5.2 (see section 1.5) are classic, and describe how to
construct an explicit basis for (the primitive part of) de Rham cohomology of a given hyper-
surface, as the residue of meromorphic forms with pole along the hypersurface (furthermore,
the order of the pole determines to which part of Hodge filtration the residue belongs).

Carlson-Griffiths’ Theorem 1.6.1 (see section 1.6) is the main ingredient missing from the
original formulation of infinitesimal variations of Hodge structures (developed by Carlson,
Green, Griffiths and Harris), that will allow us to compute explicitly the periods of algebraic
cycles. This theorem tells us explicitly how is Griffiths’ basis in Čech cohomology (i.e. when
we look at each element of the basis in Hodge decomposition), i.e. it computes the residue
map.

For the sake of completeness we provide proofs of these results. Furthermore, we add
in sections 1.1 to 1.4 a review of algebraic de Rham cohomology, including Deligne’s results
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on logarithmic differential forms and Hodge filtration for affine varieties (we just treat the
case of affine varieties obtained as the complement of a smooth hyperplane section inside a
smooth projective variety). In section 1.3, we provide a different proof of Deligne’s Theorem
1.3.1 relying on Carlson-Griffiths’ Lemma 1.3.1. This lemma is the main ingredient in the
proof of Carlson-Griffiths’ Theorem 1.6.1.

Chapter 2 is the heart of this thesis, and is devoted to the computation of periods of
algebraic cycles. We present two strategies to do these computations. Both rely on the
reduction of the computation of the period to the computation of the integral of a top form
over the projective space. In order to use Carlson-Griffiths’ Theorem 1.6.1, we need to
calculate every period with respect to a covering occurring in Čech cohomology.

In section 2.1 we compute the period of a standard top form of the projective space. This
standard top form is described in terms of the standard covering of projective space. This is
the unique period we actually compute by integration (using partitions of unity). All other
periods will be computed by an adequate comparison with this period.

Our first strategy to compute periods only works for cycles that are images of linear
spaces. We pull back the forms we want to integrate, to the corresponding linear space
that parametrizes the cycle. For this reason, we explain in section 2.2 how to compute the
pull-back of forms in algebraic de Rham cohomology.

As an application of this pull-back description, we compute in section 2.3 the periods
of top forms of the projective space, described in other open coverings (different from the
standard one).

In section 2.4 we use this first strategy to compute periods of linear cycles inside Fermat
varieties. This computation is the heart of our results on variational Hodge conjecture (see
section 3.6, Theorems 3.6.1 and 3.6.2).

Our second method to compute periods of algebraic cycles, works in general for any
complete intersection (in the projective space) cycle inside a smooth hypersurface. It relies on
the successive application of the coboundary map associated to Poincaré’s residue sequence,
for a hypersurface of a projective variety.

In section 2.5 we describe explicitly the coboundary map in Čech cohomology, together
with the relation between the periods of the corresponding forms.

And in section 2.6 we use the coboundary map, to inductively reduce the computation
of the period over a complete intersection algebraic cycle, to the computation of the period
of a top form of the ambient projective space (here we will end up with a form described
in the Jacobian covering, so our computations from section 2.3 will be needed). Our main
theorem is Theorem 2.6.1, and is actually giving us an explicit description of the Poincaré
dual of a complete intersection algebraic cycle, as an element of Griffiths’ basis for de Rham
cohomology of the given hypersurface (see Remark 2.6.3).

Finally, Chapter 3 is about applications of the results developed in Chapter 2 to varia-
tional Hodge conjecture. The results are stated (and proved) in section 3.6. There we prove
variational Hodge conjecture for linear algebraic cycles inside Fermat varieties (see part 1.
of Theorem 3.6.1). Using computer assistance we also prove variational Hodge conjecture
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for complete intersection algebraic cycles inside Fermat varieties (see part 2. of Theorem
3.6.1), and for sums of linear algebraic cycles with small intersection inside Fermat varieties
(see Theorem 3.6.2).

This approach to variational Hodge conjecture using periods can be made after the de-
velopment of infinitesimal variations of Hodge structures (IVHS), and its explicit description
in the case of hypersurfaces (see section 3.3, Proposition 3.3.1).

Instead of proving variational Hodge conjecture, we will prove a stronger result which we
call alternative Hodge conjecture. This conjecture corresponds to describe the components
of a parameter space, the so called Hodge locus. We introduce Hodge locus in section 3.4 and
explain its relation to IVHS in Proposition 3.4.1. This proposition tells us how to determine
the Zariski tangent space of the Hodge locus using IVHS.

In section 3.5, we introduce alternative Hodge conjecture and relate it to the problem
of determining components of the Hodge locus. Furthermore, we explain in Proposition
3.6.1 how we can use the periods of algebraic cycles to produce a period matrix which
corresponds with IVHS. Thus, we can reduce the computation of the Zariski tangent space of
the Hodge locus, to computing the rank of this period matrix (which we can do with computer
assistance). Using the description of the tangent space we determine the components of the
Hodge locus and prove alternative (and variational) Hodge conjecture.

Sections 3.1 and 3.2 are introductory, to prepare the ground for IVHS.

Conventions and notations

• Every ring is commutative with unity.

• If R is a ring and M is an R-module. For S ⊆ M , we denote by 〈S〉 the submodule
generated by S. If S = {m1, ...,mk}, then we simply denote 〈S〉 by 〈m1, ...,mk〉.

• By a complex algebraic variety we mean an abstract algebraic variety over C, i.e. an
integral separated scheme of finite type over C.

• When f ∈ C[x1, .., xn] we will denote by {f = 0} := {x ∈ Cn : f(x) = 0}, the zero
set of f in the affine space. When F ∈ C[x0, ..., xn]d is a homogeneous polynomial of
degree d > 0, we will use the same notation {F = 0} := {x ∈ Pn : F (x) = 0}, for the
zero set of F in the projective space. Depending on the context it will be clear if we
are taking the zero set on the affine or projective space.

• For X an affine variety, we denote by C[X] the coordinate ring (or the ring of regular
functions), and by I(X) ⊆ C[x1, ..., xn] its ideal. When X ⊆ Pn is projective, we
denote by I(X) ⊆ C[x0, ..., xn] its homogeneous ideal.

• We use the symbol ' to denote isomorphism (in the corresponding category).

• When ω is a differential form defined over a variety X and T is a vector field over X,
we denote by ιT (ω) the contraction of ω along T .
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• If X is a topological space and F is a sheaf over it, then we denote by Γ(F) := F(X)
the set of global sections of this sheaf. We will refer to Γ as the global sections functor.

• A hyperplane section is a divisor of a projective variety X which corresponds to the
intersection of X with a hyperplane in some projective embedding. In particular, after
Veronesse embedding, every hypersurface section will be called a hyperplane section.
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Chapter 1

Cohomology of Hypersurfaces

Summary

As the title suggests, the main characters of this thesis are periods of algebraic cycles inside
hypersurfaces (in the projective space). By this, we mean the integrals of a basis of de Rham
cohomology (of a given hypersurface) over some algebraic subvariety. In this chapter we
will explain how to construct explicit basis for de Rham cohomology of hypersurfaces. This
was developed by Griffiths in [Gri69]. Furthermore this basis is compatible with the Hodge
filtration of the given hypersurface. We will present Deligne’s proof of Griffiths’ theorem (as
in [Del74, §9.2]). The main idea is to relate the Hodge filtration of the hypersurface, with
the pole filtration of the complement of the hypersurface, via the residue map. This was
possible after the work of several mathematicians (mainly Serre, Atiyah, Hodge, Griffiths,
Grothendieck and Deligne) that led to the development of de Rham cohomology (and Hodge
theory) in the framework of algebraic geometry. We will explain the development of these
ideas, providing proofs of the main theorems.

This chapter is introductory, hence the reader who wants to see the results of this thesis
should go directly to Theorem 1.5.1 (which relates the pole filtration of the complement of
the hypersurface with the primitive part of the Hodge filtration of the hypersurface), read
Theorem 1.5.2 (that explains how to construct Griffiths’ basis for de Rham cohomology of an
hypersurface via the residue map), and Theorem 1.6.1 (that computes explicitly the residue
of each element of Griffiths’ basis in Čech cohomology), then move to Chapter 2. In what
follows we give a detailed overview of the content of this chapter.

Section 1.1 is a quick review of algebraic differential forms. We recall Euler’s sequence
and Bott’s formula (which is a extended version of Bott’s vanishing theorem).

Section 1.2 is devoted to explain how to recover de Rham cohomology groups with alge-
braic differential forms. This approach was pointed out by Grothendieck [Gro66], after an
important result due to Atiyah and Hodge [HA55]. Using Atiyah-Hodge’s theorem, we ex-
plain why we can define the algebraic de Rham cohomology for any smooth algebraic variety
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X using hypercohomology (see Appendix) as

Hk
dR(X/C) := Hk(X,Ω•X).

A remarkable fact about this algebraic de Rham cohomology, is that it comes with a natural
filtration

F iHk
dR(X/C) := Im(Hk(X,Ω•≥iX )→ Hk(X,Ω•X)),

that turns out to coincide with the Hodge filtration for smooth projective varieties. Unfor-
tunately, this filtration is not interesting for affine varieties.

In section 1.3 we introduce differential forms in X with logarithmic poles along Y . We
prove the following theorem due to Deligne.

Theorem (Deligne [Del70]). Let i : U = X \ Y ↪→ X be the inclusion. Then, the natural
map

Ω•X(log Y ) ↪→ i∗Ω
•
U = Ω•X(∗Y ),

induces the isomorphism
Hk(X,Ω•X(log Y )) ' Hk

dR(U/C).

We provide a proof based on the following lemma due to Carlson and Griffiths.

Lemma (Carlson-Griffiths [CG80]). Suppose X is embedded in a projective space PN , and
Y = X∩{F = 0} for some homogeneous polynomial F ∈ C[x0, ..., xN ]. Consider U = {Ui}Ni=0

the Jacobian covering of X given by Ui = X ∩ {Fi 6= 0}, where Fi := ∂F
∂xi

. For every l ≥ 2
define

Hl : Cq(U ,Ωp
X(lY ))→ Cq(U ,Ωp−1

X ((l − 1)Y )),

(Hlω)j0···jq :=
1

1− l
F

Fj0
ι ∂
∂xj0

(ωj0···jq),

where ι ∂
∂xj0

denotes the usual contraction of differential forms with respect to ∂
∂xj0

. Letting

D = d+ (−1)pδ, then

DH +HD :
⊕
p+q=k

Cq(U ,Ωp
X(lY ))

Cq(U ,Ωp
X((l − 1)Y ))

→
⊕
p+q=k

Cq(U ,Ωp
X(lY ))

Cq(U ,Ωp
X((l − 1)Y ))

is the identity map.

Using this lemma we can prove Deligne’s theorem in a constructive way, since the explicit
operator (1−DH) reduces the pole order of forms in Hk

dR(U/C). This lemma will be useful
to prove more results due to Griffiths in sections 1.5 and 1.6.

Using Deligne’s theorem we introduce, in section 1.4, a Hodge filtration on U as

F iHk
dR(U/C) := Im(Hk(X,Ω•≥iX (log Y ))→ Hk(X,Ω•X(log Y )) ' Hk

dR(U/C)).

17



We use the residue map
res : Hk+1

dR (U/C)→ Hk
dR(Y/C)

to justify this is a good candidate for Hodge filtration. In fact, the residue map is a morphism
of Hodge structures of type (−1,−1), and furthermore the Hodge filtrations are compatible
with the long exact sequence induced by the residue map, in the sense that we have the
following long exact sequence

· · · → F iHk+1
dR (X/C)→ F iHk+1

dR (U/C)
res−→ F i−1Hk

dR(Y/C) −→ F iHk+2
dR (X/C)→ · · · .

Section 1.5 is about Griffiths’ work on the cohomology of hypersurfaces. We use Carlson-
Griffiths’ lemma and Bott’s formula to prove the following theorem.

Theorem (Griffiths [Gri69]). Let X ⊆ Pn+1 be a smooth degree d hypersurface given by
X = {F = 0}, and U := Pn+1 \X. For every q = 0, ..., n, the natural map

H0(Pn+1,Ωn+1
Pn+1((q + 1)X))→ Hn+1

dR (U/C)

has image equal to F n+1−qHn+1
dR (U/C). Consequently, every piece of the Hodge filtration

F n−qHn
dR(X/C)prim, is generated by the residues of global forms with pole of order at most

q + 1 along X.

Using this theorem we prove the following result that tells us how to construct a basis
for Hn

dR(X/C)prim compatible with the Hodge filtration.

Theorem (Griffiths [Gri69]). For every q = 0, ..., n the kernel of the map

ϕ : H0(Pn+1,OPn+1(d(q + 1)− n− 2)) � F n−qHn
dR(X/C)prim/F

n+1−qHn
dR(X/C)prim

P 7→ res

(
PΩ

F q+1

)
is the degree N = d(q + 1) − n − 2 part of the Jacobian ideal of F , JFN ⊆ C[x0, ..., xn+1]N .

Where Ω =
∑n+1

i=0 (−1)ixidx0 ∧ · · · d̂xi · · · ∧ dxn+1.

Finally in section 1.6, using again Carlson-Griffiths’ lemma, we describe explicitly the
residue map in Čech cohomology.

Theorem (Carlson-Griffiths [CG80]). Let q ∈ {0, 1, ..., n}, P ∈ H0(Pn+1,OPn+1(d(q + 1) −
n− 2)). Then

res

(
PΩ

F q+1

)
=

(−1)n(q+1)

q!

{
PΩJ

FJ

}
|J |=q

∈ Hq(U ,Ωn−q
X ).

Where ΩJ := ι ∂
∂xjq

(...ι ∂
∂xj0

(Ω)...), FJ := Fj0 · · ·Fjq and U = {Ui}n+1
i=0 is the Jacobian covering

restricted to X.
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These theorems result in an explicit basis for the de Rham cohomology group of any
hypersurface, which is compatible with its Hodge filtration. This basis will be of vital
importance in our work, since we will use it to compute the periods of algebraic cycles.

We will use without proof some classical results in L2 Hodge theory (such as Hodge de-
composition), algebraic topology, several complex variables and sheaf cohomology (specially
hypercohomology). Whenever we use one of these results for the first time, we will add a
reference. Only for hypercohomology, we add the results we use in the Appendix.
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1.1 Algebraic differential forms

In this section we will introduce algebraic differential forms on algebraic varieties. As we
will see, these differential forms have nice algebraic descriptions that allow us to work with
them and do computations explicitly in a wide range of cases.

Definition 1.1.1. Let R be a ring and S be an R-algebra. The module of Kähler differentials
of S over R is the S-module generated by the set of symbols {df : f ∈ S}, subject to the
relations

d(f · g) = f · dg + g · df
d(rf + sg) = r · df + s · dg (1.1)

for all f, g ∈ S, and r, s ∈ R. In other words

Ω1
S/R :=

(⊕
f∈S

S · df

)
/〈N〉

where
N = {d(fg)− fdg − gdf, d(rf + sg)− rdf − sdg : f, g ∈ S, r, s ∈ R}.

Remark 1.1.1. If we consider the map d : S → Ω1
S/R, the second relation in (1.1) says

that d is an R-linear map. The first relation in (1.1) is called the Leibniz’ rule, and d is
a derivation. This map d is called the universal R-linear derivation, since every R-linear
derivation d′ : S → M to an S-module M factors as the composition of d with a unique
S-linear map Ω1

S/R →M . For a proof of this property and more about Ω1
S/R see for instance

[Eis95] Chapter 16. For us, the relevant constructions to keep in mind are summarized in
the following examples:

Example 1.1.1. For a polynomial ring S = R[x1, ..., xn],

Ω1
S/R =

n⊕
i=1

S · dxi.

Example 1.1.2. For S = R[x1, ..., xn]/I, I = 〈f1, ..., fm〉, then

Ω1
S/R =

(
n⊕
i=1

S · dxi

)
/〈df1, ..., dfm〉

∼= Ω1
R[x1,...,xn]/R/〈I · Ω1

R[x1,...,xn]/R, df1, ..., dfm〉.

Example 1.1.3. If U ⊆ S is a multiplicative subset, then

Ω1
S[U−1]/R

∼= S[U−1]⊗R Ω1
S/R,

in particular, localizing the module of Kähler differentials we obtain the module of Kähler
differentials of the localization.
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Definition 1.1.2. Let X ⊆ CN be an affine algebraic variety. We define

Ω1
X(X) := Ω1

C[X]/C,

where C[X] ∼= C[x1, ..., xN ]/I(X) is the ring of regular functions on X.

Definition 1.1.3. Let X be a complex algebraic variety. For every open affine set U ⊆ X
we have an OX(U)-module of Kähler differentials Ω1

U(U). For any pair U ⊆ V of open affine
subsets of X we have the natural restriction (morphism of C-algebras)

OX(V )→ OX(U),

which induces the restriction of Kähler differentials

Ω1
V (V )→ Ω1

U(U).

Using these restrictions, we can glue these modules to define the sheaf of algebraic differential
forms on X, which we denote Ω1

X . This construction gives us a coherent OX-module. By
taking the exterior power of Ω1

X we obtain the coherent sheaf of algebraic differential k-forms
on X

Ωk
X :=

k∧
Ω1
X .

When X is smooth of dimension n, these sheaves are locally free of rank
(
n
k

)
.

More generally, given any morphism of schemes f : X → Y we can define the sheaf of
relative algebraic differential forms Ω1

X/Y as the OX-module obtained by pasting the OX(V )-

modules Ω1
S/R, where U = Spec R, V = Spec S and f(V ) ⊆ U . We can also define

Ωk
X/Y :=

k∧
Ω1
X/Y .

In what follows we will always consider morphisms f : X → Y between complex algebraic
varieties. When Y = Spec R we will denote Ωk

X/R instead of Ωk
X/Y . And when Y = Spec C

we will just denote Ωk
X instead of Ωk

X/Y or Ωk
X/C.

Example 1.1.4. For π : X → Y a morphism of schemes,

Ωk
X/Y '

Ωk
X

π∗Ω1
Y ∧ Ωk−1

X

.

Remark 1.1.2. One should not confuse Ωk
X with the sheaf of holomorphic k-forms, we

will denote the latter by Ωk
Xhol . We will denote Ωk

X∞ the sheaf of (complex) C∞ differential
k-forms.
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Definition 1.1.4. Consider the global vector field over CN+1

E :=
N∑
i=0

xi
∂

∂xi
.

This vector field is called Euler’s vector field. We define Euler’s sequence to be

0→ Ωp+1
PN (p+ 1)→ O

⊕(N+1
p+1)

PN → Ωp
PN (p+ 1)→ 0, (1.2)

where for every Ui in the standard covering of PN , and every ω =
∑
|J |=p aJdxj0∧· · ·∧dxjp ∈

Ωp+1
PN (p+1)(Ui), the first map sends ω to (aJ)|J |=p. While the second one is sending (bJ)|J |=p,

where each bJ ∈ OPN (Ui), to the form η = ιE(
∑
|J |=p bJdxj0 ∧ · · · ∧ dxjp).

Remark 1.1.3. In general, for v =
∑N

i=0 vi
∂
∂xi

a vector field of CN+1, and ω =
∑
|J |=p bJdxj0∧

· · · ∧ dxjp ∈ Ωp+1
CN+1(U) for some open set U ⊆ CN+1, the map ιE(ω) is the contraction map

of ω along the vector field v|U . It is defined as

ιv(ω) :=
∑
|J |=p

bJ · vj0dxj1 ∧ · · · ∧ dxjp ∈ Ωp
Cn+1(U).

When ω ∈ ΩPN (V ) for some open V ⊆ PN , we can also define ιv(ω) by lifting ω to an open
set U = π−1(V ) ⊆ CN+1 \ {0}, where π : CN+1 \ {0} → PN is the projection map. Then
ιv(ω) := π∗(ιv(π

∗ω)).

Remark 1.1.4. Euler’s sequence (1.2) is an exact sequence. Using this exact sequence it is
possible to prove the following extended version of Bott’s vanishing theorem.

Theorem 1.1.1 (Bott’s formula [Bot57]).

dimCH
q(PN ,Ωp

PN (k)) =


(
k+N−p

k

)(
k−1
p

)
if q = 0, 0 ≤ p ≤ N, k > p,

1 if k = 0, 0 ≤ p = q ≤ N,(−k+p
−k

)(−k−1
N−p

)
if q = N, 0 ≤ p ≤ N, k < p−N,

0 otherwise.

Corollary 1.1.1. Every ω ∈ H0(PN ,ΩN−1
PN (k)) is of the form

ω =
N∑
i=0

Tiι ∂
∂xi

(Ω),

where Ti ∈ C[x0, ..., xN ]k−N , Ω := ιE(dx0 ∧ · · · ∧ dxN) =
∑N

i=0(−1)ixid̂xi, and d̂xi := dx0 ∧
dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN .
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Proof Twisting Euler’s sequence (1.2) we get

0→ ΩN
PN (k)→ ON+1

PN (k −N)→ ΩN−1
PN (k)→ 0. (1.3)

Using the long exact sequence of (1.3) and Bott’s formula we see that H0(PN ,ΩN−1
PN (k)) is

generated by

ιE(
N∑
i=0

Pid̂xi) = ιE(
N∑
i=0

(−1)iPiι ∂
∂xi

(dx0 ∧ · · · ∧ dxN)),

= ιE(ι∑N
i=0(−1)iPi

∂
∂xi

(dx0 ∧ · · · ∧ dxN)),

= −ι∑N
i=0(−1)iPi

∂
∂xi

(ιE(dx0 ∧ · · · ∧ dxN)),

=
N∑
i=0

(−1)i+1Piι ∂
∂xi

(Ω),

where Pi ∈ H0(PN ,OPN (k −N)). Take Ti := (−1)i+1Pi.
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1.2 Algebraic de Rham cohomology

In this section we will explain how algebraic de Rham cohomology can be constructed for
any smooth algebraic variety over C. From now on, we will assume some knowledge in
hypercohomology. Our main reference is [Mov17b] Chapter 3, and we will adopt his nota-
tion. Nevertheless, we will state in the Appendix the properties of hypercohomology we are
interested in.

Consider X any smooth algebraic variety over C. Recall the different sheaves of differ-
ential forms over X:

Ωk
X = sheaf of algebraic differential k-forms over the Zarisky topology,

Ωk
Xhol = sheaf of holomorphic differential k-forms over the analytic topology,

Ωk
X∞ = sheaf of (complex) C∞ differential k-forms over the analytic topology.

