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We consider the moduli space of abelian varieties with two marked points and a frame of the relative de Rham cohomolgy
with boundary at these points compatible with its mixed Hodge structure. Such a moduli space gives a natural
algebro-geometric framework for higher genus quasi Jacobi forms of index zero and their differential equations which are
given as vector fields. In the case of elliptic curves we compute explicitly the Gauss-Manin connection and such vector
fields.

1 Introduction
The literature on modular forms is a vast one, and has played a central role in number theory since its origins
in the first half of the 19th century [12]. The greatest achievement of the theory of modular forms has been
the arithmetic modularity theorem [31, 2] and the celebrated proof of Fermat’s last theorem as a consequence
of it [32]. For an account of this part of the theory of modular forms, we refer the reader to the book [6]. In
the modern formulation of the theory, one of the first steps is to interpret modular and automorphic forms
as sections of line bundles over the so called modular curves, which are completions of quotients of the upper
half plane h by the action of a congruence subgroup Γ < SL2(Z). If one intends to generalize the classical
theory of modular forms, it is natural to look for higher dimensional analogues of modular curves, these
are the so called Shimura varieties. Roughly speaking, one of the big achievements of Hodge theory is to
associate to every moduli space of algebraic varieties of a given type, a natural analytic variety Γ\D given
as the quotient of a homogeneous space D, the so called Griffiths period domain, by the action of a discrete
group Γ. This variety corresponds to a Shimura variety when D is a Hermitian symmetric domain. This is
the case only for few examples, for instance when the Hodge structure of the underlying algebraic varieties
is of weight 1 (curves and abelian varieties) or of weight 2 with h2,0 = 1 (K3 surfaces, and other varieties
with Hodge structure of level two like cubic fourfolds). In this classical setting, the theory of modular forms
has found a fertile ground for generalizations, gaining a geometric framework for the theory of Siegel and
Hilbert modular forms, and many types of automorphic forms on Hermitian symmetric domains. One of
the reasons why this was possible, is due to the development of good compactifications of such spaces by
Satake-Baily-Borel and the subsequent toroidal compactifications by Mumford. For a survey on these topics
and some applications of the interplay between automorphic forms and moduli problems see [14]. For an
introduction to the theory of Siegel and Hilbert modular forms and some of their applications to number
theory see [4]. Recently, promising improvements has been obtained in the development of compactifications
of the Griffiths period domain for non Hermitian symmetric cases, with applications to moduli problems.
For a survey on these we refer to [11]. Nevertheless, applications to the theory of modular and automorphic
forms still seem to be far reaching for the non Hermitian symmetric case.

The theory of modular forms can take another interesting direction if one looks for the differential
equations which are satisfied by modular forms. This leads naturally to the concept of quasi modular forms.
If one wants to develop a geometric framework for quasi modular forms and their differential equations,
one realizes that the approach using Griffiths period domain is not the suitable one (even for the classical
Hermitian symmetric domains). One of the main goals of the project Gauss-Manin connection in disguise is
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to give an algebro-geometric framework for differential equations of quasi modular and automorphic forms,
suitable for generalizations. The project started in [18], where the second author developed the geometric
framework for quasi modular forms for SL2(Z) and their differential equations, the so called Ramanujan
equations. The main novelty in that work, was the introduction of a generalized period domain, having the
classical Griffiths period domain as a quotient by the actions of an algebraic group. Since then, the project
has been developed in many articles, providing the framework for several generalizations of modular forms
and their differential equations. In [19, 9] were studied the quasi modular functions attached to moduli of
abelian varieties, corresponding to Siegel and Hilbert quasi modular forms. One of the main achievements of
the project Gauss-Manin connection in disguise is that it has been suitable to study moduli of Calabi-Yau
varieties with Hodge structures of higher weights, where the period domain is not Hermitian symmetric. In
[20] the program is applied to the family of mirror quintic threefolds, obtaining a modular interpretation of
the so called Yukawa coupling introduced by the physicists [5] in the context of mirror symmetry. Later it
was applied to the full family of Calabi-Yau threefolds [1] resulting into a geometrization of topological string
partition functions. Several other families of Calabi-Yau varieties have been studied providing new interesting
functions with modular properties (see for instance [17] for generalized Yukawa couplings attached to the
Dwork family). In particular, the book [21] contains the summary and the latest status of the project. This
book was written in the most general framework of Hodge structures, and it is quite natural to rewrite it via
the theory for mixed Hodge structures. In this paper we push forward the first step in this direction.

Our aim is to develop the geometrization of another classical generalization of quasi modular forms, the
so called quasi Jacobi forms of index zero. Jacobi forms can be thought as a cross between modular forms
and elliptic functions. In fact, a Jacobi form of weight k and index m is a two complex variables function
φ : H1 ×C → C satisfying some functional equations relative to the discrete group SL2(Z)⋉Z2 and some
Fourier expansion conditions (see Subsection 9.1 for the index zero case). They were studied systematically
first by Eichler and Zagier in [7]. Their corresponding Hecke theory was developed, and their relations with
other types of modular forms, such as Siegel modular forms, were investigated from an analytic viewpoint.
Higher dimensional analogues of Jacobi forms appeared in several works [30, 10, 33, 24], but the first attempt
to build the general theory in the spirit of [7] was done by Ziegler [35]. On the other hand Kramer [13] provided
the first geometrization of higher level Jacobi forms as sections of a subsheaf of a line bundle over an elliptic
modular surface XΓ associated to Γ < SL2(Z)⋉Z2 in the sense of [29]. As in the case of quasi modular
forms, quasi Jacobi forms form an algebra closed under derivations containing the algebra of Jacobi forms.
Recently, Libgober [15] was able to use the algebra of quasi Jacobi forms to study the elliptic genus of complex
manifolds. This was done in analogy of the relation between quasi modular forms and the Witten genus,
as pointed out by Zagier [34]. Besides the above, another source where quasi Jacobi forms have gained an
increasing interest is a paper series by Oberdieck and Pixton [26, 27], where they have found new connections
between quasi Jacobi forms and Gromov-Witten invariants.

As mentioned before, in order to construct our geometrization of quasi Jacobi forms of index zero, we
adapt the Gauss-Manin connection in disguise program to the framework of mixed Hodge theory. We start
from the moduli space T of abelian varieties X with two marked points Y = {O,P} and a frame of the relative
de Rham cohomology H1

dR(X,Y ) compatible with the mixed Hodge structure and the constant polarization
(see Definition 5.1). Our first result is the following:

Theorem 1.1. The moduli space T is a quasi-projective variety over Q. In the case of elliptic curves, T is
the affine variety

T = Spec C[a, b, c, t1, t2,
1

∆
]

where ∆ = 27t23 − t32 and t3 = 4a3 − t2a− b2. Moreover, T admits the universal family given by

X = {y2 = 4x3 − t2x− t3} , Y = {O,P} , O = (0 : 1 : 0), P = (a : b : 1),

and the frame of differential forms

α0 := d
(x− a

x

)
, α1 :=

dx

y
, α2 :=

(
c− b

2a

)
d
(x− a

x

)
+ t1

dx

y
+

xdx

y
− d

( y

2x

)
.

The algebra of regular functions in T are interpreted as quasi Jacobi forms of index zero. The differential
equations of such quasi Jacobi forms are realized as vector fields (which we call modular vector fields) in
T which in turn can be computed from the Gauss-Manin connection of the family of abelian varieties over
T. In terms of foliations, what one looks for are vector fields such that there exists some leaf parametrized
by the generators of the algebra of quasi Jacobi forms of index zero. We proceed the other way around, by
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starting from a transcendental map t : D → T defined Hodge theoretically (see (38) in Subsection 9.1) from
the classical Griffiths period domain D to T, and then we look for vector fields having the image of t as a
leaf. In our case, D is naturally identified with an open set of Hg ×Cg (see (35) in Subsection 8.2), and the
modular vector fields on T are the algebraic incarnation of the derivations/vector fields ∂

∂τij
, 1 ≤ i ≤ j ≤ g

and ∂
∂zk

, 1 ≤ k ≤ g in (τ, z) ∈ Hg ×Cg.

Theorem 1.2. There are unique vector fields vij , 1 ≤ i ≤ j ≤ g and vk, 1 ≤ k ≤ g defined over Q in the moduli
space T such that

Avij = Cij (1)
and

Avk = Ck, (2)
where Avij (resp. Avk) is the Gauss-Manin connection matrix composed with the vector field vij (resp. vk)
and Cij (resp. Ck) is the constant matrix defined in Section 8.4. Moreover, the Lie bracket of two such vector
fields is zero.