The key result that allows us to define algebraic de Rham cohomology (i.e. just in terms
of Ωk

X) is the following theorem due to Atiyah and Hodge:

Theorem 1.2.1 (Atiyah-Hodge [HA55]). Let U be a smooth affine variety over C. Then,
the canonical map

Hk(Γ(Ω•U), d)
'−→ Hk(Γ(Ω•U∞), d) = Hk

dR(U)

is an isomorphism.

Remark 1.2.1. Atiyah-Hodge’s theorem can be stated as a composition of natural isomor-
phisms

Hk(Γ(Ω•U), d) ' Hk(Γ(Ω•Uhol), ∂) ' Hk(Γ(Ω•U∞), d).

In fact, noticing that (Ω•U∞ , d) is a resolution of the constant sheaf C (by Poincaré’s lemma,
see [BT82] Chapter 1 section 4) and furthermore it is acyclic (since they are fine sheaves,
i.e. they admit partition of unity), we can apply Corollary 4.1.1 (see Appendix) to obtain
the isomorphism

Hk(Γ(Ω•U∞), d) ' Hk(U,C).

On the other hand, (Ω•
Uhol

, ∂) is also a resolution of C (this can also be proved as a conse-
quence of Poincaré’s lemma), and is acyclic (since U is affine it is also Stein, see [Gun90]
page 131, Theorem 2), then by Corollary 4.1.1 we conclude

Hk(Γ(Ω•Uhol), ∂) ' Hk(U,C) ' Hk(Γ(Ω•U∞), d).

Let us return to X any smooth algebraic variety over C. After Remark 1.2.1, an imme-
diate consequence of Atiyah-Hodge’s theorem is that the natural inclusion of complexes

(Ω•X , d) ↪→ (Ω•Xhol , ∂)
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of sheaves over the Zariski topology of X is a quasi-isomorphism (see Appendix, Definition
4.1.3). In fact, Atiyah-Hodge’s theorem is saying that the map induced between the coho-
mology pre-sheaves is an isomorphism in every affine open subset of X. Using Proposition
4.1.4 (see Appendix) we get

Hk(X,Ω•X) ' Hk(X,Ω•Xhol),

where (Ω•
Xhol , ∂) is a complex of sheaves considered over the Zariski topology of X. But, using

again the fact that every affine open set is Stein and Proposition 4.1.1 (see Appendix) we
conclude that the hypercohomology of the complex (Ω•

Xhol , ∂) over the analytic topology, can
be computed via the affine covering, i.e. it coincides with the hypercohomology considered
over the Zariski topology. On the other hand, over the analytic topology, (Ω•

Xhol , ∂) is a
resolution of the constant sheaf C, then by Proposition 4.1.3 (see Appendix) we obtain the
isomorphism

Hk(X,Ω•X) ' Hk(X,Ω•Xhol) ' Hk(X,C).

Finally, since (Ω•X∞ , d) is an acyclic resolution of C, we conclude (by Corollary 4.1.1, Ap-
pendix)

Hk(X,Ω•X) ' Hk(X,Ω•Xhol) ' Hk(X,C) ' Hk(Γ(Ω•X∞), d) = Hk
dR(X),

i.e. we obtained a way to recover the de Rham cohomology of any smooth complex algebraic
variety X using algebraic differential forms.

Definition 1.2.1. For any morphism of schemes X → Y , we define the algebraic de Rham
cohomology groups

Hk
dR(X/Y ) := Hk(X,Ω•X/Y ).

In the case Y = Spec R we will simply denote it by Hk
dR(X/R).

The preceding remarks show that this definition is compatible with the classical one in the
case X → Spec C is a smooth complex algebraic variety, so we have accomplished our goal of
recovering de Rham cohomology in the algebraic context. Our next goal is trying to recover
the Hodge decomposition algebraically. Unfortunately, there is no good (i.e. canonical)
candidate for a Hodge structure on Hk

dR(X/Y ). But on the other hand, Hk
dR(X/Y ) has a

natural filtration, namely

F i := Im(Hk(X,Ω•≥iX/Y )→ Hk(X,Ω•X/Y )).

Proposition 1.2.1. For X → Spec C smooth and projective variety. There is an isomor-
phism

F i/F i+1 ' Hk−i(X,Ωi
X).

Furthermore, we can identify F i ' Hk(X,Ω•≥iX ).
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Proof Consider U an affine finite cover of X. Using Proposition 4.1.1, we can represent every
element ω ∈ Hk(X,Ω•≥iX ) as a sum ω = ωi + ωi+1 + · · · + ωk, where each ωl ∈ Ck−l(U ,Ωl

X).
Take the map

Hk(X,Ω•≥iX ) −→ Hk−i(X,Ωi
X).

k∑
j=i

ωj 7→ ωi

To show this map is well defined, suppose ω is zero in Hk(U ,Ω•≥iX ), then ω = Dη and
ωi = (−1)iδηi, so ωi is zero in Hk−i(X,Ωi

X). We claim the kernel of this map is F̃ i+1 :=
Im(Hk(X,Ω•≥i+1

X )→ Hk(X,Ω•≥iX )). In fact, is clear that F̃ i+1 is in the kernel. Furthermore,
if ωi = δηi, then ω − (−1)iDηi ∈ F̃ i+1. Then, we have an inclusion

Hk(X,Ω•≥iX )/F̃ i+1 ↪→ Hk−i(X,Ωi
X). (1.4)

On the other hand, we have a natural projection

Hk(X,Ω•≥iX )/F̃ i+1 � F i/F i+1. (1.5)

These two facts imply
dimCF

i/F i+1 ≤ dimCH
k−i(X,Ωi

X). (1.6)

But, on the left hand side of (1.6) the dimensions add up to the dimension of F 0 = Hk
dR(X/C).

While on the right hand side we have the Hodge numbers, and by Hodge decomposition they
add up to the dimension of Hk

dR(X). Thus, (1.6) is an equality, then (1.4) and (1.5) are
isomorphisms. Composing the inverse of (1.5) with (1.4) we have that the map

F i/F i+1 −→ Hk−i(X,Ωi
X)

k∑
j=i

ωj 7→ ωi

is the desired isomorphism. Finally, to prove the isomorphism Hk(X,Ω•≥iX ) ' F i, we pro-
ceed inductively on i = k, k − 1, ..., 0. For i = k just use the isomorphism (1.5). For
i < k, we assume we have the isomorphism Hk(X,Ω•≥i+1

X ) ' F i+1, since this isomorphism
factors as Hk(X,Ω•≥i+1

X ) ' F̃ i+1 ' F i+1 we can use (1.5) to conclude Hk(X,Ω•≥iX ) ' F i.

Corollary 1.2.1. Let X be a smooth projective variety, then via the natural isomorphism

Hk
dR(X/C) ' Hk

dR(X), (1.7)

F i corresponds with the classical Hodge filtration

F i ' F iHk
dR(X) :=

k⊕
p=i

Hp,k−p(X).
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Proof The isomorphism (1.7) is given by the quasi-isomorphisms

(Ω•X , d) ↪→ (Ω•Xhol , ∂), (1.8)

(Ω•Xhol , ∂) ↪→ (Ω•X∞ , d). (1.9)

Where (1.8) is over the Zariski topology of X, while (1.9) is over the analytic topology of
X. If we consider the truncated complexes, we have the corresponding quasi-isomorphisms

(Ω•≥iX , d) ↪→ (Ω•≥i
Xhol , ∂), (1.10)

(Ω•≥i
Xhol , ∂) ↪→ (

⊕
p≥i

Ωp,•−p
X∞ , d). (1.11)

Note that both complexes of (1.11) are resolutions of the sheaf of holomorphic ∂-closed
i-forms. Therefore, the image of F i inside Hk

dR(X) is exactly

F̌ i := Im(Hk(Γ(
⊕
p≥i

Ωp,•−p
X∞ ), d)→ Hk

dR(X)).

In particular, F iHk
dR(X) ⊆ F̌ i. Since

F̌ i/F̌ i+1 ' F i/F i+1 ' Hk−i(X,Ωi
X) ' H i,k−i(X) = F iHk

dR(X)/F i+1Hk
dR(X),

we conclude F̌ i = F iHk
dR(X).

The previous proposition and its corollary justify the following definition:

Definition 1.2.2. For X → Y smooth and projective, we define the algebraic Hodge filtra-
tion

F iHk
dR(X/Y ) := Im(Hk(X,Ω•≥iX/Y )→ Hk(X,Ω•X/Y )).

Remark 1.2.2. The previous definition could be made without hypothesis on the morphism
X → Y , but we realize that it does not make much sense for the non-projective case. In
fact, if X = U is affine and Y = Spec C, Atiyah-Hodge’s isomorphism

Hk(Γ(Ω•U), d) ' Hk(U,Ω•U)

has image F k = Im(Hk(U,Ω•≥kU )→ Hk(U,Ω•U)), in particular F 0 = F 1 = · · · = F k. Another
way to see this, is observing that the inequality

dimCF
i/F i+1 ≤ dimCH

k−i(X,Ωi
X/Y ),

holds without restrictions on X → Y . Then, for the affine case, we always have F i/F i+1 = 0
for i = 0, ..., k − 1.
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1.3 Logarithmic differential forms

In the next section we will introduce a Hodge filtration for affine varieties as in Deligne’s
work [Del71]. Before doing that, we need to restrict ourselves to a subclass of meromorphic
differential forms. The so called differential forms with logarithmic poles. For simplicity, we
will restrict ourselves to the following context: Let X be a smooth projective variety, and
Y ⊆ X a smooth hyperplane section. We will consider affine varieties of the form

U := X \ Y.

Definition 1.3.1. Let X be a smooth projective variety and Y ⊆ X be a smooth hyperplane
section. We define the sheaf of rational p-forms with logarithmic poles along Y as

Ωp
X(logY ) := Ker(Ωp

X(Y )
d−→ Ωp

X(2Y )/Ωp
X(Y )).

Analogously, we define the sheaf of meromorphic p-forms with logarithmic poles along Y as

Ωp
Xhol(log Y ) := Ker(Ωp

Xhol(Y )
d−→ Ωp

Xhol(2Y )/Ωp
Xhol(Y )).

By Serre’s GAGA principle we know Ωp
Xhol(log Y ) is the analytification of Ωp

X(log Y ).

Theorem 1.3.1 (Deligne [Del70]). In the context of the previous definition, let i : U =
X \ Y ↪→ X be the inclusion. Then, the natural map

Ω•X(log Y ) ↪→ i∗Ω
•
U = Ω•X(∗Y ), (1.12)

induces the isomorphism
Hk(X,Ω•X(log Y )) ' Hk

dR(U/C). (1.13)

Where Ωp
X(∗Y ) denotes the sheaf of algebraic p-forms with poles (of arbitrary order)

along Y . Theorem 1.3.1 can be proved in the general context where Y is an ample normal
crossing divisor of X, by proving that (1.12) is a quasi-isomorphism (see [Del70]). We will
provide a different proof, by constructing the isomorphism (1.13) explicitly, using a lemma
due to Carlson and Griffiths.

Definition 1.3.2. Suppose X is embedded in a projective space PN , and Y = X ∩{F = 0}
for some homogeneous polynomial F ∈ C[x0, ..., xN ]. Consider U = {Ui}Ni=0 the Jacobian
covering of X given by Ui = X ∩ {Fi 6= 0}, where Fi := ∂F

∂xi
. For every l ≥ 2 define

Hl : Cq(U ,Ωp
X(lY ))→ Cq(U ,Ωp−1

X ((l − 1)Y )),

(Hlω)j0···jq :=
1

1− l
F

Fj0
ι ∂
∂xj0

(ωj0···jq).
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Lemma 1.3.1 (Carlson-Griffiths [CG80]). For every l ≥ 2, letting D = d+ (−1)pδ, then

DH +HD :
⊕
p+q=k

Cq(U ,Ωp
X(lY ))

Cq(U ,Ωp
X((l − 1)Y ))

→
⊕
p+q=k

Cq(U ,Ωp
X(lY ))

Cq(U ,Ωp
X((l − 1)Y ))

is the identity map. Note that D is the is the differential map used to define the hypercoho-
mology groups (see Appendix, Definition 4.1.1).

Proof of Theorem 1.3.1 The inclusion ι : Ω•X(log Y ) ↪→ Ω•X(∗Y ) induces the morphism

ϕ : Hk(U ,Ω•X(log Y ))→ Hk(U ,Ω•X(∗Y )).

Let us prove ϕ is an isomorphism. Given

ω =
k∑
p=0

ωp ∈
⊕
p+q=k

Cq(U ,Ωp
X(∗Y ))

such that Dω = 0, there exist l ≥ 1 such that

ω ∈
⊕
p+q=k

Cq(U ,Ωp
X(lY )).

If l = 1, we claim ω ∈
⊕

p+q=k C
q(U ,Ωp

Y (log Y )). In fact, since Dω = 0, we get

dωp = (−1)pδωp+1 ∈ Cq(U ,Ωp+1
X (Y )),

as desired.
For l ≥ 2, it follows from the lemma that ω is cohomologous (in hypercohomology) to

the D-closed element

ν := (1−DH)l−1ω ∈
⊕
p+q=k

Cq(U ,Ωp
X(Y )).

And it follows from the case l = 1 that

ν ∈
⊕
p+q=k

Cq(U ,Ωp
Y (log Y )),

i.e. ϕ is surjective.
Now, for the injectivity, consider

ω ∈
⊕
p+q=k

Cq(U ,Ωp
X(log Y )),

such that there exist
η ∈

⊕
p+q=k−1

Cq(U ,Ωp
X(lY ))
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for some l ≥ 1, with
Dη = ω.

If l = 1, we claim η ∈
⊕

p+q=k−1C
q(U ,Ωp

Y (log Y )). In fact, since Dη = ω, we get

dηk−1 = ωk ∈ C0(U ,Ωk
X(Y )),

then ηk−1 ∈ C0(U ,Ωk−1
X (log Y )). Inductively, if we assume ηp+1 ∈ Cq−1(U ,Ωp+1

X (log Y )),
then

dηp = ωp+1 + (−1)pδηp+1 ∈ Cq(U ,Ωp+1
X (log Y )),

as a consequence ηp ∈ Cq(U ,Ωp
X(log Y )).

Finally, for l ≥ 2, if we take
φ := (1−DH)l−1η.

Since (1−DH)η = Hω + µ ∈
⊕

p+q=k C
q(U ,Ωp

X((l − 1)Y )), and D((1−DH)η) = Dη = ω,
it is clear that Dφ = ω and

φ ∈
⊕

p+q=k−1

Cq(U ,Ωp
X(Y )),

and by the case l = 1, we actually see that

φ ∈
⊕

p+q=k−1

Cq(U ,Ωp
X(log Y )),

as desired.

Proof of Carlson-Griffiths’ Lemma 1.3.1 First, we claim

dHl +Hl+1d :
Cq(U ,Ωp

X(lY ))

Cq(U ,Ωp
X((l − 1)Y ))

→ Cq(U ,Ωp
X(lY ))

Cq(U ,Ωp
X((l − 1)Y ))

is the identity map. In fact, take ωJ = αJ
F l
∈ Cq(U ,Ωp

X(lY )), then

(dHl +Hl+1d)ωJ = d

(
1

1− l
F

Fj0
ι ∂
∂xj0

(αJ
F l

))
− 1

l

F

Fj0
ι ∂
∂xj0

(
dαJ
F l
− l dF ∧ αJ

F l+1

)

≡ 1

1− l
dF

Fj0
∧
ι ∂
∂xj0

(αJ)

F l
− l

1− l
F

Fj0

dF ∧ ι ∂
∂xj0

(αJ)

F l+1

+
F

Fj0

(Fj0αJ − dF ∧ ι ∂
∂xj0

(αJ))

F l+1

=
αJ
F l

= ωJ ,
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where the congruence is taken mod Cq(U ,Ωp
X((l − 1)Y )). Using this, take ω =

∑k
p=0 ω

p ∈⊕
p+q=k C

q(U ,Ωp
X(lY )) then

ω −DHω =
∑
p+q=k

(ωp − dHωp − (−1)p−1δHωp)

≡
∑
p+q=k

(Hdωp + (−1)pδHωp)

≡
∑
p+q=k

H(dωp + (−1)pδωp) = HDω.

Where in the last congruence we used δHωp ≡ Hδωp. In fact

(δHlω
p)j0···jq+1 =

q+1∑
m=0

(−1)m(Hlω
p)j0···ĵm···jq+1

=
1

1− l

(
F

Fj1
ι ∂
∂xj1

(ωpj1···jq+1
) +

F

Fj0
ι ∂
∂xj0

(
q+1∑
m=1

(−1)mωp
j0···ĵm···jq+1

))

=
F

1− l

ι ∂
∂xj1

(ωpj1···jq+1
)

Fj1
−
ι ∂
∂xj0

(ωpj1···jq+1
)

Fj0

+ (Hlδω
p)j0···jq+1 .
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1.4 Hodge filtration for affine varieties

In this section we introduce a Hodge filtration for affine varieties. In order to justify this is
the good candidate for the Hodge filtration, we will introduce the residue map for algebraic
de Rham cohomology, and show it is compatible with Hodge filtrations. Let us recall first
the classical residue map.

Let X be a smooth projective variety, Y ⊆ X a smooth hyperplane section, and U :=
X \ Y . Taking the long exact sequence in cohomology of the pair (X,U), and using Leray-
Thom-Gysin isomorphism (see [Mov17a] Chapter 4, section 6) we obtain the exact sequence

· · · → Hk+1
dR (X)→ Hk+1

dR (U)
res−→ Hk

dR(Y )
τ−→ Hk+2

dR (X)→ · · · (1.14)

where res is the residue map, and τ corresponds to the wedge product with the polarization
θ. In particular, we obtain a surjective map

res : Hk+1
dR (U)→ Hk

dR(Y )prim = Ker τ,

where Hk
dR(Y )prim is the primitive part of de Rham cohomology, i.e. is the complementary

space to θ
k
2 inside Hk

dR(Y ) (see [Mov17a] Chapter 5, section 7). We want to determine the
algebraic counterpart of this map (together with its long exact sequence), and define a Hodge
filtration for U , compatible with the Hodge filtration of Y via this map.

Definition 1.4.1. For U = X \ Y , where X is smooth projective, and Y is a smooth
hyperplane section. We define the (algebraic) Hodge filtration of U

F iHk
dR(U/C) := Im(Hk(X,Ω•≥iX (log Y ))→ Hk(X,Ω•X(log Y )) ' Hk

dR(U/C)).

In order to justify the previous definition of Hodge filtration for affine varieties, we need
to introduce the residue map in algebraic de Rham cohomology.

Proposition 1.4.1. Let X be a smooth projective variety of dimension n and Y ⊆ X a
smooth hyperplane section. Let z1, ..., zn be local coordinates on an open set V of X, such
that V ∩Y = {z1 = 0}. Then Ωp

Xhol(log Y )|V is a free OV hol-module, for which dzi1∧· · ·∧dzip
and dz1

z1
∧ dzj1 ∧ · · · ∧ dzjp−1, ik, jl ∈ {2, ..., n}, form a basis. In particular Ωp

Xhol(log Y ) is
locally free.

Proof Let α ∈ Γ(V,Ωp
Xhol(log Y )). Since it has pole of order 1 there exist β ∈ Γ(V,Ωp

Xhol)

such that α = β
z1

. Furthermore, since the same happens to dα, we conclude dz1 ∧ β = 0, i.e.
β = dz1 ∧ γ, where γ is a holomorphic (p− 1)-form, just depending on dz2, ...., dzn.

Definition 1.4.2. Let X be a smooth projective variety of dimension n and Y ⊆ X a
smooth hyperplane section. Let z1, ..., zn be local coordinates on an open set V of X, such
that V ∩ Y = {z1 = 0}. For α ∈ Γ(V,Ωp

Xhol(log Y )) we define its residue at Y to be

Res(α) := β|Y ∩V ∈ Γ(V, j∗Ω
p−1
Y hol

),
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where α = β ∧ dz1
z1

+ γ, and β, γ are holomorphic forms. This definition does not depend on
the choice of the coordinates, and defines the residue map

Res : Ωp
Xhol(log Y )→ j∗Ω

p−1
Y hol

.

Which is part of the following exact sequence

0→ Ωp
Xhol → Ωp

Xhol(log Y )
Res−−→ j∗Ω

p−1
Y hol
→ 0,

called Poincaré’s residue sequence. Using Serre’s GAGA principle we have its algebraic
counterpart

0→ Ωp
X → Ωp

X(log Y )
Res−−→ j∗Ω

p−1
Y → 0,

which we also call Poincaré’s residue sequence.

This sequence gives rise to a short exact sequence of complexes

0→ Ω•X → Ω•X(log Y )
Res−−→ j∗Ω

•−1
Y → 0. (1.15)

Taking the long exact sequence in hypercohomology we get the exact sequence

· · · → Hk+1
dR (X/C)→ Hk+1

dR (U/C)
res−→ Hk

dR(Y/C)
τ−→ Hk+2

dR (X/C)→ · · · , (1.16)

Which turns out to be the algebraic counterpart of the sequence (1.14). Since for every i ≥ 0
we have the short exact sequence of complexes

0→ Ω•≥iX → Ω•≥iX (log Y )
Res−−→ j∗Ω

•≥i−1
Y → 0.

We have the following commutative diagram with exact rows

· · · Hk+1
dR (X/C) Hk+1

dR (U/C) Hk
dR(Y/C) · · ·

· · · Hk+1(X,Ω•≥iX ) Hk+1(X,Ω•≥iX (log Y )) Hk(Y,Ω•≥i−1
Y ) · · ·

f g h
τres

The vertical arrows of this diagram are all injective. In fact, the maps f and h are injective
by Proposition 1.2.1. The injectivity of g is more delicate and is a theorem due to Deligne.
For the reader who is acquainted with the theory of spectral sequences, Deligne’s theorem
affirm that the spectral sequence associated to the naive filtration of Ω•X(log Y ) degenerates
at E1 (see [Voi02] Theorem 8.35 or [Del71] Corollary 3.2.13). This fact is equivalent to the
injectivity of g, but since we do not want to introduce the theory of spectral sequences,
we skip its proof. As a consequence, the exact sequence (1.16) is compatible with Hodge
filtrations, i.e. we have the exact sequence

· · · → F iHk+1
dR (X/C)→ F iHk+1

dR (U/C)
res−→ F i−1Hk

dR(Y/C)
τ−→ F iHk+2

dR (X/C)→ · · · .
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1.5 Cohomology of hypersurfaces

As an application of the previous results, we will present here Griffiths’ results on the co-
homology of hypersurfaces [Gri69]. This work culminates with an explicit basis for the
primitive cohomology of a hypersurface, compatible with the Hodge filtration. Griffiths’
basis is fundamental for us and will reappear everywhere in the rest of the text.

Let X ⊂ Pn+1 be a smooth hypersurface of degree d, and U = Pn+1 \ X. In order to
construct the basis for Hk

dR(X)prim we will give generators for Hk+1
dR (U/C), compatible with

the algebraic Hodge filtration F i+1Hk+1
dR (U/C). Then, we will obtain the desired basis by

applying the algebraic residue map to the generators, and reduce the set of generators to a
basis.

Remark 1.5.1. Since the residue map

Hk+1
dR (U/C)

res−→ Hk
dR(X/C)prim

is an isomorphism (because Hk+1
dR (Pn+1)prim = 0). We conclude that Hk

dR(X/C)prim = 0 for
all k 6= n (because Hk+1

dR (U/C) = 0 for k + 1 6= n + 1, see [Mov17a] Chapter 5, section 5).
Thus, we are just interested in determining a basis for the non-trivial primitive cohomology
group of X

Hn
dR(X/C)prim.

We start by giving a set of generators.

Theorem 1.5.1 (Griffiths [Gri69]). For every q = 0, ..., n, the natural map

H0(Pn+1,Ωn+1
Pn+1((q + 1)X))→ Hn+1

dR (U/C)

has image equal to F n+1−qHn+1
dR (U/C). Consequently, every piece of the Hodge filtration

F n−qHn
dR(X/C)prim,

is generated by the residues of global forms with pole of order at most q + 1 along X.

Proof Consider ωn+1 ∈ H0(Pn+1,Ωn+1
Pn+1((q + 1)X)). The natural map sends it to

ω ∈ Hn+1
dR (U/C) = Hn+1(Pn+1,Ω•Pn+1(∗X)),

by letting ωk = 0 for k = 0, ..., n. To see in which part of Hodge filtration ω is, we need to
write it as an element of Hn+1(Pn+1,ΩPn+1(logX)), i.e. we need to reduce the order of the
pole of ωn+1 up to order 1. Thanks to Carlson-Griffiths Lemma 1.3.1, we know how to do
this applying the operator (1 − DH). In order to obtain a form with poles of order 1 we
need to apply it q times, i.e. the image of ω in Hn+1(Pn+1,Ω•Pn+1(logX)) is represented by
(1−DH)qω. It is clear by the definition of H and D that

(1−DH)lω ∈ Im(Hn+1(Pn+1,Ω•≥n+1−l
Pn+1 ((q + 1− l)X))→ Hn+1(Pn+1,Ω•Pn+1((q + 1− l)X))).
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As a consequence, for l = q we see that

(1−DH)qω ∈ F n+1−qHn+1
dR (U/C).

Conversely, let ω ∈ F n+1−qHn+1
dR (U/C). Then we can represent ω = ωn+1−q + · · ·+ ωn+1,

where each
ωk ∈ Cn+1−k(U ,Ωk

Pn+1(logX)),

and ωk = 0 for k = 0, ..., n − q. We claim that for every l = 0, ..., q we can represent
ω ∈ Hn+1(Pn+1,Ω•Pn+1(∗X)) as ω = ηn+1−q+l

l + ωn+2−q+l + · · ·+ ωn+1 with

ηn+1−q+l
l ∈ Cq−l(U ,Ωn+1−q+l

Pn+1 ((l + 1)X)).

We prove this claim by induction on l. The case l = 0 is clear taking ηn+1−q
0 = ωn+1−q. Now,

for l > 0 suppose ω = ηn−q+ll−1 + ωn+1−q+l + · · ·+ ωn+1. Since Dω = 0, we know δηn−q+ll−1 = 0.
By Bott’s formula 1.1.1

Hq−l+1(Pn+1,Ωn−q+l
Pn+1 (lX)) = 0.

Then, there exist µ ∈ Cq−l(U ,Ωn−q+l
Pn+1 (lX)) such that δµ = ηn−q+ll−1 . Subtracting from ω

the exact form in hypercohomology (−1)n−q+lDµ, we get the claim for l, and we finish the
induction. Finally, applying the claim for l = q we can write ω = ηn+1

q with

ηn+1
q ∈ H0(U ,Ωn+1

Pn+1((q + 1)X)),

as desired.

The previous theorem tells us that the elements of the form

res

(
PΩ

F q+1

)
∈ F n−qHn

dR(X/C)prim,

where P ∈ H0(Pn+1,OPn+1(d(q + 1)− n− 2)) and q = 0, ..., n, generate all Hn
dR(X/C)prim.

The following theorem tells us how we can choose a basis from these generators.

Theorem 1.5.2 (Griffiths [Gri69]). For every q = 0, ..., n the kernel of the map

ϕ : H0(Pn+1,OPn+1(d(q + 1)− n− 2)) � F n−qHn
dR(X/C)prim/F

n+1−qHn
dR(X/C)prim

P 7→ res

(
PΩ

F q+1

)
is the degree N = d(q + 1)− n− 2 part of the Jacobian ideal of F , JFN ⊆ C[x0, ..., xn+1]N .

Definition 1.5.1. Recall that the Jacobian ideal of F is the homogeneous ideal

JF := 〈F0, ..., Fn+1〉 ⊆ C[x0, ..., xn+1],
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where, from now on, we denote

Fi :=
∂F

∂xi
,

for i = 0, ..., n+ 1. The Jacobian ring of F is

RF := C[x0, ..., xn+1]/JF .

Remark 1.5.2. Theorem 1.5.2 implies that to choose a basis for

F n−qHn
dR(X/C)prim/F

n+1−qHn
dR(X/C)prim ' Hn−q,q(X)prim

it is enough to take the elements of the form res
(
PΩ
F q+1

)
, for P ∈ C[x0, ..., xn+1]N forming a

basis of RF
N . In particular

hn−q,q(X)prim = dimCR
F
N .

Proof of Theorem 1.5.2 By Theorem 1.5.1, it is clear that P is in the kernel of ϕ, if and
only if, there exist Q ∈ H0(Pn+1,OPn+1(dq − n− 2)) such that

res

(
PΩ

F q+1

)
= res

(
QΩ

F q

)
.

Since the residue map is an isomorphism between Hn+1
dR (U/C) ' Hn

dR(X/C)prim. This is
equivalent to say

(P − FQ)Ω

F q+1
= 0 ∈ Hn+1

dR (U/C). (1.17)

Since Hn+1
dR (U/C) ' Hn+1(Γ(Ω•U), d), (1.17) is equivalent to

(P −QF )Ω

F q+1
= dγ,

for some γ ∈ H0(Pn+1,Ωn
Pn+1(qX)). Recall from Corollary 1.1.1 that every γ ∈ H0(Pn+1,Ωn

Pn+1(qX))
is of the form

γ =

∑n+1
i=0 Tiι ∂

∂xi

(Ω)

F q
,

for some Ti ∈ C[x0, ..., xn+1]dq−n−1. As a consequence, P is in the kernel of ϕ, if and only if,

PΩ

F q+1
≡ −q

∑n+1
i=0 TiFiΩ

F q+1
(mod H0(Pn+1,Ωn

Pn+1(qX))),

in other words

P ≡ −q
n+1∑
i=0

TiFi (mod F ).

Since F ∈ JF (by Euler’s identity), this is equivalent to P ∈ JF .
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1.6 Computing the residue map

We will close this chapter with an explicit description in Čech cohomology of the residue map
for the generators given by Griffiths’ theorem. This was done in [CG80] as a consequence of
Carlson-Griffiths Lemma 1.3.1.

Let X ⊆ Pn+1 be a smooth degree d hypersurface given by X = {F = 0}. Recall that
H0(Pn+1,Ωn+1

Pn+1(n+ 2)) ' C is generated by

Ω =
n+1∑
i=0

(−1)ixidx0 ∧ · · · d̂xi · · · ∧ dxn+1.

Theorem 1.6.1 (Carlson-Griffiths [CG80]). Let q ∈ {0, 1, ..., n}, P ∈ H0(Pn+1,OPn+1(d(q+
1)− n− 2)). Then

res

(
PΩ

F q+1

)
=

(−1)n(q+1)

q!

{
PΩJ

FJ

}
|J |=q

∈ Hq(U ,Ωn−q
X ). (1.18)

Where ΩJ := ι ∂
∂xjq

(· · · ι ∂
∂xj0

(Ω) · · · ), FJ := Fj0 · · ·Fjq and U = {Ui}n+1
i=0 is the Jacobian

covering restricted to X, given by Ui = {Fi 6= 0} ∩X.

Proof Let U := Pn+1 \X. For l = 0, .., q define

(l)ω := (1−DH)l
(
PΩ

F q+1

)
∈ Hn+1

dR (U/C),

where H is the operator defined in Definition 1.3.2. We claim

(l)ωn+1−l =

{
(q − l)!(−1)n(l+1)P

q! · F q−l

(
ΩJ

FJ
∧ dF
F

+ d · (−1)n
VJ
FJ

)}
|J |=l
∈ C l(U ,Ωn+1−l

Pn+1 ((q−l+1)X)),

where V := dx0 ∧ · · · ∧ dxn+1, and VJ := ι ∂
∂xjm

(· · · ι ∂
∂xj0

(V ) · · · ). In fact, for l = 0, the claim

follows from the identity
Ω

F
=
dF

F
∧

Ω(i)

Fi
+ d ·

V(i)

Fi
.

(Which is obtained by contracting ι ∂
∂xi

in the equality dF ∧ Ω = d · F · V .) Assuming the

claim for l ≥ 0, then

Hq−l+1((l)ωn−l+1)J =
(q − l − 1)!(−1)nl+l+1P

q! · F q−l
ΩJ

FJ
.

As a consequence,

(l+1)ωn−lJ = (−1)n−l+1δHq−l+1((l)ωn+1−l)J =
(q − l − 1)!

q!

l+1∑
m=0

(−1)n(l+1)+m PΩJ\{jm}

F q−lFJ\{jm}
.
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Using the following identity

ΩJ ∧ dF + (−1)nd · F · VJ = (−1)n
l+1∑
m=0

(−1)mFjmΩJ\{jm}, (1.19)

(this identity is obtained by successive contraction of the identity dF ∧Ω = d ·F ·V by ι ∂
∂xjm

,

for m = 0, ..., l + 1) we obtain the claim for l + 1. In conclusion

(q)ωn+1−q =

{
(−1)n(q+1)P

q!

(
ΩJ

FJ
∧ dF
F

+ d · (−1)n
VJ
FJ

)}
|J |=q

∈ Cq(U ,Ωn+1−q
Pn+1 (logX)),

the rest is just to apply the residue map.

Remark 1.6.1. Using Carlson-Griffiths’ lemma, it is possible to describe explicitly the
residue map in all algebraic de Rham cohomology, i.e. as an element of

res

(
PΩ

F q+1

)
∈ F n−qHn

dR(X/C).

We skip this computation since the last piece in Čech cohomology is enough for our purposes.

38



39



Chapter 2

Periods of Algebraic Cycles

Summary

The computation of periods inside algebraic varieties is a very old problem, that goes back
to the study of elliptic integrals. It led to the first developments of algebraic topology and
algebraic geometry. Periods of algebraic cycles appeared in Lefschetz “L’analysis situs et la
géométrie algébrique” [Lef24]. In his work, Lefschetz was able to characterize homological
cycles of codimension 2 with algebraic support, via the vanishing of its periods of first kind
(i.e. periods of holomorphic differential forms), the so called Lefschetz Theorem on (1, 1)-
classes. This result led to one of the most famous open problems about periods of algebraic
cycles. Namely, the Hodge conjecture, which is a generalization of Lefschetz Theorem to
codimension 2k cycles.

Hodge conjecture advanced to the next stage with the development of infinitesimal vari-
ations of Hodge structures (IVHS) by Carlson, Green, Griffiths and Harris [CGGH83], that
allows us to study the Hodge conjecture in families of varieties. The parameters where Hodge
conjecture is a non-trivial problem determine the Hodge locus.

Periods of algebraic cycles play a fundamental role when we look at Hodge conjecture
in families, in fact, they determine IVHS. This is our main motivation to compute those
periods, and it is the central topic of this chapter (and of this thesis). The applications
are left to Chapters 3. For more problems about periods of algebraic cycles see [Mov17a]
Chapter 18.

Let us explain what we mean by periods of algebraic cycles. Let

X = {F = 0} ⊆ Pn+1

be an even dimensional smooth hypersurface, given by a homogeneous polynomial with
deg F = d. Every n

2
-dimensional subvariety Z of X determines an algebraic cycle

[Z] ∈ Hn(X,Z).
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Recalling Griffiths’ Theorem 1.5.1, each piece of the Hodge filtration is generated by the
differential forms

ωP := res

(
PΩ

F q+1

)
∈ F n−qHn

dR(X/C)prim,

for P ∈ C[x0, ..., xn+1]d(q+1)−n−2. We say that∫
Z

ωP ∈ C

is a period of Z. Notice that, since Z is a projective variety of positive dimension, it intersects
every divisor of X, so it is impossible to find an affine chart of X where to compute the
periods of Z.

Our strategy to compute the periods is to reduce the computation to a period of some
projective space PN . In section 2.1, we consider over PN the standard covering U . We fix
the top form

Ω

x0 · · ·xn+1

=

∑n+1
i=0 (−1)ixid̂xi
x0 · · ·xn+1

∈ HN(U ,ΩN
PN ),

called the standard top form with respect to U , and compute its period over PN . To do this we
determine explicitly the image of this form via the isomorphism HN(PN ,ΩN

PN ) ' H2N
dR (PN),

and we get the period.

Proposition. For (β0, ..., βN) ∈ ZN+1,∫
PN
xβ00 · · ·x

βN
N Ω =

{
0 if (β0, ..., βN) 6= (−1, ...,−1),

(−1)(
N+1

2 )(2π
√
−1)N if (β0, ..., βN) = (−1, ...,−1).

In section 2.2 we describe the pull-back of differential forms in algebraic de Rham coho-
mology (for the definition of algebraic de Rham cohomology see section 1.2). Obtaining the
following result, that can be taken as a definition.

Proposition. Let X and Y be smooth complex algebraic varieties, and U an affine open
covering of X. Consider an affine morphism ϕ : Y → X (i.e. such that ϕ−1(U) is affine,
for each open affine U of X), and ω ∈ Hk

dR(X/C). Denoting ϕ−1(U) := {ϕ−1(U)}U∈U , then
ϕ∗ω ∈ Hk

dR(Y/C) is given by

ϕ∗ω =
k∑
i=0

ϕ∗ωi ∈
k⊕
i=0

Ck−i(ϕ−1(U),Ωi
Y ),

where

ω =
k∑
i=0

ωi ∈
k⊕
i=0

Ck−i(U ,Ωi
X),
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(ϕ∗ωi)j0···jk−i := ϕ∗(ωij0···jk−i) ∈ Ωi
Y (ϕ−1(Uj0···jk−i)),

and

ϕ∗

(∑
I

aIdxi1 ∧ · · · ∧ dxik

)
:=
∑
I

ϕ∗aId(ϕ∗xi1) ∧ · · · ∧ d(ϕ∗xik)

(in particular, ϕ∗ commutes with d and δ, then it also commutes with D).

In section 2.3 we get the first application of the previous propositions. Namely, we
compute periods of PN for differential forms described in other open coverings (such as the
Jacobian covering associated to a smooth hypersurface), as follows.

Proposition. Let f0, ..., fN ∈ C[x0, ..., xN ]d be homogeneous degree d polynomials such that

{f0 = · · · = fN = 0} = ∅ ⊆ PN .

Consider
F := (f0 : · · · : fN) : PN → PN ,

and σ := (d − 1)(N + 1). For every Q ∈ C[x0, ..., xN ]σ the period of PN for the following
form (described in the open covering UF := F−1U) is∫

PN

QΩ

f0 · · · fN
= c · dN+1 · (−1)(

N+1
2 )(2π

√
−1)N ,

where c ∈ C is the unique number such that

Q ≡ c · det(Jac(F )) (mod 〈f0, ..., fN〉),

and Jac(F ) is the Jacobian matrix of F when we see it as a map (f0, ..., fN) : CN+1 → CN+1.

In this proposition it is implicit the fact that

C[x0, ..., xN ]σ
〈f0, ..., fN〉σ

' C,

which is consequence of the following theorem due to Macaulay asserting that 〈f0, ..., fN〉 is
an Artinian Gorenstein ideal of socle σ.

Theorem (Macaulay [Mac16]). Given f0, ..., fN ∈ C[x0, ..., xN ] homogeneous polynomials
with deg(fi) = di and

{f0 = · · · = fN = 0} = ∅ ⊆ PN .

Letting

R :=
C[x0, ..., xN ]

〈f0, ..., fN〉
,

then for σ :=
∑N

i=0(di − 1), we have that
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(i) For every 0 ≤ i ≤ σ the product Ri ×Rσ−i → Rσ is a perfect pairing.

(ii) dimCRσ = 1.

(iii) Re = 0 for e > σ.

Another consequence of the explicit description of pull-backs is that we can compute the
periods of linear cycles. We do this in section 2.4 for linear cycles inside Fermat varieties.

Theorem ([MV17]). Let Xd
n ⊆ Pn+1 be the n-dimensional Fermat variety of degree d, i.e

Xd
n = {F := xd0 + · · ·+ xdn+1 = 0}.

Let ζ2d be a 2d-th primitive root of unity, and

P
n
2 := {x0 − ζ2dx1 = · · · = xn − ζ2dxn+1 = 0}.

For every

i ∈ I(n
2

+1)d−n−2 :=
{

(i0, ..., in+1) ∈ {0, ..., d− 2}n+2 : i0 + · · ·+ in+1 = (n
2

+ 1)d− n− 2
}
,

consider

ωi := res

(
xi00 · · ·x

in+1

n+1 Ω

F
n
2

+1

)
∈ Hn

dR(Xd
n/C).

Then∫
P
n
2

ωi =

{
(2π
√
−1)

n
2

d
n
2 +1·n

2
!
ζ2d

n
2

+1+i0+i2+···+in if i2l−2 + i2l−1 = d− 2, ∀l = 1, ..., n
2

+ 1,

0 otherwise.

This computation is simple and interesting enough to obtain new results on the variational
Hodge conjecture (see [MV17] or section 3.6).

Sections 2.5 and 2.6 are devoted to the computation of periods of complete intersection
algebraic cycles, which is the main theorem of this thesis.

Given the complete intersection Z ⊆ X of dimension n
2
, we construct a chain of subvari-

eties
Z = Z0 ⊆ Z1 ⊆ Z2 ⊆ · · · ⊆ Zn

2
+1 = Pn+1,

where each Zi is a hypersurface of Zi+1. We inductively reduce the computation of the
period of Z to a period of Pn+1. In order to do this it is enough to relate every period of an
hyperplane section Y of a projective variety X, with a period of X.

Recalling that for X a smooth projective variety and Y a smooth hyperplane section of
X, we have the Poincaré’s residue sequence (1.15)

0→ Ω•X → Ω•X(log Y )
Res−−→ j∗Ω

•−1
Y → 0.
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Which induces the isomorphism

Hn−1
dR (Y/C) ' Hn

dR(X/C).

An explicit description of this isomorphism (together with the periods relation) is given in
section 2.5 as follows.

Proposition. Let X ⊆ PN be a smooth complete intersection of dimension n+1, and Y ⊆ X
a hyperplane section given by {F = 0} ∩X, for some homogeneous F ∈ C[x0, ..., xN ]d. Let
ω ∈ Cn(X,Ωn

X) such that ω|Y ∈ Zn(Y,Ωn
Y ). For any ω ∈ Cn(X,Ωn+1

X (log Y )) such that

ω ≡ ω ∧ dF
F

(mod Cn(X,Ωn+1
X )),

we have
ω̃ := (−1)n+1δ(ω) ∈ Zn(X,Ωn+1

X ).

Furthermore, ω̃ ∈ Hn+1(X,Ωn+1
X ) is uniquely determined by ω|Y ∈ Hn(Y,Ωn

Y ) and∫
X

ω̃ =
(−1)n+1 · 2π

√
−1

d

∫
Y

ω.

Finally, in section 2.6 we use this description to obtain the formula for periods of complete
algebraic cycles.

Theorem ([VL18]). Let X ⊆ Pn+1 be a smooth hypersurface given by X = {F = 0}.
Suppose

F = f1g1 + · · ·+ fn
2

+1gn
2

+1,

such that Z := {f1 = · · · = fn
2

+1 = 0} ⊆ X is a complete intersection (i.e. dim(Z) = n
2
).

Define
H = (h0, ..., hn+1) := (f1, g1, f2, g2, ..., fn

2
+1, gn

2
+1).

Then ∫
Z

res

(
PΩ

F
n
2

+1

)
=

(2π
√
−1)

n
2

n
2
!

c · (d− 1)n+2 · d1 · · · dn
2

+1,

where di = deg fi and c ∈ C is the unique number such that

P · det(Jac(H)) ≡ c · det(Hess(F )) (mod JF ).

Where JF := 〈F0, ..., Fn+1〉 is the Jacobian ideal of F . Notice that by Macaulay’s theorem
JF is an Artinian Gorenstein ideal of socle 2σ := (d− 2)(n+ 2).

As a consequence of this theorem we obtain that if

δ =
k∑
i=1

ni[Zi] ∈ Hn(X,Z)
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is an algebraic cycle of complete intersection type, i.e. every Zi is a complete intersection (in
the sense of the previous theorem) of X. Then there exist a polynomial

Pδ ∈ C[x0, ..., xn+1]σ,

such that (up to a constant non-zero factor not depending on P )∫
δ

res

(
PΩ

F
n
2

+1

)
= cP ,

where
P · Pδ ≡ cP · det(Hess(F )) (mod JF ).

This is essentially the same as determining the primitive part of the Poincaré dual of δ

δpd = res

(
PδΩ

F
n
2

+1

)
∈ H

n
2 (X,Ω

n
2
X)prim.

Furthermore, the theorem provides an explicit method to compute such polynomial Pδ. As
a first corollary of this result we have an algebraic (computational) criterion to determine
whether a complete intersection type cycle is trivial or not (in primitive cohomology).