In spite that the image of the map t is transcendental, the modular vector fields turn out being algebraic
over T. In the case of elliptic curves, using the explicit description of T given in Theorem 1.1, we compute
explicitly the two modular vector fields Rz and Rτ in terms of the parameters of T. Moreover we show that:

Theorem 1.3. There are unique global vector fields Rτ and Rz on T such that

∇Rτ

α0

α1

α2

 =

0 0 0
0 0 −1
0 0 0

α0

α1

α2

 (3)

and

∇Rz

α0

α1

α2

 =

 0 0 0
−1 0 0
0 0 0

α0

α1

α2

 , (4)

where ∇ is the Gauss-Manin connection of T and αi is given in Theorem 1.1, see also Subsection 5.2. More
precisely, we let t3 = 4a3 − t2a− b2 and then

Rτ = (−2a2 + 2at1 + bc+
t2
3
)
∂

∂a
+ (6a2c− ct2

2
− 3ab+ 3bt1)

∂

∂b

+ (ac+ ct1 −
b

2
)
∂

∂c
+ (t21 −

t2
12

)
∂

∂t1
+ (4t1t2 − 6t3)

∂

∂t2

(5)

Rz = b
∂

∂a
+ (6a2 − t2

2
)
∂

∂b
+ (a+ t1)

∂

∂c
. (6)

The translation into holomorphic context of Jacobi forms is done through the t map (38) defined in
Subsection 9.1. In this way the coordinate functions a, b, c, t1, t2 are transformed up to constants into Jacobi
forms ℘(τ, z), ℘

′
(τ, z), J1(τ, z), E2(τ), E4(τ) respectively. More precisely we prove the following:

Theorem 1.4. The pullback of a, b, c, t1, t2, t3 under the map t in (38) are

(2πi)℘(τ, z) , (2πi)
3
2℘

′
(τ, z) , −(2πi)

1
2 J1(τ, z),

−2πi

12
E2(τ) , 12

(
2πi

12

)2

E4(τ) , −8

(
2πi

12

)3

E6(τ),

respectively.

The vector fields Rτ and Rz as differential equations between these Jacobi forms correspond to those
already computed in [26, Lemma 48].

Since we want to emphasize on the algebraicity of the modular vector fields, we devote the first part
of the article to the purely algebraic results and constructions. Only the last two sections are devoted to
the transcendental constructions and their relation with the algebraic ones. Keeping this in mind the text is
organized as follows. In Section 2 we recall the algebraic definition of the relative de Rham cohomology of a
pair. Section 3 is devoted to the computation of the cup product in relative de Rham cohomology. In Section
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4 we describe the polarized mixed Hodge structure of the relative de Rham cohomology of an abelian variety
relative to two points. Using this description we give the precise definition of the moduli space T in Section
5, and we prove Theorem 1.1. In this section we also describe a natural action of an algebraic group G on
T. This action will be key to define the t map, and to describe the modular functional equations satisfied by
the solutions of the modular vector fields after lifting them via t. Section 6 is devoted to the computation of
the Gauss-Manin connection on the relative de Rham cohomology bundle of the universal family of T. Using
the Gauss-Manin connection computations, we prove Theorem 1.3 in Section 7. In Section 8 we shift to the
transcendental objects. In order to define later the map t in terms of the Hodge theoretic information of T, we
start by defining the generalized period domain Π in our context. As for the classical Griffiths period domain,
it comes with a natural action of a discrete group ΓZ. Moreover, the algebraic group G described in Section 5
also acts on Π, in such a way that Π/G corresponds to the classical Griffiths period domain D. We introduce
the period map P : T → U = ΓZ\Π and show it is a biholomorphism (see Proposition 8.1). We define also the
τ -map as a section of the quotient map Π → D (see Subsection 8.4). Using all these constructions we justify
our choices of the constant matrices Cij and Ck of Theorem 1.2, and complete its proof. Finally in Section 9
we define the map t as the composition of the τ -map and the inverse of the period map. Using it we translate
the differential equations given by the modular vector fields Rτ and Rz into the classical differential equations
of quasi Jacobi forms of index zero, thus completing the proof of Theorem 1.4. Throughout the text k is a
field of characteristic 0. In some case we will consider it as a subfield of the field of complex numbers C.

2 Relative de Rham cohomology
For the sake of completeness, in this section we recall the algebraic definition of the relative de Rham
cohomology in terms of hypercohomology. In the case of elliptic curves with two marked points we give an
alternative description in terms of global meromorphic forms without residues. In that case we also provide
a explicit basis for both descriptions. The hypercohomology description will be useful when we compute the
cup product in the next section. The meromorphic description will be used later for the computation of the
Gauss-Manin connection (see Section 6).

2.1 The definition
Definition 2.1. Let X be a smooth variety over k and Y be a smooth subvariety of X. We consider the
complex (Ω•

X/k, d) (resp. (Ω•
Y/k, d)) of regular differential forms on X (resp. Y ). The (algebraic) relative de

Rham cohomology of (X,Y ) is defined to be the hypercohomology of the following complex

Hm
dR((X,Y )/k) := Hm(Ω•

(X,Y )/k, d),

where
Ωm

(X,Y )/k := Ωm
X/k ⊕ Ωm−1

Y/k

and
d : Ωm

(X,Y )/k → Ωm+1
(X,Y )/k , (ω, α) → (dω, ω|Y − dα).

The C∞ relative de Rham cohomology of a pair of manifolds can be defined similarly, see [3, page 78].
In fact, given two manifolds X∞, Y ∞ together with a continuous map between manifolds f : Y ∞ → X∞, one
can define the complex

Ω•(f) := Ω•(X∞)⊕ Ω•−1(Y ∞),

where Ω• is the complex of C∞ differential forms, with differential

d(ω, α)=(dω, f
∗ω − dα).

The relative de Rham cohomology for (X∞, Y ∞, f : Y ∞ → X∞) is defined to be the cohomology of Ω•(f):

Hm
dR(X

∞, Y ∞) := Hm(Ω•(f), d).

In particular, if f is an immersion i of a submanifold Y ∞ inside X∞, we write Ω•(i) simply as Ω•
(X∞,Y ∞).

Proposition 2.2. Assume that k = C. Let X be a smooth variety over k and Y be a smooth subvariety of
X. For any m ≥ 0, we have a natural isomorphism

Hm
dR((X,Y )/C) ∼= Hm

dR(X
∞, Y ∞).
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Proof . Note that we have the following commutative diagram of complexes

0 Ω•−1
Y/C Ω•

(X,Y )/C Ω•
X/C 0

0 Ω•−1
Y ∞ Ω•

(X∞,Y ∞) Ω•
X∞ 0

// // // //

// // // //

�� �� ��

(7)

where the vertical maps are just the natural inclusion of sheaves with respect to the Zariski topology. By
Grothendieck’s algebraic description of the de Rham cohomology (or equivalently by Atiyah-Hodge theorem,
c.f. [22, Section 5.3]) the left and right vertical map are quasi isomorphisms over the Zariski topology.
Therefore the middle vertical map is also a quasi isomorphism. Since the hypercohomolgy of Ω•

(X∞,Y ∞) is
the same over the Zariski topology than over the analytic topology, the result follows noting that Ω•

(X∞,Y ∞)

is fine over the analytic topology (see for instance [22, Proposition 3.2, Proposition 3.6]).

2.2 Relative de Rham cohomology for abelian varieties
Consider an abelian variety X of dimension g, and Y as a subvariety of X consists of two points O and P .
The short exact sequence

0 → Ω•−1
Y/k → Ω•

(X,Y )/k → Ω•
X/k → 0

induces the long exact sequence

· · · → H0(X,Ω•
X/k) → H1(Y,Ω•−1

Y/k) → H1(X,Ω•
(X,Y )/k) → H1(X,Ω•

X/k) → · · ·

which translates into the exact sequence

0 → H0
dR(X/k) → H0

dR(Y/k) → H1
dR((X,Y )/k) → H1

dR(X/k) → 0, (8)

together with the isomorphisms

Hi
dR((X,Y )/k) ∼= Hi

dR(X/k), ∀i ≥ 2.

It follows from (8) that dimH1
dR((X,Y )/k) = 2g + 1. One can easily verify that

coker (H0
dR(X/k) → H0

dR(Y/k)) = k · f,

where f : Y → k is given by f(O) = 1 and f(P ) = 0.

2.3 Relative de Rham cohomology for elliptic curves
Using Čech complexes we can compute the relative cohomology. Let us consider the following case: Let X
be a smooth projective curve of genus one given by the Weierstrass equation

X = {y2 = 4x3 − t2x− t3}

and let Y := {O,P}, where O is the infinity point and P = (a, b). Hence t3 = 4a3 − t2a− b2. Then we can
choose the affine open cover

U0 = Spec(C[x, y]/(y2 − 4x3 + t2x+ t3)) = X −O = X − {[0 : 1 : 0]}

and
U1 = (X − {x = 0}) ∪ {O}.

According to the definition, we compute the relative cohomology via the following complex

0 → Ω0(U0)⊕ Ω0(U1) → Ω0(U0 ∩ U1)⊕ Ω1(U0, U0 ∩ Y )⊕ Ω1(U1, U1 ∩ Y ) → Ω1(U0 ∩ U1, U0 ∩ U1 ∩ Y ) → 0

(9)

Here for the differential of the double complex, we choose the sign rule defined in [22, page 29], this is
D = δ + (−1)qd. In particular, we have

H1
dR(X,Y ) =

{((ω0, α0), (ω1, α1), f01) | df01 = ω1|U01
− ω0|U01

, f01|Y = α1|U10
− α0|U10

}
{((df0, f0|Y ∩U0), (df1, f1|Y ∩U1), f1|U01 − f0|U01)}

(10)

where fi ∈ Ω0(Ui), f01 ∈ Ω0(U0 ∩ U1), (ωi, αi) ∈ Ω1
(X,Y )(Ui, Ui ∩ Y ) and U01 = U0 ∩ U1.
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Proposition 2.3. For a 6= 0, we can choose a basis ω0, ω1, ω2 of H1
dR((X,Y )/C) as follows:

1. ω0 := ((0, 0), (df, 0), f |U01
), where f = x−a

x ;
2. ω1 := ((dxy |U0 , 0), (

dx
y |U1 , 0), 0), where dx

y is a holomorphic 1-form on X;
3. ω2 := ((xdxy , 0), (xdxy + dg, g|Y ), g|U01

), where g = − y
2x .