Corollary. Let X ⊆ Pn+1 be a smooth hypersurface given by X = {F = 0}. If δ ∈ Hn(X,Z)
is a complete intersection type algebraic cycle, then

Pδ ∈ JF if and only if δ = α · [X ∩ Pn
2

+1] in Hn(X,Q), for some α ∈ Q.

The computation of this polynomial Pδ is our main contribution to the literature.
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2.1 Standard top form in PN

All our methods to compute periods reduce at some point to compute the period of a top
form in the projective space. Since H2N

dR (PN) = HN,N(PN) ' HN(PN ,ΩN
PN ) ' C, we just

need to know the period of one generator. Since it is simpler to compare two top forms in
the Čech cohomology group HN(PN ,ΩN

PN ), we will fix the top form

Ω

x0 · · ·xN
=

∑N
i=0(−1)ixid̂xi
x0 · · ·xN

=

(
dx1

x1

− dx0

x0

)
∧ · · · ∧

(
dxN
xN
− dx0

x0

)
∈ HN(U ,ΩN

PN ),

and compute its period. Here U = {Ui}Ni=0 is the standard open covering of PN , i.e. Ui =
{xi 6= 0}. We will refer to this form as the standard top form of PN associated to the covering
U .

Proposition 2.1.1. ∫
PN

Ω

x0 · · ·xN
= (−1)(

N+1
2 )(2π

√
−1)N .

Remark 2.1.1. Since we have natural isomorphisms HN(PN ,ΩN
PN ) ' H2N(PN ,Ω•(PN )∞) '

H2N
dR (PN). The element Ω

x0···xN
∈ HN(PN ,ΩN

PN ) corresponds to a top form ω ∈ H2N
dR (PN). By

abuse of notation we will denote ∫
PN

Ω

x0 · · ·xN
:=

∫
PN
ω.

We always use this identification when we talk about periods.

Proof Let us determine the image of Ω
x0···xN

via the isomorphism

HN(PN ,ΩN
PN ) ' H2N(PN ,Ω•(PN )∞) ' H2N

dR (PN). (2.1)

Under the first isomorphism of (2.1) we obtain the element in hypercohomology represented
by the sum

η =
2N∑
i=0

ηi ∈
2N⊕
i=0

C2N−i(U ,Ωi
(PN )∞),

where

ηi =


Ω

x0 · · · xN
if i = N,

0 if i 6= N.

In order to determine the image of η under the second isomorphism of (2.1), we need to find
another representative of the form

ω =
2N∑
i=0

ωi ∈
2N⊕
i=0

C2N−i(U ,Ωi
(PN )∞),
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where

ωi =

{
ω2N if i = 2N,
0 if i 6= 2N.

Then ω2N will be the d-closed global 2N -form on PN representing the image of Ω
x0···xN

in

H2N
dR (PN). In order to construct this element ω, we will construct inductively elements

ηj =
2N∑
i=0

ηij ∈
2N⊕
i=0

C2N−i(U ,Ωi
(PN )∞),

with

ηij =

{
ηN+j
j if i = N + j,

0 if i 6= N + j,
(2.2)

such that they all represent the same element in hypercohomology, and η0 = η, then the
desired element will correspond to ω = ηN .
Let {ai}Ni=0 be a partition of unity subordinated to {Ui}Ni=0. Let us denote

Ui1···ik := Ui1 ∩ · · · ∩ Uik , and U
î1···ik :=

⋂
h/∈{i1,...,ik} Uh.

Lemma 2.1.1. For every j = 0, ..., N we can take ηj as in (2.2) given by

(ηN+j
j )

î1···ij := j! · (−1)i1+···+ij+Nj+(j+1
2 )dai1 ∧ · · · ∧ daij ∧

Ω

x0 · · ·xN
∈ ΩN+j

(PN )∞
(U

î1···ij).

Proof We proceed by induction on j. For j = 0 the lemma is clear. Suppose it holds for
j ≥ 0, let us define

λ =
2N−1∑
i=0

λi ∈
2N−1⊕
i=0

C2N−1−i(U ,Ωi
(PN )∞),

with

λi =

{
λN+j if i = N + j,
0 if i 6= N + j,

where

λN+j

î0···ij
:=

j! · (−1)i0+···+ij+N(j+1)+(j+2
2 )(
∑j

l=0(−1)lail d̂ail) ∧ Ω

x0 · · · xN
∈ ΩN+j

(PN )∞
(U

î0···ij).

We have that δ(λN+j) = (−1)N+j+1ηN+j
j , thus we can take ηj+1 := ηj +D(λ). Then

(ηN+j+1
j+1 )

î0···ij = dλN+j

î0···ij
=

(j + 1)! · (−1)i0+···+ij+N(j+1)+(j+2
2 )dai0 ∧ · · · ∧ daij ∧ Ω

x0 · · ·xN
∈ ΩN+j+1

(PN )∞
(U

î0···ij)

as claimed.
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In particular, we have that the image of Ω
x0···xN

in H2N
dR (PN) is represented by the global

closed 2N -form ω2N = η2N
N given by

(ω2N)i = N ! · (−1)N−ida0 ∧ · · · d̂ai · · · ∧ daN ∧
Ω

x0 · · ·xN
∈ Ω2N

(PN )∞(Ui).

Since Supp(ω2N) ⊂ U0···N . In order to integrate ω2N over PN , is enough to do it on any affine
chart. Setting zi = xi/x0 for i = 1, ..., N∫

PN

Ω

x0 · · ·xN
=

∫
U0

(ω2N)0 = N ! · (−1)N
∫
CN
da1 ∧ · · · ∧ daN ∧

dz1

z1

∧ · · · ∧ dzN
zN

.

Without loss of generality, we can take the partition of unity such that

ai =

{
0 if |zi| ≤ 1
1 if |zi| ≥ 2, |zj| ≤ 1∀j ∈ {1, ..., N} \ {i}

and
a1 + · · ·+ aN = 1 if ∃j ∈ {1, ..., N} : |zj| ≥ 2.

Thus

Supp(da1 ∧ · · · ∧ daN) ⊆ {z ∈ CN : 1 ≤ |zi| ≤ 2,∀i = 1, ..., N} = (D(0; 2) \ D(0; 1))N .

For each pair of the form (I, J) where I and J are two disjoint subsets of {1, ..., N}, we
define the set

ΓI,J := {z ∈ (D(0; 2) \ D(0; 1))N : |zi| = 2, |zj| = 1,∀i ∈ I, j ∈ J}.

We consider ΓI,J ∈ H2N−#I−#J(CN ;Z) as a singular cycle of (real) dimension 2N−#I−#J
of CN . In order to do computations we will fix an orientation on each ΓI,J . On CN we consider
for each j = 1, .., N polar coordinates and fix the orientation of CN to be µ := dρ1 ∧ dθ1 ∧
· · ·∧dρN ∧dθN . In order to give an orientation to ΓI,J we order I ∪J = {k1 < · · · < kr} and
define the orientation to be ιnkr (· · · ιnk1 (µ) · · · ), where nj = ∂

∂xj
+ ∂

∂yj
. For each k = 1, ..., N

we define the singular cycle of dimension N + k − 1

Γk :=
k∑
i=1

Γ{i},{k+1,...,N}.

Let A := (−1)N

N !

∫
PN

Ω
x0···xN

and V := dz1
z1
∧ · · · ∧ dzN

zN
.

Lemma 2.1.2. For every k = 1, ..., N

A =

∫
(−1)(

N−k+1
2 )Γk

(−1)(
N
2 )−(k2) aN+1−k

1

(N + 1− k)!
da2 ∧ · · · ∧ dak ∧ V.
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Proof In fact, since

A =

∫
(D(0;2)\D(0;1))N

d(a1da2 ∧ · · · ∧ daN ∧ V ),

it follows from Stokes’ theorem that

A =

∫
∑N
i=1 Γ{i},∅−Γ∅,{i}

a1da2 ∧ · · · ∧ daN ∧ V.

Noticing that ai
∣∣
Γ∅,{i}

≡ 0, we get

A =

∫
ΓN

a1da2 ∧ · · · ∧ daN ∧ V.

Proceeding inductively, if we assume the claim for k we will show it for k−1. The first thing
to observe is that aj

∣∣
Γk
≡ 0,∀j > k. Thus, over Γk we have the relation a1 + · · · + ak = 1,

then dak = −da1 − · · · − dak−1, and

A =

∫
(−1)(

N−k+1
2 )Γk

(−1)(
N
2 )−(k2) aN+1−k

1

(N + 1− k)!
da2 ∧ · · · ∧ dak−1 ∧ (−da1) ∧ V

=

∫
(−1)(

N−k+1
2 )Γk

(−1)(
N
2 )−(k−1

2 )d

(
a
N+1−(k−1)
1

(N + 1− (k − 1))!
da2 ∧ · · · ∧ dak−1 ∧ V

)
.

Noting that

∂Γk =
k∑
i=1

∂Γ{i},{k+1,...,N}

= (−1)N−k+1

k∑
i=1

(∑
1≤j<i

(Γ{i,j},{k+1,...,N} − Γ{i},{j,k+1,...,N})−
∑
i<j≤k

(Γ{i,j},{k+1,...,N} − Γ{i},{j,k+1,...,N})

)
= (−1)N−k+1

∑
1≤i<j≤k

Γ{i},{j,k+1,...,N} − Γ{j},{i,k+1,...,N}.

And using the fact that ai
∣∣
Γ{j},{i,k+1,...,N}

≡ 0 and aj
∣∣
Γ{i},{j,k+1,...,N}

≡ 0 for 1 ≤ i < j ≤ k − 1.

It follows from Stokes theorem that

A =

∫
(−1)(

N−k+1
2 )+N−k+1 ∑

1≤i<k Γ{i},{k,k+1,...,N}

(−1)(
N
2 )−(k−1

2 ) a
N+1−(k−1)
1

(N + 1− (k − 1))!
da2 ∧ · · · ∧ dak−1 ∧ V

=

∫
(−1)(

N−k+2
2 )Γk−1

(−1)(
N
2 )−(k−1

2 ) a
N+1−(k−1)
1

(N + 1− (k − 1))!
da2 ∧ · · · ∧ dak−1 ∧ V

as claimed.
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In particular

A =

∫
(−1)(

N
2 )Γ1

(−1)(
N
2 )a

N
1

N !
V

=

∫
Γ1

V

N !
.

Finally, by Fubini’s theorem and Cauchy’s integral formula we get (note that the sign appears
from the orientation we are considering over Γ1)

A =
(−1)(

N
2 )(2π

√
−1)N

N !
.

This finishes the proof of Proposition 2.1.1.

Now it is easy to see that an element of ZN(U ,ΩN
PN ) is of the form

PΩ

xα0
0 · · ·x

αN
N

with α0, .., αN ∈ N such that α0 + · · · + αN = deg(P ) + N + 1. Then it is a C-linear
combination of terms of the form

xβ00 · · ·x
βN
N Ω

with β0, ..., βN ∈ Z such that β0 + · · · + βN = −N − 1. The following proposition tells us
how to compute the period of any such form:

Proposition 2.1.2. The form

xβ00 · · ·x
βN
N Ω ∈ HN(U ,ΩN

PN )

represents an exact top form (when is identified with an element of HN,N(PN)) if and only
if (β0, ..., βN) 6= (−1, ...,−1). In particular,∫

PN
xβ00 · · ·x

βN
N Ω =

{
0 if (β0, ..., βN) 6= (−1, ...,−1),

(−1)(
N+1

2 )(2π
√
−1)N if (β0, ..., βN) = (−1, ...,−1).

Proof The only thing left to prove is that for (β0, ..., βN) 6= (−1, ...,−1) the form is exact.
Using the isomorphism HN(PN ,ΩN

PN ) ' H2N(PN ,Ω•PN ) it is enough to show the element
ω ∈ H2N(PN ,Ω•PN ) given by

ωN = xβ00 · · ·x
βN
N Ω,

and ωi = 0 for i 6= N , is zero in hypercohomology. Noting that if (β0, ..., βN) 6= (−1, ...,−1),
there exist βi ≥ 0, i.e. xβ00 · · ·x

βN
N Ω ∈ ΩN

PN (∩j 6=iUj), we can define η ∈
⊕2N−1

j=0 C2N−1−j(U ,Ωj
PN )

by
ηNJ := (−1)N+ixβ00 · · ·x

βN
N Ω,

for J = (0, ..., i− 1, i+ 1, ..., N), ηNJ ′ = 0 for J ′ 6= J , and ηj = 0 for j 6= N . This form clearly
satisfy Dη = ω as desired.
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2.2 Pull-back in algebraic de Rham cohomology

Given a morphism Y → X of smooth complex algebraic varieties, we have an induced
homomorphism in algebraic de Rham cohomology

Hk
dR(X/C)→ Hk

dR(Y/C).

In this section we describe these pull-back homomorphisms.

Proposition 2.2.1. Let X and Y be smooth complex algebraic varieties, and U an affine
open covering of X. Consider a morphism ϕ : Y → X, such that ϕ−1(U) is affine, for
each open U ∈ U . Denoting ϕ−1(U) := {ϕ−1(U)}U∈U , then for every ω ∈ Hk

dR(X/C), the
pull-back ϕ∗ω ∈ Hk

dR(Y/C) is given by

ϕ∗ω =
k∑
i=0

ϕ∗ωi ∈
k⊕
i=0

Ck−i(ϕ−1(U),Ωi
Y ),

where

ω =
k∑
i=0

ωi ∈
k⊕
i=0

Ck−i(U ,Ωi
X),

(ϕ∗ωi)j0···jk−i := ϕ∗(ωij0···jk−i) ∈ Ωi
Y (ϕ−1(Uj0···jk−i)),

and

ϕ∗

(∑
I

aIdxi1 ∧ · · · ∧ dxik

)
:=
∑
I

ϕ∗aId(ϕ∗xi1) ∧ · · · ∧ d(ϕ∗xik)

(in particular, ϕ∗ commutes with d and δ, then it also commutes with D).

Proof It is easy to see that D(ϕ∗ω) = ϕ∗(Dω) = 0. Now, in order to show that ϕ∗ω
corresponds to the pull-back of the form ω, we have to show that there exist a representative
of the hypercohomology class of ω of the form

µ = µ0 + · · ·+ µk ∈
k⊕
i=0

Ck−i(U ,Ωi
X∞),

with µi = 0, ∀i = 0, ..., k − 1. And a representative of the hypercohomology class of ϕ∗ω of
the form

µ̃ = µ̃0 + · · ·+ µ̃k ∈
k⊕
i=0

Ck−i(ϕ−1(U),Ωi
Y∞),

with µ̃i = 0, ∀i = 0, ..., k − 1. Such that µ̃k ∈ Ωk
Y∞(Y ) is the pull-back of µk ∈ Ωk

X∞(X) as
C∞ differential k-forms. We will in fact show more, we will show inductively that for every
l = 0, ..., k there exist a representative of the hypercohomology class of ω of the form

µl = µ0
l + · · ·+ µkl ∈

k⊕
i=0

Ck−i(U ,Ωi
X∞),
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with µil = 0, ∀i = 0, ..., l − 1. And a representative of the hypercohomology class of ϕ∗ω of
the form

µ̃l = µ̃0
l + · · ·+ µ̃kl ∈

k⊕
i=0

Ck−i(ϕ−1(U),Ωi
Y∞),

with µ̃il = 0, ∀i = 0, ..., l − 1. Such that, for every j = l, ..., k, the form (µ̃jl )i0···ik−j ∈
Ωj
Y∞(ϕ−1(Ui0···ik−j)) is the pull-back of the form (µjl )i0···ik−j ∈ Ωj

X∞(Ui0···ik−j). In fact, the
claim follows for l = 0 by the definition of ϕ∗ω. Assuming the claim for l we will show it for
l + 1. Consider {ah}Nh=0 a partition of unity subordinated to the covering U . Define

η = η0 + · · ·+ ηk−1 ∈
k−1⊕
i=0

Ck−1−i(U ,Ωi
X∞),

such that

ηi =

{
0 if i 6= l,
λ if i = l,

where

λi0···ik−1−l :=
N∑
h=0

ah(µ
l
l)i0···ik−1−lh ∈ Ωl

X∞(Ui0···ik−1−l).

And define

η̃ = η̃0 + · · ·+ η̃k−1 ∈
k−1⊕
i=0

Ck−1−i(ϕ−1(U),Ωi
Y∞),

such that

η̃i =

{
0 if i 6= l,

λ̃ if i = l,

where

λ̃i0···ik−1−l :=
N∑
h=0

ϕ∗ah(µ̃
l
l)i0···ik−1−lh ∈ Ωl

Y∞(ϕ−1(Ui0···ik−1−l)).

Then, using that δ(µll) = 0 we see that δ(λ) = (−1)k−lµll. Also noticing that δ(µ̃ll) = 0 (and

using that {ϕ∗ah}Nh=0 is a partition of unity subordinated to ϕ−1(U)) we get δ(λ̃) = (−1)k−lµ̃ll.
Thus, defining µl+1 := µl + (−1)k+1Dη, and µ̃l+1 := µ̃l + (−1)k+1Dη̃, the claim follows for

l + 1 since dλ̃ = ϕ∗(dλ) (because λ̃ = ϕ∗(λ)).

Remark 2.2.1. The morphism ϕ : Y → X considered in Proposition 2.2.1 is affine, i.e.
ϕ−1(U) is affine for every open affine subset U ⊆ X (not only the elements of the covering
U). In fact, in order to verify if a morphism is affine it is enough to check it for a covering
of X (see [Har77] Exercise II.5.17).

A first application of Proposition 2.2.1 is the description of pull-backs in Čech cohomology
for each piece of the Hodge structure.
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Corollary 2.2.1. Let X and Y be smooth complex algebraic varieties, and U an affine open
covering of X. Consider an affine morphism ϕ : Y → X, and ω ∈ Hq(U ,Ωp

X), then the
pull-back

ϕ∗ω ∈ Hq(ϕ−1(U),Ωp
Y ),

is given by
ϕ∗ωj0···jq = ϕ∗(ωj0···jq) ∈ Ωp

Y (ϕ−1(Uj0···jq)).

Proof The pull-back morphism in algebraic de Rham cohomology

ϕ∗ : Hp+q
dR (X/C)→ Hp+q

dR (Y/C)

is compatible with the Hodge filtration (i.e. ϕ∗(F kHp+q
dR (X/C)) ⊆ F kHp+q

dR (Y/C)), thus the
pull-back in Čech cohomology is induced by

Hq(X,Ωp
X) ' F qHp+q

dR (X/C)/F q+1Hp+q
dR (X/C)

ϕ∗−→ F qHp+q
dR (Y/C)/F q+1Hp+q

dR (Y/C) ' Hq(Y,Ωp
Y ).
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2.3 Periods of top forms

In section 2.1 we computed the period of the standard top form relative to the standard
covering of PN . Using Corollary 2.2.1 we can compute the periods of top forms in PN
described with other open coverings (not just the standard one), for instance the Jacobian
covering associated to a smooth hypersurface.

Proposition 2.3.1. Let f0, ..., fN ∈ C[x0, ..., xN ]d homogeneous polynomials of the same
degree d > 0, such that

{f0 = · · · = fN = 0} = ∅ ⊆ PN .

They define the finite morphism F : PN → PN given by

F (x0 : · · · : xN) := (f0 : · · · : fN).

Let UF = {Vi}Ni=0 be the open covering associated, i.e. Vi = {fi 6= 0}. Then the top form

ΩF

f0 · · · fN
:=

∑N
i=0(−1)ifid̂fi
f0 · · · fN

∈ HN(UF ,ΩN
PN ),

has period ∫
PN

ΩF

f0 · · · fN
= dN · (−1)(

N+1
2 )(2π

√
−1)N .

Proof If Ω is the standard top form associated to the standard covering, applying Corollary
2.2.1 we get F−1(U) = UF and F ∗Ω = ΩF . Then it follows from topological degree theory
that ∫

PN

ΩF

f0 · · · fN
= deg(F ) ·

∫
PN

Ω

x0 · · ·xN
= deg(F ) · (−1)(

N+1
2 )(2π

√
−1)N .

Since F is defined by a base point free linear system, the fiber of F is generically reduced by
Bertini’s theorem (see [Har77] page 179), and corresponds to dN points by Bezout’s theorem,
i.e. deg(F ) = dN .

Before going further we will recall the following theorem due to Macaulay (for a proof
see [Voi03] Theorem 6.19):

Theorem 2.3.1 (Macaulay [Mac16]). Given f0, ..., fN ∈ C[x0, ..., xN ] homogeneous polyno-
mials with deg(fi) = di and

{f0 = · · · = fN = 0} = ∅ ⊆ PN .

Letting

R :=
C[x0, ..., xN ]

〈f0, ..., fN〉
,

then for σ :=
∑N

i=0(di − 1), we have that
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(i) For every 0 ≤ i ≤ σ the product Ri ×Rσ−i → Rσ is a perfect pairing.

(ii) dimCRσ = 1.

(iii) Re = 0 for e > σ.

Definition 2.3.1. A ring of the form R = C[x0, ..., xN ]/I for some homogeneous ideal I is
called an Artinian Gorenstein ring of socle degree σ, if there exist σ ∈ N such that R satisfies
properties (i), (ii) and (iii) of Macaulay’s Theorem 2.3.1. We also say that I is an Artinian
Gorenstein ideal of socle σ.

Remark 2.3.1. It is easy to see (using Euler’s identity) that

ΩF = d−1det(Jac(F ))Ω

where Jac(F ) =
(
∂fi
∂xj

)
0≤i,j≤N

is the Jacobian matrix of F . Any element of ZN(UF ,ΩN
PN ) is

of the form

ω =
PΩ

fα0
0 · · · f

αN
N

where α0, ..., αN ∈ Z>0 with d · (α0 + ...+αN) = deg(P )+N +1. Using Macaulay’s Theorem
2.3.1, we see that

P =
∑

d(β0+···+βN )=deg(P )−d(N+1)

fβ00 · · · f
βN
N Pβ

with deg(Pβ) = (d− 1)(N + 1) = σ. This reduces the problem of computation of periods, to
forms of the form

PβΩ

fα0
0 · · · f

αN
N

, (2.3)

with α0, ..., αN ∈ Z such that α0 + · · · + αN = N + 1 and deg(Pβ) = (d − 1)(N + 1). It is
clear that such a form represents an exact top form of PN if some αi is non-positive (in fact,
it is equivalent to show that it is zero in hypercohomology and this is clear because the form
extends to a d-closed form on V0···̂i···N , as in the proof of Proposition 2.1.2) then we reduce
the computation to forms of the form

QΩ

f0 · · · fN
,

where deg(Q) = σ.

Corollary 2.3.1. If Q ∈ C[x0, ..., xN ]σ, then∫
PN

QΩ

f0 · · · fN
= c · dN+1 · (−1)(

N+1
2 )(2π

√
−1)N ,

where c ∈ C is the unique number such that
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Q ≡ c · det(Jac(F )) (mod 〈f0, ..., fN〉).

Proof To show the existence and uniqueness of c ∈ C we use item (ii) of Macaulay’s
Theorem 2.3.1. So, it is enough to show

det(Jac(F )) /∈ 〈f0, ..., fN〉.

This is direct from the previous considerations and the fact

ΩF

f0 · · · fN
∈ HN(PN ,ΩN

PN )

does not represent an exact top form by Proposition 2.3.1.

Remark 2.3.2. In summary, the computation of the period reduces to the computation of
such constant c that relates Q with det(Jac(F )) in Rσ.
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2.4 Periods of linear cycles inside Fermat varieties

As another application of the pull-back description given in section 2.2, we compute periods
of algebraic cycles (for differential forms lying in the middle part of Hodge decomposition)
in a very particular case, but interesting enough to get new results (see Theorem 3.6.2). Let
us consider the Fermat variety of even dimension n and degree d

Xd
n : xd0 + xd1 + · · ·+ xdn+1 = 0,

and the linear cycle of dimension n
2

given by

P
n
2 : x0 − ζ2dx1 = x2 − ζ2dx3 = · · · = xn − ζ2dxn+1 = 0,

where ζ2d is a 2d-primitive root of unity. From Carlson-Griffiths’ theorem we have a basis
for the middle part of Hodge decomposition given in Čech cohomology by

(ωi)J =
xi00 · · ·x

in+1

n+1 ΩJ

n
2
! · dn2 +1 · (xj0 · · ·xjn

2
)d−1

∈ H
n
2 (U ,Ω

n
2

Xd
n
),

where J = {j0 < · · · < jn
2
} ⊂ {0, ..., n+ 1}, U is the standard covering of Pn+1 restricted to

Xd
n. Recall Ω ∈ H0(Pn+1,Ωn+1

Pn+1(n+ 2)) is defined by

Ω :=
n+1∑
i=0

(−1)ixid̂xi,

ΩJ is the contraction of Ω by J i.e.

ΩJ := ι ∂
∂xjn

2

(
· · ·
(
ι ∂
∂xj0

(Ω)

)
· · ·
)

= (−1)
j0+···+jn

2
+(

n
2 +2

2 )∑n
2
l=0(−1)lxkl d̂xkl ,

(2.4)

where K = {k0 < · · · < kn
2
} := {0, ..., n+ 1} \ J , and

i ∈ I(n
2

+1)d−n−2 :=
{

(i0, ..., in+1) ∈ {0, ..., d− 2}n+2 : i0 + · · ·+ in+1 = (n
2

+ 1)d− n− 2
}
.

Theorem 2.4.1 ([MV17]). For i ∈ I(n
2

+1)d−n−2 we have

∫
P
n
2

ωi =

{
(2π
√
−1)

n
2

d
n
2 +1·n

2
!
ζ2d

n
2

+1+i0+i2+···+in if i2l−2 + i2l−1 = d− 2, ∀l = 1, ..., n
2

+ 1,

0 otherwise.

Proof Let φ : P
n
2

(y1:···:yn
2 +1) → Pn+1

(x0:···:xn+1) be the closed immersion with image Pn
2 given by

φ(y1 : · · · : yn
2

+1) = (ζ2dy1 : y1 : · · · : ζ2dyn
2

+1 : yn
2

+1).
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It follows from Corollary 2.2.1 that

φ∗ωi =
1

d
n
2

+1 · n
2
!

{
ζ i0+i2+···+in

2d yi
′
φ∗ΩJ

φ∗(xj0 · · ·xjn
2 +1

)d−1

}
|J |=n

2

∈ H
n
2 (φ−1(U),Ω

n
2

P
n
2
), (2.5)

where i′ = (i0+i1, ..., in+in+1) and φ−1(U) is the open covering of Pn
2 given by the pre-images

of the standard covering of Pn+1 (in particular this covering has repeated open sets). Since
for {k1 < · · · < kn

2
} ⊂ {1, ..., n

2
+ 1} we have

φ∗ΩJ(
∂

∂yk1
, ...,

∂

∂ykn
2

) = Ω(φ(y))

(
∂

∂xj0
, ...,

∂

∂xjn
2

, ζ2d
∂

∂x2k1−2

+
∂

∂x2k1−1

, ..., ζ2d
∂

∂x2kn
2
−2

+
∂

∂x2kn
2
−1

)
.

It follows that if #(J ∩ {2l − 2, 2l − 1}) = 2 for some l ∈ {1, ..., n
2

+ 1}, then φ∗ΩJ = 0.
On the other hand, if #(J ∩ {2l − 2, 2l − 1}) = 1,∀l ∈ {1, ..., n

2
+ 1} then

φ∗ΩJ(
∂

∂yk1
, ...,

∂

∂ykn
2

) = ζ#J1
2d (−1)k+(

n
2
2 )+#J1yk,

where {k1, ..., kn
2
} = {1, ..., n

2
+ 1} \ {k} and J1 := {j ∈ J |j is odd}. Hence

φ∗ΩJ = (−ζ2d)
#J1(−1)(

n
2
2 )+1Ω′, (2.6)

where

Ω′ =

n
2

+1∑
k=1

(−1)k−1ykd̂yk.

Since for any such J we have φ∗(xj0 · · ·xjn
2
)d−1 = ζ

(d−1)(n
2

+1−#J1)

2d (y1 · · · yn
2

+1)d−1, replacing

(2.6) in (2.5) we get

(φ∗ωi)J =
(−1)(

n
2 +1

2 )ζ
n
2

+1+i0+i2+···+in
2d yi

′
Ω′

d
n
2

+1 · n
2
!(y1 · · · yn

2
+1)d−1

∈ H
n
2 (U ′,Ω

n
2

P
n
2
), (2.7)

where U ′ is the standard covering of Pn
2 . By Proposition 2.1.2, the form (2.7) is not exact if

and only if i′l = d− 2, ∀l ∈ {1, ..., n
2

+ 1}. The result follows from the fact that the standard

top form Ω′

y1···yn
2 +1

integrates (−1)(
n
2 +1

2 )(2π
√
−1)

n
2 over Pn

2 .

Another interesting property of Fermat variety is that its automorphism group acts tran-
sitively on the set of linear subspaces of dimension n

2
inside it. This allows us to use the

pull-back of these automorphisms to compute the periods of all linear cycles inside Fermat
variety. Consider the groups µn+2

d and Sn+2, where µn+2
d = µd×· · ·×µd, µd := {1, ζd, ..., ζd−1

d }
is the group of d-th roots of unity, and Sn+2 is the group of permutations of {0, ..., n + 1}.
An element a = (ζa0d , ..., ζ

an+1

d ) ∈ µn+2
d acts over the Fermat variety Xd

n by coordinate-wise
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multiplication, in particular the diagonal µd ↪→ µn+2
d acts trivially. By the other hand,

an element b = (b0, ..., bn+1) ∈ Sn+2 acts over Xd
n by permutation of the coordinates. For

(a, b) ∈ µn+2
d × Sn+2 we define P

n
2
a,b := b−1(a−1(Pn

2 )) i.e.

P
n
2
a,b :


xb0 − ζ1+2a1−2a0

2d xb1 = 0,
xb2 − ζ1+2a3−2a2

2d xb3 = 0,
xb4 − ζ1+2a5−2a4

2d xb5 = 0,
· · ·
xbn − ζ

1+2an+1−2an
2d xbn+1 = 0.

Corollary 2.4.1. For i ∈ I(n
2

+1)d−n−2 we have

∫
P
n
2
a,b

ωi =

{
sign(b)·(2π

√
−1)

n
2

d
n
2 +1·n

2
!

ζ2d

∑n
2
e=0(ib2e+1)·(1+2a2e+1−2a2e) if ib2l−2

+ ib2l−1
= d− 2,∀1 ≤ l ≤ n

2
+ 1,

0 otherwise.

Proof Considering the automorphism of Pn+1 given by (a ◦ b)−1 = b−1 ◦ a−1 : Pn+1 → Pn+1,
we have that ∫

P
n
2

((a ◦ b)−1)∗ωi =

∫
P
n
2
a,b

ωi.

For J = {j0, ..., jn
2
} ⊆ {0, ..., n+ 1} we see that

((b−1)∗ωi)J = sign(b)(ωib)b−1(J)

where b−1(J) = {b−1
j0
, ..., b−1

jn
2

} and ib = (ib0 , ..., ibn+1) ∈ I(n
2

+1)d−n−2. Then

(((a ◦ b)−1)∗ωi)J = sign(b)(a−1)∗((ωib)b−1(J)) = sign(b)ζ
−2

∑n+1
e=0 ae(ibe+1)

2d (ωib)b−1(J).

It follows from Theorem 2.4.1 that the period is non-zero for ib2l−2
+ ib2l−1

= d− 2, ∀1 ≤ l ≤
n
2

+ 1, in that case we obtain that ζ
−2

∑n+1
e=0 ae(ibe+1)

2d = ζ
∑n

2
e=0(ib2e+1)·(2a2e+1−2a2e)

2d and the result
follows.
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2.5 Coboundary map

In order to compute periods of complete intersection algebraic cycles, we need to compute
periods of smooth hyperplane sections of a given projective smooth variety X. In other
words, for Y ↪→ X a smooth hypersurface given by {F = 0}, we need an explicit description
of the isomorphism

Hn(Y,Ωn
Y ) ' Hn+1(X,Ωn+1

X ),

ω 7→ ω̃

together with the relation of periods, i.e. the number a ∈ C such that∫
X

ω̃ = a

∫
Y

ω.

For this purpose recall the exact sequence (1.16)

· · · → Hk+1
dR (X/C)→ Hk+1

dR (U/C)
res−→ Hk

dR(Y/C)
τ−→ Hk+2

dR (X/C)→ · · · ,

induced by the short exact sequence of complexes

0→ Ω•X → Ω•X(log Y )
Res−−→ j∗Ω

•−1
Y → 0.

Since H2n+1
dR (U) = H2n+2

dR (U) = 0, the coboundary map is an isomorphism

H2n
dR(Y/C)

τ' H2n+2
dR (X/C).

Noticing these vector spaces are one dimensional, and τ preserves Hodge filtration we see, it
induces the desired isomorphism

Hn(Y,Ωn
Y )

τ' Hn+1(X,Ωn+1
X ).

Proposition 2.5.1. Let X ⊆ PN be a smooth complete intersection of dimension n +
1, and Y ⊆ X a smooth hyperplane section given by {F = 0} ∩ X, for some homo-
geneous F ∈ C[x0, ..., xN ]d. Let ω ∈ Cn(X,Ωn

X) such that ω|Y ∈ Zn(Y,Ωn
Y ). For any

ω ∈ Cn(X,Ωn+1
X (log Y )) such that

ω ≡ ω ∧ dF
F

(mod Cn(X,Ωn+1
X )),

we have
ω̃ := (−1)n+1δ(ω) ∈ Zn+1(X,Ωn+1

X ).

Furthermore, ω̃ ∈ Hn+1(X,Ωn+1
X ) is uniquely determined by ω|Y ∈ Hn(Y,Ωn

Y ) and∫
X

ω̃ =
(−1)n+1 · 2π

√
−1

d

∫
Y

ω. (2.8)
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Proof The map described in the proposition is the coboundary map τ , i.e. τ(ω) = ω̃. So it
is left to prove the period relation. By the fact that τ is an isomorphism of one dimensional
spaces we have a constant aX,Y ∈ C× such that∫

X

τ(ω) = aX,Y

∫
Y

ω,

for every ω ∈ Hn(Y,Ωn
Y ). Since X and Y are complete intersections, Lefschetz hyper-

plane section theorem (see [Mov17a]) implies we can extend ω and τ(ω) to PN . If X is
complete intersection of type (d1, .., dk), then [X] = d1 · · · dk[Pn+1] ∈ H2n+2(PN ;Z) and
[Y ] = dd1 · · · dk[Pn] ∈ H2n(PN ;Z). By Stokes’ theorem

d1 · · · dk
∫
Pn+1

τ(ω) = aX,Y dd1 · · · dk
∫
Pn
ω.

In other words
aX,Y =

aPn+1,Pn

d
.

Finally, to compute aPn+1,Pn we suppose Pn = {xn+1 = 0}, we take ω ∈ Cn(U ,Pn+1), where
U is the standard open covering of Pn+1, and

ωJ =

∑n
i=0(−1)ixji d̂xji
xj0 · · ·xjn

, for |J | = n.

Then

ωJ =

{ ∑n+1
i=0 (−1)ixid̂xi
x0···xn+1

if J = {0, ..., n},
0 otherwise.

As a consequence

ω̃0···n =

∑n+1
i=0 (−1)ixid̂xi
x0 · · ·xn+1

.

It follows by Proposition 2.1.1 that aPn+1,Pn = (−1)n+1 · 2π
√
−1.

Remark 2.5.1. Notice that in Proposition 2.5.1, the assumption Y being a smooth hyper-
plane section, is just to simplify the exposition when talking about Ωn

Y and Ωn+1
X (log Y ). But

this condition is superfluous. In fact, we can take Y = {F = 0} ∩X not necessarily smooth
and the relation (2.8) will still be true (a way to argue this is that both sides of the equation
are continuous with respect to F ∈ C[x0, ..., xN ]d, and we already showed they are equal in
a dense open set of it).
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2.6 Periods of complete intersection algebraic cycles

In this section we compute periods of complete intersection algebraic cycles inside a smooth
hypersurface X ⊆ Pn+1, of even dimension n. After Carlson-Griffiths’ theorem we know
these periods are generated by the forms

ωP = res

(
PΩ

F
n
2

+1

)
=

1
n
2
!

{
PΩJ

FJ

}
|J |=n

2

∈ H
n
2 (X,Ω

n
2
X), (2.9)

where P ∈ C[x0, ..., xn+1]σ, and σ = (d − 2)(n
2

+ 1). In order to compute these periods
over a complete intersection subvariety Z of Pn+1 (contained in X), the main ingredient is
the explicit description of the coboundary map. Given the complete intersection Z ⊆ X of
dimension n

2
, we construct a chain of subvarieties

Z = Z0 ⊆ Z1 ⊆ Z2 ⊆ · · · ⊆ Zn
2

+1 = Pn+1,

where each Zi is a hypersurface of Zi+1, and apply inductively the coboundary map, to
reduce the computation of the period of Z to the computation of the integral of a top form
in Pn+1.

Remark 2.6.1. For us Z ⊆ Pn+1 will be a complete intersection inside Pn+1 of dimension
n
2

if there exist f1, ..., fn
2

+1 ∈ C[x0, ..., xn+1] homogeneous polynomials such that

I(Z) = 〈f1, ..., fn
2

+1〉.

Theorem 2.6.1. Let X ⊆ Pn+1 be a smooth hypersurface given by X = {F = 0}. Suppose

F = f1g1 + · · ·+ fn
2

+1gn
2

+1,

such that Z := {f1 = · · · = fn
2

+1 = 0} ⊆ X is a complete intersection. Define

H = (h0, ..., hn+1) := (f1, g1, f2, g2, ..., fn
2

+1, gn
2

+1).

Then ∫
Z

ωP =
(2π
√
−1)

n
2

n
2
!

c · (d− 1)n+2 · d1 · · · dn
2

+1, (2.10)

where di = deg fi, ωP is given by (2.9), and c ∈ C is the unique number such that

P · det(Jac(H)) ≡ c · det(Hess(F )) (mod JF ).

Remark 2.6.2. To understand the statement of theorem 2.6.1 recall that Macaulay’s The-
orem 2.3.1 implies that

RF :=
C[x0, ..., xn+1]

JF
,

where JF := 〈F0, ..., Fn+1〉 is the Jacobian ideal, is an Artinian Gorenstein ring of socle 2σ =
(d− 2)(n + 2). In particular dimCR

F
2σ = 1. Furthermore, by Proposition 2.3.1 and Remark

2.3.1, RF
2σ is generated by det(Hess(F )). As a consequence, for any pair of polynomials

P,Q ∈ C[x0, ..., xn+1]σ there exist a unique c ∈ C such that

P ·Q ≡ c · det(Hess(F )) (mod JF ).
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Definition 2.6.1. We will say that a Hodge cycle δ ∈ Hn(X,Z) is of complete intersection
type if

δ =
k∑
i=1

ni[Zi],

for Z1, ..., Zk ⊆ X a set of n
2
-dimensional subvarieties that are complete intersection inside

Pn+1, given by
Zi = {fi,1 = · · · = fi,n

2
+1 = 0},

for every i = 1, ..., k, such that there exist gi,1, ..., gi,k ∈ C[x0, ..., xn+1] with

F =

n
2

+1∑
j=1

fi,jgi,j.

For every such Hodge cycle, we define its associated polynomial

Pδ :=
k∑
i=1

di · ni · det(Jac(Hi)) ∈ RF
σ ,

where di := deg Zi, σ := (d− 2)(n
2

+ 1) and Hi := (fi,1, gi,1, ..., fi,n
2

+1, gi,n
2

+1).

Remark 2.6.3. Theorem 2.6.1 tells us that in order to compute the periods of a complete
intersection type cycle δ it is enough to know its associated polynomial Pδ. In fact, we are
determining the Poincaré dual of the cycle δ in primitive cohomology

δpd = res

(
PδΩ

F
n
2

+1

)
∈ H

n
2 (X,Ω

n
2
X)prim.

In the sense that it satisfies (up to some constant non-zero factor)∫
δ

ω =

∫
X

ω ∧ res
(
PδΩ

F
n
2

+1

)
, ∀ω ∈ Hn

dR(X)prim.

Remark 2.6.4. In order to prove Theorem 2.6.1, we will use Proposition 2.5.1 to construct
inductively

ω̃(0) := ω|Z ∈ H
n
2 (Z,Ω

n
2
Z ) and Z0 := Z.

Then for l = 1, ..., n
2

+ 1 we define

ω̃(l) := ˜̃ω(l−1) ∈ H n
2

+l(Zl,Ω
n
2

+l

Zl
) and Zl := {fl+1 = · · · = fn

2
+1 = 0} ⊆ Pn+1.

Observe that Zn
2

+1 = Pn+1. Since both sides of (2.10) are continuous with respect to the
parameters

(f1, g1, ..., fn
2

+1, gn
2

+1) ∈
n
2

+1⊕
i=1

C[x0, ..., xn+1]di ⊕ C[x0, ..., xn+1]d−di ,
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such that F := f1g1 + · · · + fn
2

+1gn
2

+1. It is enough to prove Theorem 2.6.1 for a generic
(f1, g1, ..., fn

2
+1, gn

2
+1). This is why we can assume each Zl−1 is a smooth hyperplane section

of Zl, for l = 1, ..., n
2

+ 1, as in the hypothesis of Proposition 2.5.1.

Lemma 2.6.1. For each l = 0, ..., n
2

+ 1 and J ⊆ {0, ..., n+ 1} with |J | = n
2

+ l

(ω̃(l))J =
(−1)(

n
2 +2

2 )+n
2
l+(l+1

2 )+σ(J)Pdld1 · · · dl
n
2
! · FJ

 l∑
m=1

(−1)m−1gm
d̂gm
d

n
2
−l∧

r=0

dxkr

l∧
t=1

dft
dt

+(−1)l

n
2
−l∑

p=0

(−1)pxkp

l∧
s=1

dgs
d
∧ d̂xkp ∧

l∧
t=1

dft
dt

+ (−1)
n
2

+l

l∑
q=1

d̂gq
d
∧ dF

d

n
2
−l∧

r=0

dxkr ∧
d̂fq
dq

 .
Where for J = (j0, ..., jn

2
+l), σ(J) = j0+· · ·+jn

2
+l, and K = (k0, ..., kn

2
−l) = (0, 1, ..., n+1)\J .

Proof We proceed by induction on l:

l = 0: By (2.4) we get

(ω̃(0))j0···jn
2

= (ω)j0···jn
2

=
(−1)(

n
2 +2

2 )+σ(J)P
n
2
! · FJ

 n
2∑

p=0

(−1)pxkp d̂xkp

 .
l⇒ l + 1:

(ω̃(l))J ∧
dfl+1

fl+1

≡ (−1)(
n
2 +2

2 )+n
2
l+(l+1

2 )+σ(J)Pdld1 · · · dl+1
n
2
! · FJ · fl+1

 l∑
m=1

(−1)m−1gm
d̂gm
d

n
2
−l∧

r=0

dxkr

l+1∧
t=1

dft
dt

+(−1)l

n
2
−l∑

p=0

(−1)pxkp

l∧
s=1

dgs
d
∧ d̂xkp ∧

l+1∧
t=1

dft
dt

+(−1)
n
2

+l

l∑
q=1

d̂gq
d
∧ dF

d

n
2
−l∧

r=0

dxkr ∧
d̂fq
dq
∧ dfl+1

dl+1

+(−1)
n
2

+l+1fl+1

l+1∑
u=1

d̂gu
d

n
2
−l∧

r=0

dxkr ∧
d̂fu
du

 .
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Applying δ we get

ω̃
(l+1)
J =

(−1)(
n
2 +2

2 )+n
2

(l+1)+(l+2
2 )+σ(J)Pdld1 · · · dl+1

n
2
! · FJ · fl+1

·

 l∑
m=1

(−1)m−1gm
d̂gm
d
∧

n
2

+l+1∑
p=0

Fjpdxjp

 n
2
−l−1∧
r=0

dxkr

l+1∧
t=1

dft
dt

+(−1)l

n
2

+l+1∑
p=0

Fjpxjp

 l∧
s=1

dgs
d

n
2
−l−1∧
q=0

dxkq

l+1∧
t=1

dft
dt

+(−1)l+1

n
2
−l−1∑
p=0

(−1)pxkp

l∧
s=1

dgs
d
∧

n
2

+l+1∑
r=0

Fjrdxjr

 ∧ d̂xkp l+1∧
t=1

dft
dt

+(−1)
n
2

+l

l∑
q=1

d̂gq
d
∧ dF

d
∧

n
2

+l+1∑
p=0

Fjpdxjp

 n
2
−l−1∧
r=0

dxkr ∧
d̂fq
dq
∧ dfl+1

dl+1

+(−1)
n
2

+l+1fl+1

l+1∑
u=1

d̂gu
d
∧

n
2

+l+1∑
p=0

Fjpdxjp

 n
2
−l−1∧
r=0

dxkr ∧
d̂fu
du



=
(−1)(

n
2 +2

2 )+n
2

(l+1)+(l+2
2 )+σ(J)Pdl+1d1 · · · dl+1

n
2
! · FJ · fl+1

 l∑
m=1

(−1)m−1gm
d̂gm
d
∧ dF

d

n
2
−l−1∧
r=0

dxkr

l+1∧
t=1

dft
dt

+(−1)lF
l∧

s=1

dgs
d

n
2
−l−1∧
q=0

dxkq

l+1∧
t=1

dft
dt

+ (−1)l+1

n
2
−l−1∑
p=0

(−1)pxkp

l∧
s=1

dgs
d
∧ dF

d
∧ d̂xkp

l+1∧
t=1

dft
dt

+(−1)
n
2

+l

l∑
q=1

d̂gq
d
∧ dF

d
∧ dF

d

n
2
−l−1∧
r=0

dxkr ∧
d̂fq
dq
∧ dfl+1

dl+1

+(−1)
n
2

+l+1fl+1

l+1∑
u=1

d̂gu
d
∧ dF

d

n
2
−l−1∧
r=0

dxkr ∧
d̂fu
du

 .
Replacing F = f1g1 + · · ·+fn

2
+1gn

2
+1 in the first three expressions we finish the induction.