Proof . For the second and third item, they form a basis of H1
dR(X/C) and the details can be found in [18,

Proposition 2.4]. For the first one, it is enough to show that this element is not zero in H1
dR((X,Y )/C). If

this is not true, then we can write ((0, 0), (df, 0), f |U01
) as

((df0, f0|Y ∩U0
), (df1, f1|Y ∩U1

), f1|U01
− f0|U01

).

Then f0 = 0 and hence f1 = f . However the infinite point O ∈ Y ∩ U1 and f(O) = 1, which is a contradiction
with f1|Y ∩U1

= 0.

Remark 2.4. For a = 0, we have df = 0 and so the basis we have chosen above degenerates.

2.4 Meromorphic forms without residues
In this section we provide another algebraic interpretation of the relative de Rham cohomology, valid only
for the case of elliptic curves. It depends on the choice of an affine chart U containing Y = {O,P}. The
advantage of this description is that the Gauss-Manin connection becomes much simpler to compute (see
Subsection 6.3).

Proposition 2.5. Let U ⊆ X be an affine open set such that Y ⊆ U . Then

H1
dR(X,Y ) ∼=

ω ∈ Γ(Ω1
U ) without residues on X − U

exact forms df with f |Y = 0
.

Proof . Recall that
H1

dR(X,Y ) = H1(X,Ω•
(X,Y )).

Note first that the complex Ω•
(X,Y ) is a resolution of the sheaf

K := ker(CX
|Y−→ CY ).

Consider the following complex of sheaves over X

Ω̂•
U : i∗IY

d−→ i∗Ω
1
U

Res−−→ CX−U → 0 ,

where IY is the ideal sheaf of Y over U , and i : U ↪→ X is the inclusion map. It is also easy to see that Ω̂•
U

is also a resolution of K. Therefore

H1
dR(X,Y ) = H1(X,Ω•

(X,Y ))
∼= H1(X,K) ∼= H1(X, Ω̂•

U ).

Finally, note that Ω̂•
U is acyclic since each sheaf is supported on the affine set U or in the finite set X − U ,

thus
H1(X, Ω̂•

U )
∼= H1(Γ(Ω̂•

U )).

Proposition 2.6. Under the same hypothesis of Proposition 2.5, let Y = {O,P}, V = X −O, f ∈ Γ(OU ) be
such that f(P ) = 0 and f(O) = 1, and take U = {V,U}, then the map

H1(U ,Ω•
(X,Y )) → H1(Γ(Ω̂•

U )) (11)

η = ((η0, f0), (η1, f1), f01) 7→ η1 + (f1(P )− f1(O))df

is an isomorphism. This isomorphism is independent of the choice of f .
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Proof . First of all, to see that it is well-defined we have to show that η1 has no residues. In fact, since
η1 − η0 = df01, it follows that η1 has the same residues as η0. On the other hand η0 has at most one pole at
O, hence it has no residues. Now, to show that it is an isomorphism, it is enough to show that it is injective.
In fact, suppose that there exists some h ∈ IY (U) such that

η1 + (f1(P )− f1(O))df = dh,

then η1 = dβ, for β = (f1(O)− f1(P ))f + h. Replacing η by

η −D(0, β + f1(P )) = ((η0, f0), (0, 0), f01 − β − f1(P ))

it follows that η0 = dµ, for µ = −f01 + β + f1(P ) and so µ only has poles at O, i.e. it is defined on V , then

η −D(µ, β + f1(P )) = ((0, f0 − µ|Y ∩V ), (0, 0), 0).

Finally since P ∈ U ∩ V and Y ∩ V = {P} it follows that f0 − µ|Y ∩V = 0, i.e. η = D(µ, β + f1(P )).

Remark 2.7. Under the isomorphism (11), we may choose the basis of the relative de Rham cohomology
directly rather than using the representatives in the Čech complex. This will be useful when we compute the
Gauss-Manin connection later. Depending on the coordinates of the point P , we choose the following basis
on H1(Γ(Ω̂•

U )):

d
(x− a

x

)
,
dx

y
,
xdx

y
− d

( y

2x

)
− b

2a
d
(x− a

x

)
, a 6= 0, (12)

d
(x− a

x− 1

)
,
dx

y
,
xdx

y
− d

(
y

2(x− 1)

)
− b

2(a− 1)
d
(x− a

x− 1

)
, a 6= 1.

Note that for a 6= 0 we are considering U = (X − {x = 0}) ∪ {O}, while for a 6= 1 we take U = (X − {x =
1}) ∪ {O}. The first differential form ω1 = df is chosen in such a way that f(O) = 1, f(P ) = 0. Note also
that the correction of xdx

y with an exact differential form kills its pole at O. The computations are
similar as in [18, Section 2.8]. We remark that when a 6= 0, 1 both basis are equal in H1(Γ(Ω̂•

U )) for
U = (X − {x(x− 1) = 0}) ∪ {O}. For instance, the difference of the third element in both basis is an exact
differential form dg with g(P ) = g(O) = b

2a − b
2(a−1) .

3 Relative cup product

In this section we compute the cup product of forms in the algebraic relative de Rham cohomology described
as elements of the hypercohomology of the complex of relative forms (see Definition 2.1). This is necessary
in order to compute the cup product of the basis given in Proposition 2.3.

3.1 Relative cup product in hypercohomology

At first we define the cup product in the usual relative de Rham cohomology. The basic idea comes from [8,
Section 3].

Definition 3.1. We define the product

∪ : Ωm
(X∞,Y ∞) ⊗ Ωn

(X∞,Y ∞) → Ωm+n
(X∞,Y ∞)

by
(ω̌, α̌), (ν̌, β̌) → (ω̌ ∧ ν̌, (−1)mω̌|Y ∞ ∧ β̌).

Proposition 3.2. For (ω̌, α̌) ∈ Ωm
(X∞,Y ∞) and (ν̌, β̌) ∈ Ωn

(X∞,Y ∞), we have

d((ω̌, α̌) ∪ (ν̌, β̌)) = d((ω̌, α̌)) ∪ (ν̌, β̌) + (−1)m(ω̌, α̌) ∪ d((ν̌, β̌)). (13)
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Proof . This is just a straightforward computation

LHS = d((ω̌ ∧ ν̌, (−1)mω̌|Y ∞ ∧ β̌)) = (d(ω̌ ∧ ν̌), (ω̌ ∧ ν̌)|Y ∞ − d((−1)mω̌|Y ∞ ∧ β̌)) =

(dω̌ ∧ ν̌ + (−1)mω̌ ∧ dν̌, (ω̌ ∧ ν̌)|Y ∞ + (−1)m+1d(ω̌|Y ∞) ∧ β̌ + (−1)2m+1ω̌|Y ∞ ∧ dβ̌)

On the other hand,

RHS = (dω̌, ω̌|Y ∞ − dα̌) ∪ (ν̌, β̌) + (−1)m(ω̌, α̌) ∪ (dν̌, ν̌|Y ∞ − dβ̌) =

(dω̌ ∧ ν̌, (−1)m+1dω̌|Y ∞ ∧ β̌) + (−1)m(ω̌ ∧ dν̌, (−1)mω̌|Y ∞ ∧ (ν̌|Y ∞ − dβ̌)) =

(dω̌ ∧ ν̌ + (−1)mω̌ ∧ dν̌, (ω̌ ∧ ν̌)|Y ∞ + (−1)m+1d(ω̌|Y ∞) ∧ β̌ + (−1)2m+1ω̌|Y ∞ ∧ dβ̌).

Corollary 3.3. The product ∪ induces a product structure on the relative de Rham cohomology

∪ : Hm
dR(X

∞, Y ∞)⊗Hn
dR(X

∞, Y ∞) → Hm+n
dR (X∞, Y ∞),

which is called the cup product for the relative de Rham cohomology.
Next we want to find the corresponding bilinear map in algebraic relative de Rham cohomology.

According to Leray’s theorem , we may take a cover consisting of open affine subsets of X to compute
the algebraic relative de Rham cohomology in terms of a Čech resolution (see for instance [22, Theorem
3.1]). Fix an affine open cover {Ui} of X. For an element (ω, α) ∈ Hm

dR((X,Y )/k), it can be represented as the
sum of (ωm−r

i0i1···ir , α
m−1−r
i0i1···ir ) for r = 0, . . . ,m. Here the upper index m− r denotes ωm−r

i0i1···ir is a (m− r)-forms
and the lower index i0i1 · · · ir means the differential form lies in Ui0 ∩ Ui1 ∩ · · · ∩ Uir . Note that for α, the
lower index denotes the affine cover restricted to Y .
Proposition 3.4. Keeping the same notation as above, the cup product of (ω, α) ∈ Hm

dR((X,Y )/k) and
(ν, β) ∈ Hn

dR((X,Y )/k) is given by (µ, γ), where

µn+m−j
i0i1···ij =

j∑
r=0

(−1)m(j−r)+r(j−1)ωm−r
i0···ir ∧ νn−j+r

ir···ij

for 0 ≤ j ≤ n+m and

γn+m−k−1
i0i1···ik = (−1)m

k∑
s=0

(−1)m(k−s)+s(k−1)ωm−s
i0···is |Y ∧ βn−k−1+s

is···ik

for 0 ≤ k ≤ n+m− 1.

Proof . The proof is just the definition together with the usual twisting cup product formula in hypercoho-
mology (see for instance [22, Theorem 5.3]).

3.2 The case of elliptic curves
Let us apply Proposition 3.4 to compute the cup of the elements of the basis given in Proposition 2.3. We
choose the affine open cover {U0, U1, U01} of the smooth projective curve as in Subsection 2.3. Take two
elements (ω, α) and (ν, β) which are represented as

((ω0, α0), (ω1, α1), ω01), ((ν0, β0), (ν1, β1), ν01).

Then using the above formula, we can compute (ω, α) ∪ (ν, β), which can be represented as

((ω0 ∧ ν0,−ω0|Y ∧ β0), (ω1 ∧ ν1,−ω1|Y ∧ β1), (−ω0 ∧ ν01 + ω01 ∧ ν1,−ω01|Y ∧ β1))

In particular, using the basis ωi, i = 0, 1, 2 of H1
dR((X,Y )/C) given in Proposition 2.3, we get that

ω0 ∪ ω1 =

(
(0, 0),

(
df ∧ dx

y
, 0

)
,

(
(x− a)dx

xy
, 0

))
, (14)

ω0 ∪ ω2 =

(
(0, 0),

(
df ∧ xdx

y
, 0

)
,

(
(x− a)dx

y
, 0

))
, (15)

ω1 ∪ ω2 =

(
(0, 0), (0, 0),

(
−dx

2x
, 0

))
(16)
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Remark 3.5. When X is a smooth projective curve and Y is a set of distinct points, we have the following
commutative diagram

H1
dR(X,Y )×H1

dR(X,Y ) H2
dR(X,Y )

H1
dR(X)×H1

dR(X) H2
dR(X) C

∪ //

∪ // Tr //

j∗×j∗

��

j∗

��

(17)

Here j : (X, ∅) → (X,Y ) is the inclusion and note that both the right vertical map and the trace map are
isomorphisms. Hence the composition of the relative cup product, j∗ and the trace map gives us the bilinear
map

〈·, ·〉 : H1
dR((X,Y )/C)×H1

dR((X,Y )/C) → C,

which is called the relative trace map. We apply the above constructions to our case, i.e. X a smooth
projective curve of genus one and Y a subset of two distinct points. Composing the relative trace map with
the relative cup product, we find that

〈ω1, ω2〉 = −〈ω2, ω1〉 = 1,

and the others are zero. Here we used the fact that the trace map is the residue of ω01 around the infinite
point (see for instance [18, Page 19]).

4 Mixed Hodge structure on relative cohomology
In this section, we briefly recall the construction of the mixed Hodge structure on the relative de Rham
cohomology. For more details we refer to [28, Definition 3.13, Theorem 3.18].

4.1 Polarized mixed Hodge structure for abelian varieties
As shown in [28, Example 3.24], one may use explicit representatives to define the mixed Hodge structure
on relative cohomology. We want to explore this in detail in our case, that is, X is an abelian variety of
dimension g over k and Y is a closed subvariety of X consisting of two distinct points. Using the exact
sequence (8) we can determine the mixed Hodge structure of H1

dR((X,Y )/k). In fact, the weight filtration of
H1

dR((X,Y )/k) corresponds to

W0H
1
dR((X,Y )/k) = coker(H0

dR(X/k) → H0
dR(Y/k))

⊂ W1H
1
dR((X,Y )/k) = H1

dR((X,Y )/k),

and the only nontrivial piece F 1 of the Hodge filtration is given by

0 →F 1(coker(H0
dR(X/k) → H0

dR(Y/k))) = 0

→F 1H1
dR((X,Y )/k) → F 1H1

dR(X/k) → 0
(18)

The following proposition computes a basis compatible with the polarized mixed Hodge structure of a
polarized abelian variety with two marked points. This is a slight modification of [21, Proposition 11.1]
into our context.

Proposition 4.1. We can take a basis α0, α1, . . . , α2g ∈ H1
dR((X,Y )/k) such that α0 ∈ H1

dR((X,Y )/k),
α1, . . . , αg ∈ F 1H1

dR((X,Y )/k), αg+1, . . . , α2g /∈ F 1 ∪W0 and the polarization θ ∈ H2
dR(X/k) =

GrW2 H2
dR((X,Y )/k) corresponds with

θ = α1 ∧ αg+1 + α2 ∧ αg+2 + · · ·+ αg ∧ α2g,

and α0 = df for some rational function f on X with f(O) = 1 and f(P ) = 0. In particular the intersection
form (in GrW1 H1

dR((X,Y )/C) = H1
dR(X/C)) is given by

[〈αi, αj〉] = Φ , where Φ :=

0 0 0
0 0 In
0 −In 0

 ∈ Mat(2n+1)×(2n+1).
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Proof . The construction of α0 was explained at the end of Section 2.2. To construct the rest of the basis,
pick any basis α1, . . . , αg of F 1H1

dR((X,Y )/C) ∼= F 1H1
dR(X/C). Since θ ∈ F 1H2

dR(X/C) we can always write
it as

θ = α1 ∧ βg+1 + α2 ∧ βg+2 + · · ·+ αg ∧ β2g

for some βg+i ∈ H1
dR(X/C). We claim α1, . . . , αg, βg+1, . . . , β2g form a basis of H1

dR(X/C). In fact, this follows
by the equality

θg = g!α1 ∧ βg+1 ∧ α2 ∧ βg+2 ∧ · · · ∧ αg ∧ β2g.

Using that Tr(θg) = deg(X) we get the desired basis taking αg+i :=
g

deg(X)βg+i. The equality

〈α0, αi〉 = 0, i = 0, 1, 2, . . . , 2g

follows from the fact j∗α0 = 0 ∈ H1
dR(X/C), where j : (X, ∅) → (X,Y ) is the inclusion as in (17).

4.2 Polarized mixed Hodge structure for elliptic curves
Using Čech cohomology with respect to the affine cover of Section 2.3, we find that

H0
dR(Y ) ∼= {(f0, f1) ∈ Ω0(U0 ∩ Y )× Ω0(U1 ∩ Y ) | f1|U01∩Y = f0|U01∩Y }.

Then one may check that (0, x−a
x |U1∩Y ) ∈ Ω0(U0 ∩ Y )× Ω0(U1 ∩ Y ) represents a non-trivial element in

coker(H0
dR(X) → H0

dR(Y )). We remark two things:
1. The image of [(0, x−a

x |U1∩Y )] under the boundary map H0
dR(Y ) → H1

dR(X,Y ) is the same as ω1 =
[((0, 0), (d(x−a

x ), 0), x−a
x |U01)];

2. The above bilinear symmetric form descends to coker(H0
dR(X) → H0

dR(Y )), which is a polarization (or
the norm) on GrW0 H1

dR(X,Y ). Under this polarization, [(0, x−a
x |U1∩Y )] has norm 1.

5 Moduli space of enhanced principally polarized abelian varieties: T-space
In this section we introduce the algebro-geometric framework where the modular vector fields defining the
differential equations of quasi Jacobi forms are defined. This is the moduli space T of enhanced principally
polarized abelian varieties with two marked points. We divide the proof of Theorem 1.1 into two parts. First
we show that T is a quasi-projective variety for any genus. In the case of elliptic curves we show that this is
an affine variety and find the generators of its coordinate ring. In general, this moduli space T comes with
a natural action of an algebraic group G. We describe this action in the case of elliptic curves. Later, in
Section 9, we will use this algebraic action to obtain the modularity equations satisfied by the solutions of
the modular vector fields.

5.1 Enhanced abelian varieties with two marked points
Definition 5.1. An enhanced principally polarized abelian variety of genus g with two marked points (X,Y )
is the data

(X,Y ), [α0, α1, . . . , α2g]

where Y = {O,P}, P 6= O and αi’s are as in Proposition 4.1. We denote the moduli of enhanced principally
polarized abelian varieties of genus g with two marked points by Tg or T by simplicity of notation.
Proposition 5.2. The moduli space T is a quasi-projective variety defined over Q.

Proof . The moduli Ag of principally polarized abelian varieties of dimension g over a field k is a quasi-
projective variety over Q, see for instance [23]. One can even construct the moduli of abelian schemes over
a ring and construct the corresponding moduli stack, which is mainly known as Deligne-Mumford stack,
however, due to the lack of motivation we avoid this and refer the reader to the article [9] and the references
therein. Let Bg be the moduli space of (A,α1, . . . , α2g) principally polarized abelian varieties equipped with
a basis of H1

dR(A) as in Proposition 4.1, this is called a symplectic-Hodge basis in [9]. By [9, Theorem 7.1]
this moduli space is a smooth algebraic quasi-affine variety over Q (in fact a smooth quasi-affine scheme over
Z[ 12 ]) with a universal family U → Bg. Hence U is the moduli of (A,P, α1, . . . , α2g) where P ∈ A. Let Ǔ be the
open subset of U corresponding to P 6= O (the complement of the zero section). Then T → Ǔ is a line bundle
over a quasi-projective variety.
Remark 5.3. In the genus one case, Bg, Ǔ and so T, are all affine varieties. In the next section we describe
the coordinate ring of T.