Proof of Theorem 2.6.1 Using Lemma 2.6.1 for l = n
2

+ 1 we get

(ω̃(n
2

+1))0···n+1 =
(−1)σ(J)Pd

n
2

+1d1 · · · dn
2

+1

n
2
! · F0 · · ·Fn+1

 n
2

+1∑
m=1

(−1)m−1gm
d̂gm
d

n
2

+1∧
t=1

dft
dt

+(−1)n+1

n
2

+1∑
q=1

d̂gq
d
∧ dF

d
∧ d̂fq
dq

 .
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Replacing F = f1g1 + · · ·+ fn
2

+1gn
2

+1 we obtain

(ω̃(n
2

+1))0···n+1 =
(−1)σ(J)Pd

n
2

+1d1 · · · dn
2

+1

n
2
! · F0 · · ·Fn+1

 n
2

+1∑
m=1

(−1)m−1

(
d− dm
d

)
gm
d̂gm
d

n
2

+1∧
t=1

dft
dt

+(−1)
n
2

n
2

+1∑
q=1

(−1)qfq

n
2

+1∧
s=1

dgs
d
∧ d̂fq
dq

 ,
in other words

(ω̃(n
2

+1))0···n+1 =
(−1)σ(J)+(

n
2 +2

2 )Pe0 · · · en+1
n
2
! · F0 · · ·Fn+1

n+1∑
k=0

(−1)khk
d̂hk
ek

,

where ek = deg(hk). Replacing eihi =
n+1∑
j=0

∂hi
∂xj
· xj and dhi =

n+1∑
j=0

∂hi
∂xj

dxj we obtain

(ω̃
(n
2

+1)

i )0···n+1 =
(−1)(

n
2 +1

2 )P · det(Jac(H))
n
2
! · F0 · · ·Fn+1

n+1∑
k=0

(−1)kxkd̂xk.

The theorem follows from Proposition 2.5.1, Proposition 2.1.1, and Corollary 2.3.1.

Remark 2.6.5. Notice that from the formula of Theorem 2.6.1, all periods are zero when

det(Jac(H)) = 0.

For instance if some gi is constant. This is consistent with the fact that Z will be the
complete intersection of X with a codimension n

2
complete intersection of Pn+1, in fact in

this case
Z = {f1 = · · · = fi−1 = fi+1 = · · · = fn

2
+1 = 0} ∩X.

Furthermore, the formula is giving us a characterization of such algebraic cycles:

Corollary 2.6.1. Let X ⊆ Pn+1 be a smooth hypersurface given by

X = {F = 0}.

If δ ∈ Hn(X,Z) is a complete intersection type algebraic cycle, then

Pδ ∈ JF if and only if δ = α · [X ∩ Pn
2

+1] in Hn(X,Q), for some α ∈ Q.

Proof By Macaulay’s Theorem 2.3.1, Pδ ∈ JF , if and only if, P · Pδ ∈ JF for all
P ∈ C[x0, ..., xn+1](d−2)(n

2
+1). Theorem 2.6.1 says this is equivalent to the vanishing of

all periods for ω ∈ Hn
dR(X)prim. By Poincaré’s duality we conclude this is equivalent to

δ = α · [X ∩ Pn
2

+1] in Hn(X,Q), for some α ∈ Q.
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Remark 2.6.6. This corollary is giving us an algebraic (and computable) criterion to deter-
mine whether an algebraic cycle (given as a combination of complete intersection algebraic
cycles) is trivial or not. Even in the case X is a surface, to determine the selfintersection of
a singular divisor is not trivial.

Remark 2.6.7. Another observation we can derive from Theorem 2.6.1 is that each period
is of the form (2π

√
−1)

n
2 times a number in a number field k, where k is the smallest number

field such that f1, g1, ..., fn
2

+1, gn
2

+1 ∈ k[x0, ..., xn+1], i.e. the periods belong to the same field
where we can decompose F as f1g1+· · ·+fn

2
+1gn

2
+1. This was already mentioned in Deligne’s

work about absolute Hodge cycles (see [DMOS82] Proposition 7.1).

We close this section with an example of how Theorem 2.6.1 can be used to compute
periods. We provide another proof of Theorem 2.4.1.

Proposition 2.6.1. For X = {xd0 + · · ·+xdn+1 = 0} the Fermat variety, Pn
2 = {x0− ζ2dx1 =

· · · = xn − ζ2dxn+1 = 0}, and δ = [Pn
2 ], its associated polynomial is

Pδ = d
n
2

+1ζ
n
2

+1

2d

n
2

+1∏
j=1

(
d−2∑
l=0

xd−2−l
2j−2 ζ l2dx

l
2j−1

)
.

Proof We notice that the Jacobian matrix of H is diagonal by 2× 2 blocks, and each block
has determinant d(ζ2dx

d−1
2j−2 + xd−1

2j−1)/(x2j−2 − ζ2dx2j−1).

Corollary 2.6.2. For X and Pn
2 as in Proposition 2.6.1, and i ∈ I(n

2
+1)d−n−2 we have∫

P
n
2

ωi =

{
(2π
√
−1)

n
2

d
n
2 +1·n

2
!
ζ2d

n
2

+1+i0+i2+···+in if i2l−2 + i2l−1 = d− 2, ∀l = 1, ..., n
2

+ 1,

0 otherwise.

Proof By Theorem 2.6.1 we only need to compute c ∈ C such that

xiPδ ≡ c · det(Hess(F )) (mod 〈xd−1
0 , ..., xd−1

n+1〉).

By Proposition 2.6.1

xiPδ = d
n
2

+1ζ
n
2

+1

2d xi

n
2

+1∏
j=1

(
d−2∑
l=0

xd−2−l
2j−2 ζ l2dx

l
2j−1

)
,

≡ ζ
n
2

+1+l1+···+ln
2

2d (x0 · · ·xn+1)d−2 (mod 〈xd−1
0 , ..., xd−1

n+1〉),
if there exist lj ∈ {0, ..., d− 2} such that lj + i2j−1 = d− 2 and d− 2− lj + i2j−2 = d− 2, for
every j = 1, ..., n

2
+ 1. And is zero otherwise. This condition is equivalent to lj = i2j−2 and

i2j−2 + i2j−1 = d− 2. The desired result follows from the computation of the Hessian matrix
for the Fermat variety

det(Hess(F )) = dn+2(d− 1)n+2(x0 · · ·xn+1)d−2.
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Chapter 3

Variational Hodge Conjecture

Summary

Roughly speaking, while Hodge conjecture asks whether every Hodge cycle is an algebraic
cycle, variational Hodge conjecture asks whether the deformation of an algebraic cycle, that
remains a Hodge cycle along the deformation, is an algebraic cycle. In this chapter we will
introduce the space of deformation of Hodge cycles, the so called Hodge locus. In order
to prove variational Hodge conjecture, we will determine some local components of Hodge
locus. The study of this space is an active source of research and is far from being well
understood.

When considering the Hodge locus for Hodge cycles inside surfaces, it corresponds to the
classical Noether-Lefschetz locus (that corresponds to the parameter space of surfaces with
non-trivial Picard number). Although Hodge conjecture is known to be true for surfaces, it
says nothing about the description of Noether-Lefschetz locus. The Noether-Lefschetz locus
has been studied by several mathematicians (such as Green, Voisin, Harris among others),
but it is very mysterious for surfaces of degree 8 or more.

In order to study Hodge and Noether-Lefschetz loci, our main tool is infinitesimal varia-
tion of Hodge structures (IVHS), developed by Carlson, Green, Griffiths and Harris [CGGH83].
We will give an algebraic approach to IVHS. This is possible after the algebraic description
of Gauss-Manin connection made by Katz and Oda [KO68].

We will close this chapter showing how to use the information of periods of algebraic
cycles (developed in Chapter 2) to determine components of the Hodge locus (and prove
variational Hodge conjecture). The chapter is divided as follows.

In section 3.1 we introduce the de Rham cohomology sheaf F iH k
dR(X/T ) associated to a

locally trivial family of smooth projective varieties π : X → T . These sheaves come with a
Hodge filtration.

In section 3.2 we introduce Gauss-Manin connection

∇ : H k
dR(X/T )→ Ω1

T ⊗OT H k
dR(X/T ).
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And we show its transversality with respect to the Hodge filtration.

∇F iH k
dR(X/T ) ⊆ Ω1

T ⊗OT F i−1H k
dR(X/T ).

The so called Giffiths’ transversality theorem.

Dualizing Gauss-Manin connection we obtain

∇ : F iH k
dR(X/T )/F i+1H k

dR(X/T )→ Ω1
T ⊗OT F i−1H k

dR(X/T )/F iH k
dR(X/T ).

Specializing at t ∈ T we obtain the map

∇t : TtT → HomC(H i,k−i(Xt), H
i−1,k−i+1(Xt)).

In section 3.3 we describe it explicitly in the case π : X → T is the family of smooth degree
d hypersurfaces of Pn+1. We show it corresponds with polynomial multiplication after we
identify TtT ' C[x0, ..., xn+1]d, H

i,n−i(Xt)prim ' RF
d(n−i+1)−n−2 and H i−1,n−i+1(Xt)prim '

RF
d(n−i+2)−n−2 (where the last two identifications are given by Griffiths’ Theorems 1.5.1 and

1.5.2).

In section 3.4 we introduce the Hodge locus V p
δ associated to every δ ∈ H2n−k(Xt,Z)

and every p ∈ {0, ..., k}. We describe its Zariski tangent space using IVHS, obtaining the
following result.

Proposition. For every δ ∈ H2n−k(Xt,Z) such that its Poincaré dual is in F pHk
dR(Xt) we

define the map
0∇t(δ) : TtT → Hn−p+1,n−k+p−1(Xt)

∗,

given by

(0∇t(δ)(v))(ξ) :=

∫
δ

(∇t(v))(ξ).

The Zariski tangent space of the Hodge locus corresponding to δ is

TtV
p
δ = Ker 0∇t(δ).

In section 3.5 we introduce the global Hodge locus

Hodd := {t ∈ T : Xt has non-trivial Hodge cycles}.

Using the Hilbert scheme we introduce the variational Hodge conjecture. This problem was
proposed by Grothendieck as a weaker version of Hodge conjecture. We will prove a stronger
result, that we call alternative Hodge conjecture.

Conjecture (Alternative Hodge conjecture). Let T be the parameter space of smooth degree
d hypersurfaces of Pn+1. For any t ∈ Hodd and δ ∈ Hn(Xt,Z)alg, let λ be the induced flat
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section of Hn
dR(X/T ) given by δ. Then there exist P ∈ Q[x] and a subvariety Σ ⊆ ΣP,d such

that
Graph λ|

V
n
2
δ

= ϕP (Σ).

Where ΣP,d := {(Z,X) ∈ HilbP × T : Z ⊆ X} is the relative Hilbert scheme, and ϕP :
ΣP,d → Hn

dR(X/T ) sends (Z,Xt) to ([Z]pd, t). In other words, for every algebraic cycle, its
deformation as a Hodge cycle corresponds to an algebraic deformation of the cycle in a flat
family.

Finally, in section 3.6 we show how periods of algebraic cycles (developed in Chapter 2)
can be used to prove alternative Hodge conjecture (using computer assistance). Our results
are summarized in the following.

Theorem. For d ≥ 2 + 4
n

, let t ∈ Hodd be the point corresponding to the Fermat variety and
δ ∈ Hn(Xt,Z)alg a complete intersection algebraic cycle δ = [Z], given by Z = {f1 = · · · =
fn

2
+1 = 0}, with

xd0 + · · ·+ xdn+1 = f1g1 + · · ·+ fn
2

+1gn
2

+1,

and deg fi = di. Then, the alternative Hodge conjecture holds for

1. d1 = d2 = · · · = dn
2

+1 = 1.

2. n = 2, 4 ≤ d ≤ 15, or n = 4, 3 ≤ d ≤ 6, or n = 6, 3 ≤ d ≤ 4.

Theorem ([MV17]). Let T be the parameter space of smooth degree d hypersurfaces of Pn+1.
Let 0 ∈ T be the point representing the Fermat variety X0. If Pn

2 and P̌n
2 are two linear

subspaces inside X0, such that Pn
2 ∩ P̌n

2 = Pm, then letting δ := [Pn
2 ] + [P̌n

2 ]

V
n
2
δ = V

n
2

[P
n
2 ]
∩ V

n
2

[P̌
n
2 ]
,

for all triples (n, d,m) in the following list:

(2, d,−1), 5 ≤ d ≤ 14,

(4, 4,−1), (4, 5,−1), (4, 6,−1), (4, 5, 0), (4, 6, 0),

(6, 3,−1), (6, 4,−1), (6, 4, 0),

(8, 3,−1), (8, 3, 0),

(10, 3,−1), (10, 3, 0), (10, 3, 1),

where P−1 means the empty set. In particular, alternative Hodge conjecture holds for δ in
these cases.
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3.1 De Rham cohomology sheaf associated to a family

In this section, we give an algebraic interpretation of the sheaf of sections of the de Rham
cohomology bundle associated to a locally trivial fibration. This approach will be done using
algebraic de Rham cohomology introduced in Chapter 1.

Let X
π−→ T be a family of smooth projective varieties. Assume T is smooth, connected

and π is a proper submersion. If follows by Ehresmann’s theorem (see [Dun18]) that π is a
locally trivial fibration over T . Using the trivializations we can give a vector bundle structure
to

Hk
dR(X/T ) :=

⊔
t∈T

Hk
dR(Xt)→ T.

We denote by Hk the sheaf of holomorphic sections of Hk
dR(X/T ), and by Hk the sub-sheaf

of sections s of Hk
dR(X/T ) such that

s(t) ∈ Im(Hk(Xt,Z)→ Hk
dR(Xt)), ∀t ∈ Domain s.

In other words, Hk = Rkπ∗Z is the higher direct image of Z under π∗ (for a reference on higher
direct images of sheaves see [Har77] Chapter III, section 8), and Hk = Hk ⊗Z OThol . Using
Ehresmann’s theorem we can prove that Hk is a locally constant sheaf (or local system).
In fact, given two local sections λ, µ ∈ Hk(U) such that t ∈ U ⊆ T , λ(t) = µ(t) and U is
simply connected (so π is trivial over U). We claim λ(t′) = µ(t′) for all t′ ∈ U . In fact,
taking a path γ : [0, 1] → U with γ(0) = t and γ(1) = t′, and assuming π : XU → U is
trivial, i.e. it corresponds to pr2 : XU = Xt × U → U . Then λpd ◦ γ is a homotopy between
(λ(t))pd and (λ(t′))pd, while µpd ◦ γ is a homotopy between (µ(t))pd = (λ(t))pd and (µ(t′))pd,
so (λ(t′))pd = (µ(t′))pd in H2n−k(Xt′ ,Z), then λ(t′) = µ(t′) in Hk

dR(Xt′). In other words, λ(t′)
is obtained from λ(t) by parallel transport.

On the other hand, recall that in section 1.2, Definition 1.2.1, we defined the algebraic
de Rham cohomology associated to X → T as

Hk
dR(X/T ) := Hk(X,Ω•X/T ).

This is an OT (T )-module. For every pair of affine open sets U1 ⊆ U2 of T , we have the
OT (Ui)-module Hk

dR(XUi/Ui), where XUi = π−1(Ui) for i = 1, 2. The inclusion map U1 ↪→ U2

induces a restriction map Hk
dR(XU2/U2) → Hk

dR(XU1/U1). Putting all these maps together
we obtain a quasi-coherent OT -module that we denote

H k
dR(X/T ).

Noting that
Hk(X,Ω•X/T )⊗OT,t kT,t = Hk(Xt,Ω

•
Xt),

we get the specialization of H k
dR(X/T ) at every t ∈ T is

H k
dR(X/T )t ⊗OT,t kT,t,' Hk

dR(Xt/C).
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As a consequence, it follows by Ehresmann’s theorem (and [Har77] exercise II.5.8) that
H k

dR(X/T ) is a locally free sheaf of constant rank r = bk(Xt) for any t ∈ T . Furthermore,
the analytification of H k

dR(X/T ) (in Serre’s GAGA correspondence) is in fact Hk (for a proof
see [KO68]).

Definition 3.1.1. For every affine open set U ⊆ T we have

H k
dR(X/T )(U) = Hk

dR(XU/U).

Collating the submodules F iHk
dR(XU/U) ⊆ Hk

dR(XU/U) (see Definition 1.2.2), we define a
coherent (in fact locally free) subsheaf of H k

dR(X/T ) denoted by

F iH k
dR(X/T ).

These sheaves determine a decreasing Hodge filtration for H k
dR(X/T ).

Proposition 3.1.1. Let X
π−→ T be a family of smooth projective varieties, such that T is

smooth, connected and π is a proper submersion. Then

F iH k
dR(X/T )/F i+1H k

dR(X/T ) ' Rk−iπ∗Ω
i
X/T .

In other words, for U ⊆ T affine open set we have

F iHk
dR(XU/U)/F i+1Hk

dR(XU/U) ' Hk−i(XU ,Ω
i
XU/U

).

Proof Recalling the proof of Proposition 1.2.1, the inclusion (1.4) holds for any morphism
X → Y . In particular, we have

Hk(U,Ω•≥iXU/U
)/F̃ i+1

U ↪→ Hk−i(XU ,Ω
i
XU/U

), (3.1)

where F̃ i+1 := Im(Hk(U,Ω•≥i+1
XU/U

)→ Hk(U,Ω•≥iXU/U
)). On the other hand, letting R = OT (U),

we know Hk−i(XU ,Ω
i
XU/U

) is a finitely generated R-module (see [Har77] Theorem III.8.8).

Then by Nakayama’s lemma (see [Eis95] Corollary 4.8) it is enough to show this injection
(3.1) specializes to an isomorphism on every maximal ideal of R, to conclude it is in fact an
isomorphism. But this is exactly what is proved in Proposition 1.2.1. Considering now the
natural projection

Hk(U,Ω•≥iXU/U
)/F̃ i+1 � F iHk

dR(XU/U)/F i+1Hk
dR(XU/U), (3.2)

again by Nakayama’s lemma it is enough to show (3.2) specializes to an isomorphism on
every maximal ideal of R, to conclude it is an isomorphism. And this also was showed in
the proof of Proposition 1.2.1.

72



3.2 Gauss-Manin connection

In this section we introduce Gauss-Manin connection in the algebraic sheaves H k
dR(X/T ).

We also prove Griffiths’ transversality theorem in this context.

Let π : X → T be a proper submersion representing a family of smooth projective
varieties over a connected smooth variety T . Recall the analytic sheaf Hk = Hk ⊗ OThol ,
where Hk is the local system given by Hk := Rkπ∗Z. This is the sheaf of holomorphic
sections of the vector bundle

Hk
dR(X/T ) =

⊔
t∈T

Hk
dR(Xt)→ T.

Where the bundle structure on Hk
dR(X/T ) is induced by the trivializations given by Ehres-

mann’s theorem.
Using this identification, for every U ⊆ T open, Hk(U) corresponds to sections s ∈

Hk
dR(X/T )(U) such that

s(t) ∈ Im(Hk(Xt,Z)→ Hk
dR(Xt)), ∀t ∈ U.

The (analytic) Gauss-Manin connection

∇ : Hk → Ω1
Thol ⊗OThol H

k,

is the flat connection which makes every locally constant section of Hk a flat section. In
other words, for every polydisc ∆ ⊆ T centered at t ∈ T take a basis λ1, ..., λs ∈ Hk(Xt,C),
using the trivialization given by Ehresmann’s theorem, extend it to λ1, ..., λs ∈ Hk

dR(X∆/∆).
Then define

∇(
s∑
i=1

fiλi) :=
s∑
i=1

dfi ⊗ λi,

for every fi ∈ OThol(∆) and i = 1, ..., s. Now we will describe the algebraic counterpart of
this connection.

Definition 3.2.1. Let π : X → T be a proper submersion representing a family of smooth
projective varieties over a connected smooth variety T . The (algebraic) Gauss-Manin con-
nection is

∇ : H k
dR(X/T )→ Ω1

T ⊗OT H k
dR(X/T )

defined locally for every t ∈ T in the following way: Since Ω1
T is locally free, let t1, ..., tr ∈ mT,t

be a coordinate system (i.e. mT,t = 〈t1, ..., tr〉 and dim T = r), then (Ω1
T )t = ⊕ri=1OT,tdti. Let

ω ∈H k
dR(X/T )t. Consider U an affine neighbourhood of t such that Ω1

T (U) = ⊕ri=1OT (U)dti,
U = Spec R and ω ∈ Hk

dR(XU/U). Take U = {Ui}i∈I an affine covering of XU , then

ω =
k∑
j=0

ωj ∈
k⊕
j=0

Ck−j(U ,Ωj
XU/R

),
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with Dω = 0. Let p : Ωj
XU
→ Ωj

XU/R
be the natural projection, then there exist

ω̌ =
k∑
j=0

ω̌j ∈
k⊕
j=0

Ck−j(U ,Ωj
XU

),

such that p(ω̌) = ω. Since p(Dω̌) = Dω = 0 it follows

Dω̌ =
k+1∑
j=0

(
r∑
i=1

dti ∧ ηj−1
i

)
∈

k⊕
j=0

Ck+1−j(U , π∗Ω1
U ∧ Ωj−1

XU
),

where η−1
i = 0 for every i = 1, ..., r. Finally, letting

ηi :=
k∑
j=0

ηji ∈
k⊕
j=0

Ck−j(U ,Ωj
XU

),

we define

∇ω :=
r∑
i=1

dti ⊗ p(ηi) ∈ (Ω1
T )t ⊗OT,t H k

dR(X/T )t.