GMCD: Quasi Jacobi forms of index zero 11

5.2 Elliptic curves

In the case of elliptic curves, after choosing the Weierstrass coordinates x, y, we may write X in the Weierstrass
format

y2 = 4x3 − t2x− t3

with ∆ = 27t23 − t32 6= 0. In these coordinates, we write P 6= O ∈ Y as (a, b). Then we get t3 = 4a3 − t2a− b2.
In order to construct the basis α0, α1, α2 ∈ H1

dR(X,Y ), first we take an arbitrary basis, for instance the basis
ω0, ω1, ω2 of (12). Note that the intersection matrix of this basis is given by

Φ =
(
〈ωi, ωj〉

)
=

0 0 0
0 0 1
0 −1 0

 .

Let us make a base change α = Sω in such a way that the new basis α is compatible with the polarized mixed
Hodge structure (as in Proposition 4.1). These restrictions imply that S must be of the form1 0 0

0 1 0
c t1 t0

 ,

where c, t1, t0 are unknown parameters. The intersection form in αi’s is given by

[〈αi, αj〉] = S[〈ωi, ωj〉]Str.

Since we want to preserve the intersection matrix equal to Φ, we conclude that t0 = 1 and c, t1 are independent
parameters. Therefore

T := Spec C[a, b, c, t1, t2,
1

∆
]

and over T, we have the universal family

X : y2 = 4x3 − t2x− t3, (a, b),

d
(x− a

x

)
,

dx

y
,

(
c− b

2a

)
d
(x− a

x

)
+ t1

dx

y
+

xdx

y
− d

( y

2x

)
.

Remark 5.4. For a general construction of this enhanced moduli space T for other families of varieties see
[21, Theorem 3.5].

5.3 Algebraic group

We define the algebraic group G to be the automorphism group Aut(H∗
dR(X0, Y0),W

∗
0 , F

∗
0 ,∪, θ0) of a fixed

enhanced abelian variety X0, where θ0 is the polarization of X0, see [21, Section 3.3, Section 11.4]. The
notation Aut(H∗

dR(X0, Y0),W
∗
0 , F

∗
0 ,∪, θ0) means we are considering the automorphisms of H∗

dR(X0, Y0) which
respects the polarized mixed Hodge structures and preserves the intersection matrices. In the case of abelian
varieties with two marked points, it can be computed explicitly

G =


1 0 v
0 k k′

0 0 k−tr

 ∈ GL2g+1(C) : kk′tr = k′ktr , v ∈ Cg

 ,

where the form of g ∈ G is derived from the fact that it respects the weight and Hodge filtration, and hence
g12 = g21 = g31 = g32 = 0, also gtrΦg = Φ and the entry equal to 1 is given in order to preserve the polarization
on GrW0 H1

dR(X,Y ). The algebraic group G is of dimension 3g(g+1)
2 and it acts on T by change of basis of the

de Rham cohomology group H1
dR(X,Y ).
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5.4 The algebraic group for elliptic curves
In the case of elliptic curves G acts on the de Rham classes αi, i = 0, 1, 2 in the following way

(α0, α1, α2) • g = (α0, kα1, vα0 + k′α1 + k−1α2)

for g =

1 0 v
0 k k′

0 0 k−1

 ∈ G. This action induces an action on T, which we can describe explicitly in terms of

its parameters. Consider the parameter (a, b, c, t1, t2) ∈ T corresponding to the enhanced elliptic curve

X : y2 = 4x3 − t2x− t3 = 4x3 − t2x+ b2 − 4a3 + t2a,

together with the marked point P = (a, b), and the frame

(α0, α1, α2) = (ω0, ω1, c · ω0 + t1 · ω1 + ω2),

where ω0, ω1, ω2 ∈ H1
dR(X,Y ) is the basis given in Proposition 2.3, this is

ω0 = d
(x− a

x

)
, ω1 =

dx

y
, ω2 =

xdx

y
− d

( y

2x

)
− b

2a
d
(x− a

x

)
.

Applying g to the point (a, b, c, t1, t2) above we get the same elliptic curve, with the same marked points, but
now the frame is

(α′
0, α

′
1, α

′
2) = (ω0, k · ω1, (v + k−1c) · ω0 + (k′ + k−1t1) · ω1 + k−1 · ω2).

In order to see which is the point in T corresponding to it, we consider the following change of coordinates

ϕ : A2 → A2, (x, y) → (k2x, k3y).

Under this map, the resulting enhanced elliptic curve (ϕ−1(X), ϕ−1(Y )), ϕ∗[α′
0, α

′
1, α

′
2] is given by

y2 = 4x3 − k−4t2x− k−6t3,

with the marked point ϕ−1(P ) = (k−2a, k−3b), and the frame

ϕ∗α′
0 = d

(
x− k−2a

x

)
, ϕ∗α′

1 =
dx

y
,

ϕ∗α′
2 = (v + k−1c)ϕ∗α′

0 + (k−1k′ + k−2t1)ϕ
∗α′

1 +
xdx

y
− d

( y

2x

)
− k−3b

2k−2a
d

(
x− k−2a

x

)
.

Then we derive the action of g ∈ G on T via S • g = gtr · S · diag(1, k−1, k), this is

t = (a, b, c, t1, t2) → t • g = (k−2a, k−3b, v + k−1c, k−1k′ + k−2t1, k
−4t2).

6 Gauss-Manin connection

This section is devoted to the computation of the Gauss-Manin connection. In order to do this, we use the
fundamental property of the Gauss-Manin connection in relation to integrals. After using this analytical
interpretation we provide another interpretation of the same computation from the algebraic description of
the Gauss-Manin connection.

6.1 Gauss-Manin connection and integrals
Recall the following exact sequence of a pair (X,Y )

0 → H0
dR(X) → H0

dR(Y ) → H1
dR(X,Y ) → H1

dR(X) → 0.

When the pair (X,Y ) varies, the above exact sequence can be viewed as an exact sequence of local systems.
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Definition 6.1. The Gauss-Manin connection on H1
dR(X,Y ) is a connection (i.e. C-linear with the Leibniz

rule) on H1
dR(X,Y )

∇ : H1
dR(X,Y ) → Ω1

T ⊗H1
dR(X,Y )

satisfies that ∇ is compatible with the above exact sequence, i.e.,

0 → (H0
dR(X),∇) → (H0

dR(Y ),∇)

→ (H1
dR(X,Y ),∇) → (H1

dR(X),∇) → 0.
(19)

Similar to the non-relative case, the relative Gauss-Manin connection is uniquely determined by its
fundamental property

d

(∫
δ

ω

)
=

∫
δ

∇ω, δ ∈ H1(X,Y ), ω ∈ H1
dR(X,Y ) (20)

where the second integration occurs only in the H1
dR(X,Y ) piece, in other words if

∇ω =
∑
i∈I

dfi ⊗ ηi,

then ∫
δ

∇ω :=
∑
i∈I

dfi ·
∫
δ

ηi.

6.2 Elliptic curves
Recall that α0 = d(x−a

x ), α1 = dx
y and α2 = (c− b

2a )d(
x−a
x ) + t1

dx
y + xdx

y − d( y
2x ). Recall t3 = 4a3 − b2 − at2

and hence dt3 = (12a2 − t2)da− 2bdb− adt2. We also set α = 3t3dt2 − 2t2dt3.

Proposition 6.2. The Gauss-Manin connection of the family of elliptic curves

(X : y2 = 4x3 − t2x− t3, (a, b), α0, α1, α2)

is given as follows:

∇

α0

α1

α2

 =
1

∆

 0 0 0
A21 A22 A23

A31 A32 A33

⊗

α0

α1

α2

 (21)

where

A21 = g1dt2 + g2dt3 −
(
c− b

2a

)
3α

2
− ∆da

b
,

A22 = −3t1α

2
− d∆

12
,

A23 =
3α

2
,

A31 = (t1g1 + g3)dt2 + (t1g2 + g1)dt3 − (a+ t1)∆da

b
−
(
c− b

2a

)(
3t1α

2
+

d∆

12

)
+∆dc,

A32 = ∆dt1 − t1d∆

6
−
(
3t21
2

+
t2
8

)
α,

A33 =
3t1α

2
+

d∆

12
,

and

g1 =
−2a2t22 + 3at2t3 + 9t23

4ab
,

g2 =
18a2t3 − at22 − 3t2t3

2ab
,

g3 =
6a2t2t3 + (18t23 − t32)a− t22t3

8ab
.
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Proof . In the absolute case, the proof is a classical calculation, see [18, Proposition 3.1] for example. For the
relative case, we mention a theorem of Fuchs (see [16, Theorem 1.1]) from the historical point view, whose
proof contains the computation of relative Gauss-Manin connection. Let us compute the relative Gauss-Manin
connection in the basis

ω0 = d
(x− a

x

)
, ω1 =

dx

y
, ω2 =

xdx

y
− d

( y

2x

)
.

For this we will use the second’s author computation of the absolute Gauss-Manin connection in the basis
ω1, ω2 (see [18, Proposition 3.1])  d

(∫
ω1

)
d
(∫

ω2

)
 =

− 1
12

d∆
∆

3
2

α
∆

− 1
8 t2

α
∆

1
12

d∆
∆


∫ ω1∫

ω2

 (22)

where d is the differential with respect to t2, t3 and the integration is taken along any closed path inside X.
The main relation between the absolute Gauss-Manin connection and the relative one can be obtained as
follows: Assume that we know the following computation for the family y2 = p(x) d

(∫
dx
y

)
d
(∫

xdx
y

)
 =

− 1
12

d∆
∆

3
2

α
∆

− 1
8 t2

α
∆

1
12

d∆
∆


 ∫ dx

y∫
xdx
y

+

(∫ dh1

)
dt2 +

(∫
dh2

)
dt3(∫

dh3

)
dt2 +

(∫
dh4

)
dt3

 (23)

where d is the differential with respect to t2, t3 and the integration is over any path in X minus O. We write
this equality with the correction of xdx

y , taking differential with respect to parameters t2, t3, a. After this we
can take the path of integration from O to P and obtain d

(∫
dx
y

)
d
(∫ (

xdx
y − d( y

2x )
))
 =

− 1
12

d∆
∆

3
2

α
∆

− 1
8 t2

α
∆

1
12

d∆
∆


 ∫

dx
y∫ (

xdx
y − d( y

2x )
)
+

X

Y

 (24)

X= (
∫
dh1)dt2+(

∫
dh2)dt3+(

∫
d( y

2x )) 3α
2∆+ da

b ,

Y= (
∫
d(h3+

1
4y ))dt2+(

∫
d(h4+

1
4xy ))dt3+(

∫
d( y

2x )) d∆
12∆+ ada

b −d( b
2a )− dt3+adt2

4ab .
(25)

This relation tells us the relative Gauss-Manin connection in the basis ω0, ω1, ω2 is:
∇(ω0)

∇(ω1)

∇(ω2)

 =


0 0 0

−X − 1
12

d∆
∆

3
2

α
∆

−Y − 1
8 t2

α
∆

1
12

d∆
∆




ω0

ω1

ω2

 . (26)

In order to compute h1, h2, h3 and h4 appearing in (23), we compute the Gauss-Manin connection of ω1 and
ω2. To do this we have to write each

dωi =
∑
a

αa ∧ βa ∈ Ω1
T ∧ Ω1

E/T ,

where d is the differential with respect to x, y, t2, t3, and a. Then

∇ωi =
∑
a

αa ⊗ βa.

Note first that since ω0 = d
(
x−a
x

)
, then ∇ω0 = 0 and the first row of (26) follows. Using the equation

2ydy = dp

we get
dω1 =

(xdt2 + dt3) ∧ dx

2y3
, dω2 =

(x2dt2 + xdt3) ∧ dx

y
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and so
∇ω1 = dt2 ⊗

xdx

2y3
+ dt3 ⊗

dx

2y3
, ∇ω2 = dt2 ⊗

x2dx

2y3
+ dt3 ⊗

xdx

2y3
.

Following the method described in [18, Proposition 2.2], we can obtain the following identities:

x2dx

y
= d

(y
6

)
+

t2
12

dx

y
,

x3dx

y
= d

(xy
10

)
+

3t2
20

xdx

y
+

t3
10

dx

y
,

x4dx

y
= d

(
x2y

14
+

5t2y

168

)
+

t3
7

xdx

y
+

5t22
336

dx

y
,

x5dx

y
= d

(
x3y

18
+

7t2xy

360
+

t3y

36

)
+

7t22
240

xdx

y
+

t2t3
30

dx

y
.

Using the following identity
∆ = −(12x2 − t2)A+ pB

where
A = −36x4 + 15t2x

2 − t22,

B = −108x3 + 27t2x− 27t3,

together with the previous ones, we obtain

dx

2y3
=

dx

2py
=

1

∆

(−(12x2 − t2)A+ pB)dx

2py
=

1

∆

(
−Ady

y2
+

B

2

dx

y

)

=
1

∆

(
d

(
A

y

)
+

(
B

2
−A′

)
dx

y

)
= d

(
A

∆y

)
+

1

∆

(
90x3 − 33t2

2
x− 27t3

2

)
dx

y

= d

(
A

∆y

)
+

1

∆

(
d(9xy)− 3t2

xdx

y
− 9t3

2

dx

y

)
= d

(
A

∆y
+

9xy

∆

)
− 1

∆

(
3t2

xdx

y
+

9t3
2

dx

y

)
.

Hence
h2 =

A

∆y
+

9xy

∆
.

Similarly we compute

xdx

2y3
= d

(
Ax

∆y
+

9x2y

∆
− 3t2y

2∆

)
+

1

∆

(
9t3
2

xdx

y
+

t22
4

dx

y

)
,

x2dx

2y3
= d

(
Ax2

∆y
+

9x3y

∆
− 3t2xy

2∆
+

9t3y

4∆

)
− t22

4∆

xdx

y
− 3t2t3

8∆

dx

y

and so we obtain

h1 = h4 =
Ax

∆y
+

9x2y

∆
− 3t2y

2∆
, h3 =

Ax2

∆y
+

9x3y

∆
− 3t2xy

2∆
+

9t3y

4∆
.

Replacing these functions hi, i = 1, 2, 3, 4 in (26), we obtain that the Gauss-Manin matrix with respect to ω1,
ω2 and ω3 is

B =
1

∆

 0 0 0
B21 −d∆

12
3α
2

B31 − t2α
8

d∆
12

 ,
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where α = 3t3dt2 − 2t2dt3,

B21 = g1dt2 + g2dt3 −
∆da

b
, (27)

B31 = g3dt2 + g1dt3 −
a∆da

b
+∆d

(
b

2a

)
and gi is defined as above. For simplicity, we write B as

B =
1

∆

 0 0 0
B21 B22 B23

B31 B32 B33

 .

We let

A =
1

∆

 0 0 0
A21 A22 A23

A31 A32 A33

 ,

be the Gauss-Manin matrix under the basis ω0, ω1, (c− b
2a )ω0 + t1ω1 + ω2. Then

∇
(
dx

y

)
=

1

∆

(
B21d

(x− a

x

)
+B22

dx

y
+B23

(
xdx

y
− d

( y

2x

)))
=

1

∆

(
A21d

(x− a

x

)
+A22

dx

y
+A23

((
c− b

2a

)
d
(x− a

x

)
+ t1

dx

y
+

xdx

y
− d

( y

2x

)))
.

Therefore we get
A21 = B21 −

(
c− b

2a

)
B23 , A22 = B22 − t1B23 , A23 = B23. (28)

Similarly we have

A31 = t1B21 +B31 −
(
c− b

2a

)
(t1B23 +B33) + ∆d

(
c− b

2a

)
,

A32 = t1B22 +B32 − t1(t1B23 +B33) + ∆dt1 , A33 = t1B23 +B33.

This can be also proved by using the formula

A = dS · S−1 + S ·B · S−1,

where S =

 1 0 0
0 1 0

c− b
2a t1 1

 . Finally we get the desired expressions.

6.3 Algebraic Gauss-Manin connection for elliptic curves
In the case of elliptic curves, we have another way to describe the relative Gauss-Manin connection by means
of the isomorphism (11) and the canonical Gauss-Manin connection on R1π∗Ω

•
(X,Y )/T.

Proposition 6.3. Let π : X → T be the family of elliptic curves with two marked points. Let Y ⊆ X be the
subvariety of X such that Yt = {O,P} for every t ∈ T. Let V ⊆ T be an affine open set, U ⊆ XV be an affine
open set such that YV ⊆ U, U → V is an affine locally trivial fibration, and there exists some f ∈ Γ(OUV

)
with f(O) = 1 and f(P ) = 0 for all t ∈ V . Then the isomorphism of Proposition 2.6 extends to the family

H1
dR((X,Y)/V ) = H1(XV ,Ω

•
(X,Y)/V )

∼= H1(Γ(Ω̂•
U/V )).

Proof . Just note that R1π∗Ω
•
(X,Y)/V is a vector bundle of rank 3 over V and the same holds for R1π∗Ω̂

•
U/V .

Under the hypothesis of the theorem we have a well defined morphism of bundles

R1π∗Ω
•
(X,Y)/V → R1π∗Ω̂

•
U/V

which is in fact an isomorphism, since it is an isomorphism on each fiber. Therefore it induces an isomorphism
in global sections, and since Ω̂•

U/V is acyclic, we get the result.
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Remark 6.4. If we denote π0 : X0 → T0 the usual family of elliptic curves, we have a similar result for the
absolute de Rham cohomology. In fact, given V0 ⊆ T0 an affine open set and U0 ⊆ X0 an affine open set such
that U0 → V0 is an affine locally trivial fibration, then we have an isomorphism

H1
dR(X0/V0) = H1((X0)V0 ,Ω

•
X0/V0

) ∼= H1(Γ(Ω̄•
U0/V0

)),

where now Ω̄•
U0/V0

is the relative (to the family) version of the complex

Ω̄•
U : i∗OU

d−→ i∗Ω
1
U

Res−−→ CX−U → 0 .

This isomorphism is explicitly described as follows: Let X be an elliptic curve, U ⊆ X be an affine open set
and let V = X − {Q}, such that U ∪ V = X. Then a proof similar to Proposition 2.6 shows that the map

ω = (ω0, ω1, f01) ∈ H1(U ,Ω•
X)

7→ ω0 ∈ H1(Γ(Ω̄•
U )) =

ω ∈ Γ(Ω1
U ) without residues on X − U

exact forms df with f ∈ Γ(OU )

is an isomorphism. Moreover, in [18, Section 3.3] is described how one can compute the Gauss-Manin
connection directly on H1(Γ(Ω̄•

U0/V0
)) just considering for any α ∈ H1(Γ(Ω̄•

U0/V0
))

dα =
∑
i

dti ∧ βi

and then ∇(α) =
∑

i dti ⊗ βi ∈ Ω1
T0
(V0)⊗H1(Γ(Ω̄•

U0/V0
)). On the relative case we have the following result,

which turns out to be equivalent to our computation of the previous section.
Proposition 6.5. With the same notation of Proposition 6.3. Let α ∈ H1(Γ(Ω̂U/V )). If

dα =
∑
i

dti ∧ βi

then
∇(α) = (α|O − α|P )⊗ df +

∑
i

dti ⊗ βi ∈ Ω1
T(V )⊗H1(Γ(Ω̂•

U/V )).

Proof . Let ω = ((ω0, f0), (ω1, f1), f01) ∈ H1(XV ,Ω
•
(X,Y)/V ) such that

α = ω1 + (f1(P )− f1(O))df.

In order to compute ∇(ω) we compute

Dω = ((dω0, ω0|Y ∩U0
− df0), (dω1, ω1|Y ∩U1

− df1), (ω1 − ω0|U01
− df01, f1 − f0 − f01|Y ∩U01

))

=
∑
i

((βi
0, h

i
0), (β

i
1, h

i
1), h

i
01) ∧ dti,

and so
∇(ω) = −

∑
i

dti ⊗ ((βi
0, h

i
0), (β

i
1, h

i
1), h

i
01).

Using the isomorphism we get

∇(α) = −
∑
i

dti ⊗ (βi
1 + (hi

1(P )− hi
1(O))df) =

∑
i

dti ⊗ βi

with βi = −βi
1 − (hi

1(P )− hi
1(O))df . The result follows once we note that

dα = dω1 + (df1(P )− df1(O)) ∧ df

=
∑
i

βi
1 ∧ dti − (hi

1(P )− hi
1(O))dti ∧ df + (ω1|P∩U0

− ω1|O∩U0
) ∧ df

= (α|P − α|O) ∧ df +
∑
i

dti ∧ βi.

Where in the last equality we used that df |Y = 0.
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7 Modular vector fields

Using the Gauss-Manin computations of the previous section we will describe the modular vector fields over
the moduli space T of enhanced elliptic curves with two marked points. Relying in our algebraic description
of T, we solve explicitly this algebraic problem. On the other hand, for the general case of enhanced abelian
varieties we will show the existence of the modular vector fields in Section 8 using the period map, hence by
transcendental methods.

7.1 Proof of Theorem 1.3

The proof is based on explicit calculations. Let gi as the previous section. Then we may decompose the GM
matrix under the basis αi as

A =
1

∆
(Aa ⊗ da+Ab ⊗ db+Ac ⊗ dc+At1 ⊗ dt1 +At2 ⊗ dt2), (29)

where
Aa =


0 0

(g2 + 3t2(c − b
2a

))(12a2 − t2) − ∆
b

(3t1t2 − 9t3
2

)(12a2 − t2)

(t1g2 + g1 + (3t1t2 − 9t3
2

)(c − b
2a

))(12a2 − t2) − (a+t1)∆
b

(−9t1t3 + 3t21t2 +
t22
4

)(12a2 − t2)

0

3t22 − 36a2t2

(−3t1t2 +
9t3
2

)(12a2 − t2)

 ,

Ab =


0 0 0

(g2 + 3t2(c − b
2a

))(−2b) (3t1t2 − 9t3
2

)(−2b) 6bt2

(t1g2 + g1 + (3t1t2 − 9t3
2

)(c − b
2a

))(−2b) (−9t1t3 + 3t21t2 +
t22
4

)(−2b) (−3t1t2 +
9t3
2

)(−2b)

 ,

Ac =

 0 0 0
0 0 0
∆ 0 0

 , At1
=

 0 0 0
0 0 0
0 ∆ 0

 .

At2
=


0

g1 − 9t3
2

(c − b
2a

) + (g2 + 3t2(c − b
2a

))(−a)

t1g1 + g3 + (
t22
4

− 9t1t3
2

)(c − b
2a

) + (t1g2 + g1 + (3t1t2 − 9t3
2

)(c − b
2a

))(−a)

0 0

− 9t1t3
2

+
t22
4

+ (3t1t2 − 9t3
2

)(−a)
9t3
2

+ 3at2
t1t22

2
−

9t21t3
2

− 3t2t3
8

+ 9at1t3 − 3at21t2 −
at22
4

9t1t3
2

−
t22
4

+ (−3t1t2 +
9t3
2

)(−a)

 ,

If we express Rτ as ua
∂
∂a + ub

∂
∂b + uc

∂
∂c + ut1

∂
∂t1

+ ut2
∂
∂t2

, then the condition (3) will lead to the equality

1

∆
(Aaua +Abub +Acuc +At1ut1 +At2ut2) =

0 0 0
0 0 −1
0 0 0

 .

Then after solving the equation, one may get ua, ub, uc, ut1 , ut2 . Similarly one can get va, vb, vc, vt1 , vt2 . □

8 Generalized period domain

In this section we slightly modify the concept of generalized period domain introduced in [19, Section 1], see
also [21, Chapter 8, 11], to our context of mixed Hodge structures. This period domain comes with an action
of a discrete group (the homology group) and the action of the algebraic group G described in Subsection 5.3.
The classical Griffiths period domain is obtained as the quotient by this algebraic group. There the values of
the period map are defined, and it is a biholomorphism. Using the period map we finish the proof of Theorem
1.2.

8.1 Homology group

Let X be an abelian variety of dimension g with two marked points Y = {O,P}. Writing X = Cg/Λ, we can
produce a natural basis δ1, . . . , δ2g ∈ H1(X,Z) induced by the generators of Λ. Using the wedge structure of
H∗(X,Z), we can produce all the other homology groups. Since H1(X,Z) ⊆ H1(X,Y,Z), we can add to this
basis some δ0 ∈ H1(X,Y,Z)−H1(X,Z) in order to get a basis for all H1(X,Y,Z) (it is a path connecting O
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with P ). For X a principally polarized abelian variety we can take this basis such that its intersection matrix
is given by

Ψ =

0 0 0
0 0 −Ig
0 Ig 0

 . (30)

Denote ΓZ := Aut(H1(X,Y,Z), 〈·, ·〉) and we have

ΓZ = Sp(2g,Z)⋉Z2g =

{(
1 u
0 A

)
: A ∈ Sp(2g,Z) , u ∈ Z2g

}
.

8.2 Generalized period domain
Now we introduce our generalized period domain Π. The period matrices are of the form

P :=

[∫
δi

αj

]
=

−1 z1 z2
0 x1 x2

0 x3 x4

 ,

where xi ∈ Matg×g and zi ∈ Cg with
z1 /∈ Zgx1 ⊕ Zgx3. (31)

Note that the periods of α0 are zero over all closed paths. The Poincaré duality on GrW1 H1
dR((X,Y )/C) ∼=

H1
dR(X/C) translates into the equation(

0 −Ig
Ig 0

)
=

(
xtr
1 xtr

3

xtr
2 xtr

4

)(
0 −Ig
Ig 0

)(
x1 x2

x3 x4

)
=

(
xtr
3 −xtr

1

xtr
4 −xtr

2

)(
x1 x2

x3 x4

)
(32)

=

(
xtr
3 x1 − xtr

1 x3 xtr
3 x2 − xtr

1 x4

xtr
4 x1 − xtr

2 x3 xtr
4 x2 − xtr

2 x4

)
.

Therefore, the generalized period domain Π is the set of all period matrices P given by the equalities

xtr
1 x3 = xtr

3 x1 , xtr
2 x4 = xtr

4 x2 , xtr
1 x4 − xtr

3 x2 = Ig, (33)
√
−1(xtr

3 x1 − xtr
1 x3) is a positive matrix, (34)

where (34) corresponds to the second Hodge-Riemann bilinear relation. The corresponding Griffiths period
domain D is obtained as the quotient under the action of the algebraic group G. This is

D := Π/G ∼= Cg ×Hg − {(z, τ)
∣∣ τ ∈ Hg, z ∈ Λτ = Zgτ ⊕ Zg} (35)

given by −1 z1 z2
0 x1 x2

0 x3 x4

 7→ (z1x
−1
3 , x1x

−1
3 ).

Note that for k′ = −x−1
3 x4x

tr
3 , we have−1 z1 z2

0 x1 x2

0 x3 x4

1 0 z1k
′ + z2x

tr
3

0 x−1
3 k′

0 0 xtr
3

 =

−1 z1x
−1
3 0

0 x1x
−1
3 −Ig

0 Ig 0

 .

8.3 The period map
In the definition of the moduli space T, the intersection matrix of α1, α2, . . . , α2g is the classical symplectic
matrix. This is minus the left hand side of (32). Therefore, we define the period map by inserting some minus
sign: the period map is defined as

P : T → U,

t 7→ (2πi)−
1
2g

[
(2πi)

1
2g
∫
δj
α0

∫
δj
α1 · · ·

∫
δj
αg −

∫
δj
αg+1 · · · −

∫
δj
α2g

]
,

where U = ΓZ\Π. The issue of the sign problem in [18] is solved by using (−2πi)
1
2 .
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Proposition 8.1. The period map P is a biholomorphism of complex manifolds.

Proof . We denote by T0 the moduli of enhanced principally polarized abelian varieties (without the marked
points), Π0 be the corresponding generaliazed period domain and U0 := Sp(2g,Z)\Π. Let also

P0 : T0 → U0 := Sp(2g,Z)\Π

be its corresponding period map. It is known that P0 is a biholomorphism, see for instance [21, 9]. Moreover,
we have the following diagram

T U

T0 U0

P //

P0 //

π

��

ρ

��

(36)

where π and ρ are the natural projection maps. Hence, to see that P is also a biholomorphism it is enough
to show that it is a biholomorphism restricted to the fibers of π and ρ. For every t0 ∈ T0

π−1(t0) ∼= (Xt0 − {O})×Cg

On the other hand, if

P0(t0) =

(
x1 x2

x3 x4

)
then we can identify

ρ−1(P0(t0)) = ΓZ\{(z1, z2) ∈ Cg ×Cg
∣∣ z1 /∈ Zgx1 ⊕ Zgx3}

∼= ((Cg/(Zgx1 ⊕ Zgx3))− {O})×Cg.

And the result follows noting that under the above identifications P = AJ × idCg , where

AJ : P ∈ Xt0 7→ z1 =

(∫ P

O

α1, . . . ,

∫ P

O

αg

)
∈ Cg/(Zgx1 ⊕ Zgx3)

is just the usual Abel-Jacobi isomorphism.

8.4 τ-map

In this subsection we will introduce the key map which explains our choice of the constant Gauss-Manin
matrices of Theorem 1.2. This is the τ -map, which corresponds to a section of the quotient Π/G. In our
context it is defined as

τ̃ : Hg ×Cg − {(τ, z)
∣∣ τ ∈ Hg, z ∈ Λτ = Zgτ ⊕ Zg} → Π,

(τ, z) 7→

−1 z 0
0 τ −Ig
0 Ig 0

 .

Since we have used the letter τ for τ ∈ Hg, we have named this map τ̃ . Its image is called the τ -locus.
Recalling the definition of the period map, it is elementary to see that

dP = PAtr, (37)

where A is the Gauss-Manin matrix associated to the frame [α0, α1, . . . , α2g]. Restricting (37) to the τ -locus
we have

A = (P−1dP)tr = (dP)trP−tr

and
Cij := A

(
∂

∂τij

)
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which is the constant matrix such that all the entries are zero except the entries (i+ 1, g + j + 1) and
(j + 1, g + i+ 1) which are −1. Similarly, we have

Ck := A

(
∂

∂zk

)
which is the constant matrix such that all the entries are zero except except the entry (k + 1, 1) which is
−1. In consequence, the vector fields determined by Theorem 1.2 are tangent to the τ -locus. In other words,
in the case of elliptic curves, the coordinates of T restricted to the τ -locus, are solutions to the modular
differential equations defined by Rz and Rτ of Theorem 1.3.

8.5 Elliptic curves

In this case the τ -locus is given by

−1 z 0
0 τ −1
0 1 0

, where τ ∈ h, z ∈ C− Λτ and

A

(
∂

∂τ

)
=

0 0 0
0 1 0
0 0 0

tr−1 0 z
0 0 1
0 −1 τ

tr

=

0 0 0
0 0 −1
0 0 0

 .

Similarly, we have

A

(
∂

∂z

)
=

0 1 0
0 0 0
0 0 0

tr−1 0 z
0 0 1
0 −1 τ

tr

=

 0 0 0
−1 0 0
0 0 0

 .

8.6 Proof of Theorem 1.2

The main idea behind is the same as the proof [21, Theorem 11.5]. We first observe that by Proposition 8.1
the period map

P : T → U

is a biholomorphism. It is enough to prove the existence and uniqueness of vij and vk in the period domain
U. Since A is defined over Q, by uniqueness, it follows that these vector fields are also defined over Q. Note
that U = ΓZ\Π. Combining [21, Proposition 8.10] and the definition of Cij , Ck in the previous subsection, it
is enough to check the equality

Ctr
ijΨ+ΨCij = 0 , Ctr

k Ψ+ΨCk = 0,

where Ψ is given by (30). This can be proved by the direct computation. For the last statement on Lie
brackets of these vector fields, it follows from [21, Proposition 6.17] and the fact that the Lie bracket of
matrices Cij , Ck’s is zero.

9 Quasi Jacobi forms of index zero

In this last section we use the period map P and the τ -map described in the previous section, to construct the
map t : D → T announced in the introduction. Using this map we lift the solutions of the modular differential
equations on T to Hg ×Cg − {(τ, z)

∣∣ τ ∈ Hg, z ∈ Λτ = Zgτ ⊕ Zg}. Then, using both actions of the discrete
group ΓZ and the action of the algebraic group G, we get the modularity conditions on each solution of the
modular vector fields, revealing to us which quasi Jacobi form of index zero corresponds to each solution.

9.1 Quasi Jacobi forms of index zero

Let S be the moduli space of (X,Y, ω), where X,Y are as before and ω is a holomorphic g-form on X. Recall
that there is a canonical morphism of schemes

T → S, (X,Y, [α0, α1, . . . , α2g]) → (X,Y, α1 ∧ α2 ∧ · · · ∧ αg).

The map is surjective and hence we have an inclusion k[S] ⊂ k[T].
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Definition 9.1. The algebra of algebraic Jacobi (resp. quasi Jacobi) forms of index zero is by definition k[S]
(resp. k[T]). A function f ∈ k[S] is called an algebraic Jacobi-form of weight k and index zero if

f(t • g) = f(t)g−k,∀g ∈ G.

Over the field of complex numbers, we consider the composition t of the maps:

t : Hg ×Cg − {(τ, z)
∣∣ τ ∈ Hg, z ∈ Λτ = Zgτ ⊕ Zg} → Π → U

P−1

−−→ T, (38)

where the first map is the τ -map and the second map is the canonical quotient map. For the definition of
this map without assuming that the period map is a biholomorphism see [21, Section 8.5].

Definition 9.2. The algebra of holomorphic Jacobi (resp. quasi Jacobi) forms of index zero is by definition
the pull-back of the algebra of algebraic Jacobi (resp. quasi Jacobi) forms of index zero by the map
Hg ×Cg → T.

Similar to the case of modular form, we can show that a holomorphic Jacobi form φ of weight k and
index zero satisfies the functional equations:

1. φ(Mτ, z(Cτ +D)−1) = det(Cτ +D)kφ(τ, z), where M =

(
A B
C D

)
∈ Sp(2g,Z),

2. φ(τ, z + λτ + µ) = φ(τ, z), where (λ, µ) ∈ Z2g.

This is also a consequence of inverting the period map in Section 9.3. The second functional equation implies
that holomorphic Jacobi forms which are also holomorphic in the lattice points Λτ are necessarily constant
in z, and so they are classical quasi modular forms.

9.2 Classical generators

We recall some classical quasi Jacobi forms of index zero. The first typical cases are classical modular forms,
for example, the Eisenstein series

E2i = 1 + bi

∞∑
n=1

∑
d|n

d2i−1

 qn , (b1, b2, b3) = (−24, 240,−504), (39)

where q = e2πiτ . Let (τ, z) ∈ H×C and let y = −e2πiz and q = e2πiτ . We let

F (τ, z) =
θ1(τ, z)

η3(τ)
= (y1/2 + y−1/2)

∏
m≥1

(1 + yqm)(1 + y−1qm)

(1− qm)2
(40)

where the expansion is considered in the region |y| < 1, and the logarithmic derivative

J1(τ, z) = y
d

dy
logF (y, q) (41)

and the Weierstrass elliptic function together with its derivative

℘(τ, z) =
1

12
− y

(1 + y)2
+
∑
d≥1

∑
m|d

m((−y)m − 2 + (−y)−m)qd, ℘
′
(τ, z) = y

d

dy
℘(τ, z). (42)

see [26, Appendix B]. We remark that E2k(τ), ℘(τ, z), ℘
′
(τ, z) are index zero Jacobi forms and J1(τ, z) is a

quasi Jacobi form. Moreover they can have a pole in the fundamental region {x+ yτ | 0 ≤ x, y < 1} only at
z = 0.
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9.3 Proof of Theorem 1.4

The statement for t1, t2, t3 follows from [18, Section 6.4]. We compute the transformation law for ã := a ◦ t, b̃ :=
b ◦ t, c̃ := c ◦ t, t̃i := t1 ◦ t, i = 1, 2, 3 at first. Note that the difference between the period map in this text and
the mentioned reference is given by the action of the element

(
i−1 0
0 i

)
of the algebraic group used in this

reference. This transforms (t1, t2, t3) into (−t1, t2,−t3). Let A =

1 λ µ
0 α β
0 γ δ

 ∈ SL2(Z)⋉Z2. Then we have

an equality 1 λ µ
0 α β
0 γ δ

−1 z 0
0 τ −1
0 1 0


=

−1 z+λτ+µ
γτ+δ 0

0 ατ+β
γτ+δ −1

0 1 0

1 0 RA(τ, z)
0 γτ + δ −γ
0 0 1

γτ+δ

 ,

(43)

where g =

1 0 RA(τ, z)
0 γτ + δ −γ
0 0 1

γτ+δ

 