To see this is well defined, we have to show first that each

p(ηi) ∈H k
dR(X/T )t,

in other words we have to show that Dηi = 0 in the sheaf of relative differential forms, after
localizing at t. Since DDω̌ = 0, we have

r∑
i=1

dti ∧Dηi = 0.

After localizing, since dt1, ..., dtr are a base for (Ω1
T )t it follows that

Dηi ∈
k⊕
j=0

Ck−j(U , π∗Ω1
U ∧ Ωj−1

XU
)t,

in other words p(Dηi) = D(p(ηi)) = 0, as desired. Now it is routine to check this definition
does not depend on the choices made. It is also an exercise to check for every r ∈ OT,t that

∇(r · ω) = r∇ω + dr ⊗ ω,

i.e. ∇ is a connection.

Theorem 3.2.1 (Griffiths’ transversality [Gri68]). Let π : X → T be a family of smooth
projective varieties satisfying the hypothesis of Definition 3.2.1, then

∇F iH k
dR(X/T ) ⊆ Ω1

T ⊗OT F i−1H k
dR(X/T ).
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Proof We can assume T = Spec R is affine, and take U an affine covering of X. Let

ω =
k∑
j=i

ωj ∈ F iHk
dR(X/R),

where each ωj ∈ Ck−j(U ,Ωj
X/R). Taking ω = p(ω̌), with

ω̌ =
k∑
j=i

ω̌j ∈
k⊕
j=i

Ck−j(U ,Ωj
X),

we see that D(ω̌)j = 0 for j < i, i.e.

Dω̌ =
k+1∑
j=i

(
r∑
l=1

dtl ∧ ηj−1
l

)
∈

k+1⊕
j=i

Ck+1−j(U , π∗Ω1
T ∧ Ωj−1

X ).

As a consequence,

∇ω =
r∑
l=1

dtl ⊗

(
k+1∑
j=i

p(ηj−1
l )

)
∈ Ω1

R ⊗R F i−1Hk
dR(X/R).
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3.3 Infinitesimal variations of Hodge structures

In this section we use Gauss-Manin connection to introduce the infinitesimal variations of
Hodge structures (IVHS). This will be our main tool to study the tangent space at each
point of the Hodge locus (to be defined in the next section).

From Griffiths’ transversality theorem, Gauss-Manin’s connection induces

∇ : F iH k
dR(X/T )/F i+1H k

dR(X/T )→ Ω1
T ⊗OT F i−1H k

dR(X/T )/F iH k
dR(X/T ).

Using Proposition 3.1.1 we get

∇ : Rk−iπ∗Ω
i
X/T → Ω1

T ⊗OT Rk−i+1π∗Ω
i−1
X/T .

Dualizing this morphism, we have

∇ : ΘT → HomOT (Rk−iπ∗Ω
i
X/T , R

k−i+1π∗Ω
i−1
X/T ).

Specializing at every t ∈ T we obtain

∇t : TtT → HomC(H i,k−i(Xt), H
i−1,k−i+1(Xt)).

The following proposition tells us how is this map for π : X → T the family of all smooth
degree d hypersurfaces of Pn+1.

Proposition 3.3.1. Let Xt = {F = 0} be any smooth degree d hypersurface of Pn+1, and t ∈
T ⊆ C[x0, ..., xn+1]d the corresponding parameter. After identifying TtT ' C[x0, ..., xn+1]d,
and using the identifications given by Carlson-Griffiths’ Theorem 1.6.1, the Gauss-Manin
connection (restricted to the primitive part of each piece of the Hodge structure)

∇t : C[x0, ..., xn+1]d → HomC(RF
d(n−i+1)−n−2, R

F
d(n−i+2)−n−2),

is, up to a constant non-zero factor, the multiplication of polynomials.

Proof Let X → T be the universal family of smooth degree d hypersurfaces of Pn+1. Let
I = {(α0, ..., αn+1) ∈ Zn+1

≥0 :
∑n+1

i=0 αi = d} and s ∈ T be the point corresponding to F =∑
α∈I sαx

α, i.e. Xs = {F = 0} (we are changing t by s, to use t as a variable without making
confusing notation). Given v =

∑
α∈I cαx

α ∈ TsT = C[x0, ..., xn+1]d and P ∈ RF
d(n−i+1)−n−2

we want to determine (∇s(v))(P ) ∈ RF
d(n−i+2)−n−2. Writing (using Carlson-Griffiths Theorem

1.6.1)

ωP =
(−1)n(n−i+1)

(n− i)!

{
PΩJ

FJ

}
J

∈ Hn−i(UXs ,Ωi
Xs),

we have to lift it to a neighbourhood of Xs inside X. It is easy to see that

X = {(x, t) ∈ Pn+1 × T : f(x, t) :=
∑
α∈I

tαx
α = 0}.
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Let us take the covering U = {Ui}n+1
i=0 of X given by Ui := {(x, t) ∈ X : ∂f

∂xi
(x, t) 6= 0}. This

is a covering since Xt is smooth for every t ∈ T . Let β ∈ I such that sβ 6= 0. Consider

ω :=
(−1)n(n−i+1)

(n− i)!

{
t
|J |
β

s
|J |
β

PΩJ

fJ

}
J

∈ Cn−i(U ,Ωi
X).

It is clear that the specialization of ω at s ∈ T is ωP . Furthermore, using the identity (1.19)
we get

δω =
(−1)n(n−i+1)

(n− i)!

{
t
|J |
β

s
|J |
β

P ((−1)nΩJ ∧ (
∑n+1

i=0 fidxi) + (
∑n+1

i=0 fixi)VJ)

fJ

}
J

∈ Hn−i+1(U ,Ωi
X).

Since X = {f = 0} and df =
∑n+1

i=0 fidxi +
∑

α∈I x
αdtα, we obtain

δω =
(−1)n(n−i+1)+n+1

(n− i)!

{
t
|J |
β

s
|J |
β

PΩJ ∧ (
∑

α∈I x
αdtα)

fJ

}
J

∈ Hn−i+1(U ,Ωi
X).

Finally (
∇s

(∑
α∈I

cα
∂

∂tα

))
(ωP ) =

(−1)n(n−i+1)

(n− i)!

{
vPΩJ

FJ

}
J

∈ Hn−i+1(UY ,Ωi−1
Y ).

In conclusion
(∇s(v))(P ) = (−1)n(n− i+ 1)v · P ∈ RF

d(n−i+2)−n−2.

Remark 3.3.1. It is clear from Proposition 3.3.1 that ∇t factors trough RF
d , i.e. there exist

two maps
ρt : TtT → RF

d ,

and
∇ : RF

d → HomC(RF
d(n−i+1)−n−2, R

F
d(n−i+2)−n−2),

such that
∇t = ∇ ◦ ρt.

Here it is hidden the Kodaira-Spencer map

ρt : TtT → H1(Xt,ΘXt),

which is induced as the specialization of the coboundary map in the following short exact
sequence

0→ ΘX/T → ΘX → π∗ΘT → 0.
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Where ΘX and ΘT are the sheaf of vector fields on X and T respectively, while ΘX/T is the
sheaf of vector fields tangent to π.

Whenever n ≥ 2 and (n, d) 6= (2, 4), Kodaira-Spencer map is surjective and Ker ρt = JFd
(see [Voi03], Lemma 6.15). Therefore, we can identify

H1(Xt,ΘXt) ' RF
d ,

and we obtain the map

∇ : H1(Xt,ΘXt)→ HomC(H i,n−i(Xt), H
i−1,n−i+1(Xt)),

which is the so called infinitesimal variations of Hodge structures (IVHS) introduced by
Carlson, Green, Griffiths and Harris in [CGGH83].
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3.4 Hodge locus

In this section we will introduce Hodge locus as an analytic scheme. We will show how to
determine its Zariski tangent space using IVHS.

Definition 3.4.1. Let π : X → T be a family of smooth projective varieties as in section
3.1. Recall the local system Hk := Rkπ∗Z over T . For every λ ∈ Γ(T,Hk) and p ∈ {0, ..., k}
we define its associated Hodge locus

V p
λ := {t ∈ T : λ(t) ∈ F pHk

dR(Xt)}.

Remark 3.4.1. Recalling Hk := HK ⊗OThol , we can define FpHk as the subsheaf given by
sections s with s(t) ∈ F pHk

dR(Xt) for every t ∈ Domain s. Looking at λ as a global section
of the analytic sheaf Hk/FpHk, we see V p

λ is the zero set of λ, thus it has a natural structure
of analytic sub-scheme of T . It is a deep result due to Cattani, Deligne and Kaplan that V p

λ

is in fact an algebraic subset of T (see [CDK95]).

Remark 3.4.2. For every t ∈ V p
λ the germ of analytic scheme (V p

λ , t) is determined just
by λ(t) ∈ Hk(Xt,Z) ∩ F pHk

dR(Xt). In fact, since Hk is locally constant, for every pair
λ, λ′ ∈ Γ(T,Hk) such that λ(t) = λ′(t) we have λ|U = λ′|U for some open neighbourhood
U of t (see section 3.1). Conversely, given any µ ∈ Hk(Xt,Z) ∩ F pHk

dR(Xt) there exist
λ ∈ Γ(U,Hk) for some neighbourhood U of t, such that λ(t) = µ. For this reason we will
use the notation

V p
δ := V p

µ := (V p
λ , t),

where δ ∈ H2n−k(Xt,Z) is the Poincaré dual of µ in the sense that∫
δ

ω =

∫
Xt

ω ∧ µ, ∀ω ∈ H2n−k
dR (Xt).

Note that if δu ∈ H2n−k(Xu,Z) is the Poincaré dual of λ(u) for u ∈ U , then δu is the cycle
obtained by monodromy from δt = δ using the trivialization given by Ehresmann’s theorem.

Proposition 3.4.1. For every δ ∈ H2n−k(Xt,Z) such that its Poincaré dual is in F pHk
dR(Xt)

we define the map
0∇t(δ) : TtT → Hn−p+1,n−k+p−1(Xt)

∗,

given by

(0∇t(δ)(v))(ξ) :=

∫
δ

(∇t(v))(ξ).

The Zariski tangent space of the Hodge locus corresponding to δ is

TtV
p
δ = Ker 0∇t(δ).
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Proof Let U be a polydisc around t. Let ω1, ..., ωr ∈ Γ(U,Fp−1Hk/FpHk) and ωr+1, ..., ωs ∈
Γ(U,Hk/Fp−1Hk) such that ω1(u), ..., ωr(u) form a basis ofHp−1,k−p+1

dR (Xu) and ωr+1(u), ..., ωs(u)
form a basis of Hk

dR(Xu)/F
p−1Hk

dR(Xu), for every u ∈ U . Let λ ∈ Γ(U,Hk) such that λ(t) is
Poincaré dual to δ. Then

λ(t) =
s∑
i=1

fi(t)ωi(t),

for some fi ∈ Γ(U,OThol). Letting δu ∈ H2n−k(Xu,Z) be the Poincaré dual to λ(u) ∈
Hk(Xu,Z), and considering ηi ∈ Γ(U,H2n−k) such that ηi(u) is dual (respect to the wedge
product) to ωi(u) for every u ∈ U . We get

fi(u) =
s∑
j=1

fj

∫
Xu

ηi(u) ∧ ωj(u) =

∫
Xu

ηi(u) ∧ λ(u) =

∫
δu

ηi(u),

then

V p
δ =

({
u ∈ U :

∫
δu

η1(u) = · · · =
∫
δu

ηs(u) = 0

}
, t

)
.

As a consequence

TtV
p
δ = {v ∈ TtT : (df1)t(v) = · · · = (dfs)t(v) = 0} .

Note that

(dfi)t(v) =

∫
Xt

ηi(t) ∧

(
s∑
j=1

(dfj)t(v)ωj(t)

)

= −
∫
Xt

s∑
j=1

fj(t)ηi(t) ∧ (∇t(v))(ωj(t))

=

∫
Xt

s∑
j=1

fj(t)(∇t(v))(ηi(t)) ∧ ωj(t)

=

∫
Xt

(∇t(v))(ηi(t)) ∧ λ(t)

=

∫
δ

(∇t(v))(ηi(t)).

Where in the second equality we used that (∇t(v))λ(t) = 0, and in the third one we used
that (∇t(v))(α∧β) = (∇t(v))(α)∧β+α∧ (∇t(v))(β). Then (dfi)t = 0, for all i = r+1, ..., s,
since δpd ∈ F pHk

dR(Xt) and (∇t(v))(ηi(t)) ∈ F n−p+1H2n−k
dR (Xt). In consequence

TtV
p
δ =

{
v ∈ TtT :

∫
δ

(∇t(v))(η1(t)) = · · · =
∫
δ

(∇t(v))(ηr(t)) = 0

}
.

The result follows from the fact η1(t), ..., ηr(t) form a basis of Hn−p+1,n−k+p−1(Xt).
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Remark 3.4.3. Note that in the previous proof we showed that the structure of analytic
scheme of V p

δ is induced by the holomorphic functions fi ∈ Γ(U,OThol) given by

fi(u) =

∫
δu

ηi(u),

where η1, ..., ηs ∈ Fn−p+2H2n−k(U) form a basis at each fiber.

Definition 3.4.2. Let X be any smooth projective variety of dimension n. A cycle δ ∈
H2n−2k(X,Z) is called an integral Hodge cycle if

δpd ∈ H2k(X,Z) ∩ F kH2k
dR(X).

Since δpd is a real class (i.e. it is invariant under complex conjugation), this is equivalent to

δpd ∈ H2k(X,Z) ∩Hk,k(X).

A Hodge cycle is the analogous definition with Q instead of Z. We will usually work with
integral Hodge cycles, but we will reefer to both (integral and rational) as Hodge cycles,
leaving the prefix understood by the context. We denote the subgroup of Hodge cycles
as Hodge2n−2k(X,Z). We say δ ∈ Hodge2n−2k(X,Z) is a trivial Hodge cycle if δpd = 0 ∈
H2k

dR(X)prim.

Definition 3.4.3. Let X ⊆ Pn+1 be a smooth degree d hypersurface of even dimension
n. Considering X as a fiber of the universal family of smooth degree d hypersurfaces,

we define for every Hodge cycle δ ∈ Hodgen(X,Z) its associated Hodge locus to be V
n
2
δ .

This V
n
2
δ corresponds to the locus of hypersurfaces obtained by deformation of X where

the corresponding deformation of δ (obtained by monodromy or parallel transport) is still a
Hodge cycle.

Corollary 3.4.1. Let X → T be the universal family of smooth degree d hypersurfaces
of Pn+1. Suppose n is even and d ≥ 2 + 4

n
. For every t ∈ T and every non-trivial δ ∈

Hodgen(Xt,Z), the corresponding Hodge locus V
n
2
δ is properly contained in (T, t). In fact, the

Zariski tangent space TtV
n
2
δ is properly contained in TtT .

Proof Suppose TtV
n
2
δ = TtT . Then by Proposition 3.4.1 we have∫

δ

(∇t(v))(ξ) = 0, ∀ξ ∈ H
n
2

+1,n
2
−1(Xt).

By Proposition 3.3.1 we can identify the map

∇t : C[x0, ..., xn+1]d ×Rt
dn

2
−n−2 → Rt

d(n
2

+1)−n−2

with polynomial multiplication. Since dn
2
− n− 2 ≥ 0, the C-vector space generated by the

image of ∇t is all Rt
d(n

2
+1)−n−2, as a consequence∫

δ

ω = 0, ∀ω ∈ H
n
2
,n
2 (Xt)prim,
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i.e. δpd = 0 ∈ Hn
dR(Xt)prim, contradicting the choice of δ.

Remark 3.4.4. It follows from the previous corollary that the Hodge locus V
n
2
δ depends

only on the primitive part of

δpd ∈ Hn(Xt,Z) ∩H
n
2
,n
2 (Xt)prim.

In fact if θ = [Xt ∩ Pn
2

+1] ∈ Hn(Xt,Z), then

V
n
2
δ+cθ ∩ V

n
2
δ = V

n
2
δ ∩ V

n
2
θ = V

n
2
δ

for all c ∈ C and δ ∈ Hodgen(Xt,Z). In consequence

V
n
2
δ = V

n
2
δ+cθ ∀c ∈ C.

82



3.5 Variational Hodge conjecture

In this section we will recall some facts about the Hilbert scheme (for a reference see [Ser07]).
Using the Hilbert scheme we introduce variational Hodge conjecture (VHC) and a stronger
conjecture, which we call alternative Hodge conjecture (AHC).

Definition 3.5.1. Let N > 0 be a fixed natural number and P ∈ Q[t] the Hilbert polynomial
of a subscheme of PN . The Hilbert functor is

HilbP : Sch/C→ Sets,

given by

HilbP (S) := {π : X → S : π is projective, flat and ∀s ∈ S,Xs has Hilbert polynomial P}.

And to every morphism T → S and π : X → S ∈ HilbP (S) associates the pull-back
π′ : X ×S T → T ∈ HilbP (T ).

Theorem 3.5.1 (Grothendieck [Gro61]). The Hilbert functor HilbP is representable by a
projective C-scheme, called the Hilbert scheme and denoted HilbP .

Example 3.5.1. When we consider P the Hilbert polynomial of a degree d hypersurface of
Pn+1, HilbP = PN for N =

(
n+1+d

d

)
− 1. In other words, it is the parameter space of degree

d hypersurfaces of Pn+1.

At follows we introduce a subvariety of Hilbert scheme we are interested in.

Definition 3.5.2. Let

ΣP,d := {(Z,X) ∈ HilbP × T : Z ⊆ X},

be the relative Hilbert scheme of subvarieties with Hilbert polynomial P inside smooth degree
d hypersurfaces of Pn+1. Consider a multi-degree d = (d1, ..., dn

2
+1) and a polynomial P

corresponding to the Hilbert polynomial of a complete intersection of type (d1, ..., dn
2

+1)
inside Pn+1. We define

Σd := Σ′ ⊆ ΣP,d,

where Σ′ consists of pairs (Z,X), such that X = {F = 0}, Z = {f1 = · · · = fn
2

+1 = 0} and
there exist gi ∈ C[x0, ..., xn+1] for i = 1, ..., n

2
+ 1, such that

F = f1g1 + · · ·+ fn
2

+1gn
2

+1.

Proposition 3.5.1. In the context of the previous definition, let t ∈ T be the point corre-
sponding to X. Identifying TtT ' C[x0, ..., xn+1]d we have

〈f1, g1, ..., fn
2

+1, gn
2

+1〉d ⊆ Ttpr2(Σd).
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Proof Let S := C[x0, ..., xn+1]. Consider the map

Φ : Sd1 × · · · × Sdn
2 +1
× Sd−d1 × · · · × Sd−dn

2 +1
→ pr2(Σd),

taking (r1, ..., rn
2

+1, s1, ..., sn
2

+1) to {
∑n

2
+1

i=1 risi = 0} ⊆ Pn+1. It is clear that for p =
(f1, ..., fn

2
+1, g1, ..., gn

2
+1)

Φ′(p)(v1, ..., vn
2

+1, w1, ..., wn
2

+1) = f1v1 + · · ·+ fn
2

+1vn
2

+1 + g1w1 + · · ·+ gn
2

+1wn
2

+1,

where vi ∈ Sdi and wi ∈ Sd−di for i = 1, ..., n
2

+ 1.

Now we introduce variational Hodge conjecture using the Hilbert scheme. This conjecture
was proposed by Grothendieck as a weaker version of Hodge conjecture. Let us recall first
Hodge conjecture (and its integral version).

Conjecture 3.5.1 (Integral Hodge conjecture). Every Hodge cycle δ ∈ Hodge2k(X,Z) (recall
Definition 3.4.2) is an algebraic cycle, i.e. there exist subvarieties Zi ⊆ X of dimension k
and integers ni ∈ Z for i = 1, ..., k such that

δ =
k∑
i=1

ni[Zi].

Denoting H2k(X,Z)alg the group of algebraic cycles we can resume IHC by stating

Hodge2k(X,Z) = H2k(X,Z)alg,∀k = 0, ..., n.

Remark 3.5.1. Integral Hodge conjecture was originally asked by Hodge in [Hod41]. This
conjecture is known to be false. The first counterexamples were provided by Atiyah and
Hirzebruch in [AH62]. In that work, they suggest to modify the conjecture, stating the so
called Hodge conjecture.

Conjecture 3.5.2 (Hodge conjecture). For X a smooth projective variety of dimension n,

Rank Hodge2k(X,Z) = Rank H2k(X,Z)alg,∀k = 0, ..., n.

In other words,
Hodge2k(X,Q) = H2k(X,Q)alg,∀k = 0, ..., n.

Where we define rational Hodge and algebraic cycles in the same way we did for integral
cycles but now with rational coefficients. Another way to state Hodge conjecture is saying
for every Hodge cycle δ ∈ Hodge2k(X,Z) there exist a n ∈ Z>0 such that n · δ is an algebraic
cycle.
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Remark 3.5.2. It is clear that IHC implies HC. When X is a hypersurface, we know by
Lefschetz hyperplane section theorem, Poincaré duality and Picard-Lefschetz theory (see
[Mov17a] Chapters 5 and 6) that

Hm(X,Z) '


Zk if m = n,
Z if 0 ≤ m ≤ 2n is even and m 6= n,
0 otherwise.

This implies that for n odd, Hodge conjecture is true, while for n even to verify Hodge
conjecture reduces to check it for the middle cohomology group. On the other hand, even
when Hodge conjecture holds, IHC is non-trivial, in fact Kollár (in [Kol92]) has shown IHC
fails for very general degree 48 hypersurfaces of P4 (see [Tot13]).

Definition 3.5.3. Let T be the parameter space of smooth degree d hypersurfaces of Pn+1

for n even. The (global) Hodge locus of degree d hypersurfaces of Pn+1 is

Hodd := {t ∈ T : Xt has non-trivial Hodge cycles}.

Recall that δ ∈ Hodge2n−2k(Xt,Z) is trivial if δpd = 0 ∈ H2k
dR(Xt)prim. In particular, every

non-trivial Hodge cycle of Xt belongs to Hodgen(Xt,Z).

Remark 3.5.3. Recall that in section 3.4, we associated a (local) Hodge locus V
n
2
δ to every

non-trivial Hodge cycle δ ∈ Hodgen(Xt,Z)prim at t ∈ T . We can see the global Hodge locus
Hodd as a union of these local analytic spaces. In consequence, we have an induced analytic
structure on Hodd. Furthermore, it follows from Corollary 3.4.1 that (Hodd, t) is a countable
union of properly contained analytic subvarieties of (T, t). In particular, a generic smooth
degree d hypersurface of Pn+1 of even dimension n, only has trivial Hodge cycles (then it
satisfies Hodge conjecture). If we assume Hodge conjecture, it can be proved that Hodd is
in fact an algebraic subvariety of T . A deep theorem due to Cattani, Deligne and Kaplan
proves that Hodd is an algebraic subvariety of T without assuming Hodge conjecture. This
is one of the strongest evidences supporting this conjecture.

Remark 3.5.4. For n = 2 integral Hodge conjecture holds (by Lefschetz (1,1) theorem, see
[GH94]), and we have the equality between the Noether-Lefschetz locus

NLd := {S ⊆ P3 : S is a smooth degree d surface with Picard number bigger than 1},

and the Hodge locus. Thus, the local Hodge locus V 1
δ describe the local (analytic) branches

of Noether-Lefschetz locus and can be used to study it (this approach has been exploited by
Green [Gre89], Ciliberto-Harris-Miranda [CHM88], Voisin [Voi89], [Voi90], among others).

Remark 3.5.5. Recalling from section 3.1, Hn is the sheaf of holomorphic sections of the
vector bundle

Hn
dR(X/T ) =

⊔
i∈T

Hn
dR(Xt)→ T.
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Recall from section 3.5, for every P ∈ Q[x] the relative Hilbert scheme is

ΣP,d := {(Z,X) ∈ HilbP × T : Z ⊆ X},

and we have a natural map
ϕP : ΣP,d → Hn

dR(X/T ),

sending each (Z,Xt) to ([Z]pd, t). To know whether this map is surjective or not is an
interesting problem in the spirit of Hodge conjecture. This is the essence of variational
Hodge conjecture, which we state at follows.

Conjecture 3.5.3 (Variational Hodge conjecture). For every polynomial P ∈ Q[x] consider
the natural map

ϕP : ΣP,d → Hn
dR(X/T ).

For any t ∈ Hodd and δ ∈ Hn(Xt,Z)alg, let λ be the induced section of Hn
dR(X/T ) given by δ

(here we mean that λ(t) is Poincaré dual to δ, and furthermore it extends to a neighbourhood
of t ∈ T by monodromy, see Remark 3.4.2). Then

Graph λ|
V
n
2
δ

⊆ 〈{ϕP (ΣP,d)}P∈Q[x]〉. (3.3)

Where the right hand side expression corresponds to the C-vector space generated by the
germs of sections of Hn

dR(X/T ) coming from ΣP,d at t ∈ T . In other words, (3.3) means that
the deformation of every algebraic cycle as a Hodge cycle is still an algebraic cycle.

We will prove the following conjecture, that is stronger than variational Hodge conjecture.

Conjecture 3.5.4 (Alternative Hodge conjecture). For any t ∈ Hodd and δ ∈ Hn(Xt,Z)alg,
let λ be the induced section of Hn

dR(X/T ) given by δ. Then there exist P ∈ Q[x] and a
subvariety Σ ⊆ ΣP,d such that

Graph λ|
V
n
2
δ

= ϕP (Σ).

In other words, for every algebraic cycle, its deformation as a Hodge cycle corresponds to an
algebraic deformation of the cycle in a flat family.

Remark 3.5.6. Each one AHC or HC implies VHC. Furthermore, AHC is equivalent to
determine the local branches of the global Hodge locus. In particular, for n = 2 the global
Hodge locus corresponds to the Noether-Lefschetz locus, where VHC is known to hold (by
Lefschetz (1, 1) theorem), but AHC is a highly non-trivial conjecture.
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3.6 Using periods to prove variational Hodge conjec-

ture

In this final section we show how to prove alternative Hodge conjecture (AHC) by computer
assistance. The main ingredients are the periods of algebraic cycles computed in Chapter 2.

Definition 3.6.1. Let X = {F = 0} ⊆ Pn+1 be a smooth degree d hypersurface of even
dimension n. For every Hodge cycle δ ∈ Hodgen(X,Z), we define its period matrix

P (δ) :=

[∫
δ

res

(
PiQjΩ

F
n
2

+1

)]
i∈I,j∈J

.

Where {Pi}i∈I form a basis of RF
d and {Qj}j∈J form a basis of RF

dn
2
−n−2. Recall that RF :=

C[x0, ..., xn+1]/JF is the Jacobian ring, and JF := 〈F0, ..., Fn+1〉 is the Jacobian ideal of F .

Proposition 3.6.1. Let X → T be the family of smooth degree d hypersurfaces of Pn+1, n
an even number and (n, d) 6= (2, 4). For every t ∈ T and every Hodge cycle δ ∈ Hn(Xt,Z)

Codim TtTTtV
n
2
δ = Rank P (δ).

Proof By Proposition 3.4.1

Codim TtTTtV
n
2
δ = Rank 0∇t(δ).

By Remark 3.3.1 we can factor this map by Kodaira-Spencer’s map

0∇t(δ) =0 ∇t(δ) ◦ ρt.

Since Kodaira-Spencer’s map is surjective for (n, d) 6= (2, 4), then

Codim TtTTtV
n
2
δ = Rank 0∇t(δ).

Finally, we use Proposition 3.3.1 to represent 0∇t(δ) by a matrix, and we notice this matrix
is the period matrix P (δ) up to a constant non-zero factor.

Definition 3.6.2. Let a = (a1, ..., a2s) ∈ N2s, we define the number

Ca :=

(
n+ 1 + d

n+ 1

)
−

2s∑
k=1

(−1)k−1
∑

ai1+...+aik≤d

(
n+ 1 + d− ai1 − ...− aik

n+ 1

)
.

Proposition 3.6.2. Let T be the parameter space of smooth degree d hypersurfaces of Pn+1.
Consider t ∈ T a point corresponding to a hypersurface X = {F = 0}, such that

F = f1g1 + · · ·+ fn
2

+1gn
2

+1,
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for fi ∈ C[x0, ..., xn+1]di and gi ∈ C[x0, ..., xn+1]d−di. If we let Z := {f1 = · · · = fn
2

+1 = 0},
d = (d1, ..., dn

2
+1) and δ := [Z] ∈ Hn(X,Z), then

V
n
2
δ = pr2(Σd),

if
Rank P (δ) = Cd.

In that case, AHC holds for δ, and furthermore V
n
2
δ is smooth and reduced.

Proof We know by Proposition 3.5.1 that

〈f1, g1, ..., fn
2

+1, gn
2

+1〉d ⊆ Ttpr2(Σd) ⊆ TtV
n
2
δ . (3.4)

Suppose first that t ∈ pr2(Σd) is general, so it is smooth and the ideal 〈f1, g1, ..., fn
2

+1, gn
2

+1〉
is generated by a regular sequence. Then, we can use its Koszul complex to determine a free
resolution of it (see [Eis95] Chapter 17). Using this resolution we conclude that

CodimC[x0,...,xn+1]d〈f1, g1, ..., fn
2

+1, gn
2

+1〉d = Cd ≥ Codim T pr2(Σd).

Now, for any t ∈ pr2(Σd) (not necessarily smooth), if

Rank P (δ) = Cd,

the equality in (3.4) follows by Proposition 3.6.1, and furthermore

dim pr2(Σd) = dim Ttpr2(Σd) = dim V
n
2
δ = dim TtV

n
2
δ .

Theorem 3.6.1. For d ≥ 2 + 4
n

, δ ∈ Hn(X,Z) as in Proposition 3.6.2 and t = 0 ∈ T the
Fermat variety, AHC holds for

1. d1 = d2 = · · · = dn
2

+1 = 1.

2. n = 2, 4 ≤ d ≤ 15, or n = 4, 3 ≤ d ≤ 6, or n = 6, 3 ≤ d ≤ 4.

Proof The proof of 2. is by computer assistance, verifying in each case that Rank P (δ) = Cd.
In order to prove 1. consider

fi = x2i−2 − ζ2dx2i−1.

Define

IN :=
{

(i0, i1, . . . , in+1) ∈ Zn+2 | 0 ≤ ie ≤ d− 2, i0 + i1 + · · ·+ in+1 = N
}
,

and
L := {i ∈ I(n

2
+1)d−n−2|i2l−2 + i2l−1 = d− 2,∀l = 1, ...,

n

2
+ 1}.
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By Theorem 2.4.1, the period matrix is

P (δ) = c · [pi+j],

for

pi =

{
ζ i0+i2+···+in

2d if i ∈ L,
0 otherwise,

and c ∈ C× a non-zero constant. Let

A := {i ∈ In
2
d−n−2|i0 = i2 = · · · = in = 0},

B := {j ∈ Id|j0 = j2 = · · · = jn = 0}.

Consider the map φ : B → A given by φ(j)2l−2 = 0, φ(j)2l−1 = d−2−j2l−1, for l = 1, ..., n
2
+1.

It is easy to see that φ is a bijection, thus

#A = #B =

(
n
2

+ d

d

)
− (

n

2
+ 1)2 = C(1,...,1).

We affirm that the rows pi+•, i ∈ A form a base for the image of [pi+j]. Indeed, since for
(i, j) ∈ A×B

pi+j =

{
1 if i = φ(j),
0 otherwise,

it follows that these rows are linearly independent. In order to see that they generate the
image, it is enough to show they generate all the rows. Let i ∈ In

2
d−n−2. If i2l−2 +i2l−1 > d−2

for some l ∈ {1, ..., n
2

+ 1}, then pi+• = 0. If not, then ∃!j ∈ B : i+ j ∈ L, in fact j2l−2 = 0,
j2l−1 = d− 2− i2l−2 − i2l−1, for l = 1, ..., n

2
+ 1. We claim that

pi+• = ζ i0+i2+···+in
2d · pφ(j)+• .

In fact, if h ∈ Id is such that pφ(j)+h = 0, then φ(j) + h /∈ L, so

∃l ∈ {1, ..., n
2

+ 1} : φ(j)2l−2 + φ(j)2l−1 + h2l−2 + h2l−1 > d− 2.

Since
φ(j)2l−2 + φ(j)2l−1 = i2l−2 + i2l−1, (3.5)

it follows that pi+h = 0. On the other hand, if h ∈ Id is such that φ(j) + h ∈ L, then by
(3.5) i+ h ∈ L and

pi+h = ζ
(i0+h0)+···+(in+hn)
2d = ζ i0+···+in

2d · ζh0+···+hn
2d = ζ i0+···+in

2d · pφ(j)+h .
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Remark 3.6.1. The first part of Theorem 3.6.1 says that V
n
2

[P
n
2 ]

is a local component of the

Hodge locus, smooth and reduced at 0 ∈ T the Fermat variety. Furthermore, we know its
codimension in T is

Codim TV
n
2

[P
n
2 ]

=

(
n
2

+ d

d

)
− (

n

2
+ 1)2.

It was showed by Movasati in [Mov17c] this is a lower bound for all components of the Hodge
locus passing through Fermat variety. Thus, this bound is sharp. Furthermore, it can be
shown this is the unique component of minimal codimension passing trough Fermat (this will
be proved in an article under preparation). In the case n = 2, the problem of characterizing
the special components of the Noether-Lefschetz locus is a classical one, partially solved
by Voisin in small degrees [Voi89], [Voi90]. The smallest codimension components of the
Noether-Lefschetz locus were characterized by Green [Gre89] and independently by Voisin
[Voi89]. In higher dimension, to determine the sharp lower bound is still open, not to mention
the characterization of the smallest codimension components.

Remark 3.6.2. Theorem 3.6.1 holds for every (n, d) such that d ≥ 2+ 4
n
, and every t ∈ T as

in Proposition 3.6.2 (not just the Fermat variety). This fact was proved by Dan in [Dan14]
for deg(Z) < d. Another proof of this fact (without restrictions on the degree) was provided
by Movasati in [Mov17b] Chapter 7.

We close this section with another proof of AHC for sums of linear cycles inside Fermat
variety.

Theorem 3.6.2 ([MV17]). Let T be the parameter space of smooth degree d hypersurfaces
of Pn+1. Let 0 ∈ T be the point representing the Fermat variety X0. If Pn

2 and P̌n
2 are two

linear subspaces inside X0, such that Pn
2 ∩ P̌n

2 = Pm, then letting δ := [Pn
2 ] + [P̌n

2 ]

V
n
2
δ = V

n
2

[P
n
2 ]
∩ V

n
2

[P̌
n
2 ]
,

for all triples (n, d,m) in the following list:

(2, d,−1), 5 ≤ d ≤ 14,

(4, 4,−1), (4, 5,−1), (4, 6,−1), (4, 5, 0), (4, 6, 0),

(6, 3,−1), (6, 4,−1), (6, 4, 0),

(8, 3,−1), (8, 3, 0),

(10, 3,−1), (10, 3, 0), (10, 3, 1),

where P−1 means the empty set. In particular, alternative Hodge conjecture holds for δ in
these cases.

Proof It is enough to show that

dim T0V
n
2
δ = dim V

n
2

[P
n
2 ]
∩ V

n
2

[P̌
n
2 ]
.
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In order to compute the dimension of V
n
2

[P
n
2 ]
∩ V

n
2

[P̌
n
2 ]

, we notice that it is the germ of variety

of the following set

S := {t ∈ T : Xt contains two linear cycles P
n
2 , P̌

n
2 such that P

n
2 ∩ P̌

n
2 = Pm}.

And so, it is enough to compute the dimension of S. Let G be the Grassmannian of two
codimension n

2
+ 1 linear subvarieties Pn

2 and P̌n
2 inside Pn+1 such that they intersect in a m

dimensional linear subvariety Pm = Pn
2 ∩ P̌n

2 . Consider the incidence variety

S ′ := {(t, (P
n
2 , P̌

n
2 )) ∈ T ×G : P

n
2 ∪ P̌

n
2 ⊆ Xt}.

Since, for every t ∈ T , pr−1
1 (t) ∩ S ′ is a finite set, dim S ′ = dim S. In order to compute the

dimension of S ′, we fix a point (Pn
2 , P̌n

2 ) ∈ G and compute the dimension of its fiber under
pr2. By a linear change of coordinates we notice all the fibers have the same dimension, thus
we may assume that

P
n
2 : x0 = · · · = xn

2
= 0,

P̌
n
2 : x0 = · · · = xm = xn

2
+m+2 = · · · = xn+1 = 0.

Every F ∈ C[x0, ..., xn+1]d, such that both linear cycles are inside {F = 0} can be written as

F =
m∑
j=0

xjfj +

n
2
−m∑
k=1

xm+k

n
2
−m∑
l=1

xn
2

+m+1+lgk,l

 ,

with fj not depending on x0, ..., xj−1, and gk,l not depending on the variables x0, ..., xm+k−1

nor on xn
2

+m+2, ..., xn
2

+m+l. Thus, the fiber of S ′ with respect to pr2 has dimension

m∑
j=0

(
n+ 1− j + d− 1

d− 1

)
+

n
2
−m∑

k,l=1

(
n+ 2−m− k − l + d− 2

d− 2

)
=

(
n+ 1 + d

d

)
+

(
m+ d

d

)
−2

(
n
2

+ d

d

)
.

Since the dimension of G is (m + 1)(n −m + 1) + (n + 2)(n
2
−m) = 2(n

2
+ 1)2 − (m + 1)2,

we conclude that

CodimV
n
2

[P
n
2 ]
∩ V

n
2

[P̌
n
2 ]

= Codim S = 2

(
n
2

+ d

d

)
− 2(

n

2
+ 1)2 −

(
m+ d

d

)
+ (m+ 1)2

= 2C
1
n
2 +1,(d−1)

n
2 +1 − C1n+1−m,(d−1)m+1 . (3.6)

Note that we are denoting C1a,(d−1)b meaning that it is Ce for e = (1, ..., 1, d − 1, ..., d − 1)
where the first a entries are equal to 1, and the last b entries are equal to d− 1.

In order to compute the codimension of T0V
n
2
δ , we compute the period matrix P (δ) using

the period formula given by Corollary 2.4.1, and then we apply Corollary 3.6.1. We compute
the rank of the period matrix P (δ) with computer assistance, and we verify in each case that
it is equal to (3.6).

Remark 3.6.3. Theorem 3.6.2 holds for a general t ∈ T such that Xt contains two n
2
-

dimensional linear subvarieties intersecting each other in a m-dimensional linear space, for
(n, d,m) such that m < n

2
− d

d−2
, see [VL18] Theorem 2 and Remark 3.
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Chapter 4

Appendix

4.1 Hypercohomology

In this appendix we recall (without proofs) the basic properties of hypercohomology we use
along the text. Our main reference is [Mov17b] Chapter 3.

Definition 4.1.1. Let X be a topological space, U be an open covering of X, and (S •, d)
be a complex of sheaves over X. Consider the Čech cochains groups

S i
j := Cj(U ,S i).

Let
L k :=

⊕
i+j=k

S i
j ,

and define Dk : L k → L k+1 as Dk|S i
j

:= d + (−1)iδ. These maps determine a complex of

abelian groups (L •, D). We define the hypercohomology of the complex (S •, d) relative to
the covering U as

Hk(U ,S •) := Hk(L •, D).

In particular each element ω ∈ Hk(U ,S •) is represented by a sum

ω = ω0 + ω1 + · · ·+ ωk,

where each ωi ∈ Cj(U ,S i), δω0 = 0, dωi = (−1)iδωi+1 for i = 0, ..., k − 1, and dωk = 0.
The hypercohomology of the complex (S •, d) is

Hk(X,S •) := lim
U

Hk(U ,S •),

where the direct limit is taken over the set of coverings directed by the refinement relation.

Definition 4.1.2. Let X be a topological space, and S a sheaf over X. We say S is acyclic
if

Hq(X,S ) = 0, ∀q > 0.
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Proposition 4.1.1. Let X be a topological space, U be an open covering of X, and (S •, d)
be a complex of sheaves over X. If U is a locally finite cover, that is acyclic with respect to
every S i, i.e.

Hq(Ui1 ∩ · · · ∩ Uir ,S i) = 0,

for all q, r > 0 and i ≥ 0. Then

Hk(X,S •) ' Hk(U ,S •).

Proposition 4.1.2. When every S i is acyclic, we have

Hk(X,S •) ' Hk(Γ(S •), d).

Proposition 4.1.3. Let X be a topological space, S a sheaf of abelian groups over X. If

0→ S → S0
d0−→ S1

d1−→ · · · ,

is an exact sequence of sheaves (in other words (S•, d) : 0→ S0
d0−→ S1

f1−→ · · · is a resolution
of S ), then

Hk(X,S ) ' Hk(X,S•).

Corollary 4.1.1. Let X be a topological space, S a sheaf of abelian groups over X. If

(S•, d) : 0→ S0
d0−→ S1

f1−→ · · · is an acyclic resolution of S , then

Hk(X,S ) ' Hk(Γ(S•), d).

Definition 4.1.3. A morphism between complexes of sheaves over X

Φ : (S •, d)→ (G •, d)

is called a quasi-isomorphism, if it induces isomorphisms between each cohomology sheaf.
In other words, the morphism of sheaves

Hk(Φ) : Hk(S •, d)→ Hk(G •, d)

are isomorphisms for all k ≥ 0. Notice Hk(S •, d) = Ker dk/Im dk−1 is a sheaf.

Proposition 4.1.4. Whenever Φ : (S •, d)→ (G •, d) is a quasi-isomorphism

Hk(X,S •) ' Hk(X,G •),

for every k ≥ 0.
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Verlag, Berlin, 1970. Lecture Notes in Mathematics, Vol. 163.
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[Ser18] E. C. Sertöz. Computing Periods of Hypersurfaces. ArXiv e-prints, March 2018.

[Tot13] Burt Totaro. On the integral Hodge and Tate conjectures over a number field.
Forum Math. Sigma, 1:e4, 13, 2013.

[VL18] Roberto Villaflor Loyola. Periods of complete intersection algebraic cycles. ArXiv
e-prints, December 2018.

[Voi89] Claire Voisin. Composantes de petite codimension du lieu de Noether-Lefschetz.
Comment. Math. Helv., 64(4):515–526, 1989.

[Voi90] Claire Voisin. Sur le lieu de Noether-Lefschetz en degrés 6 et 7. Compositio
Math., 75(1):47–68, 1990.

96

http://w3.impa.br/~hossein/myarticles/hodgetheory.pdf 
http://w3.impa.br/~hossein/myarticles/hodgetheoryII.pdf 
http://w3.impa.br/~hossein/myarticles/hodgetheoryII.pdf 


[Voi02] Claire Voisin. Hodge theory and complex algebraic geometry. I, volume 76 of
Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cam-
bridge, 2002. Translated from the French original by Leila Schneps.

[Voi03] Claire Voisin. Hodge theory and complex algebraic geometry. II, volume 77 of
Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cam-
bridge, 2003. Translated from the French by Leila Schneps.

97


	Cohomology of Hypersurfaces
	Algebraic differential forms
	Algebraic de Rham cohomology
	Logarithmic differential forms
	Hodge filtration for affine varieties
	Cohomology of hypersurfaces
	Computing the residue map

	Periods of Algebraic Cycles
	Standard top form in ¶N
	Pull-back in algebraic de Rham cohomology
	Periods of top forms
	Periods of linear cycles inside Fermat varieties
	Coboundary map
	Periods of complete intersection algebraic cycles

	Variational Hodge Conjecture
	De Rham cohomology sheaf associated to a family
	Gauss-Manin connection
	Infinitesimal variations of Hodge structures
	Hodge locus
	Variational Hodge conjecture
	Using periods to prove variational Hodge conjecture

	Appendix
	Hypercohomology


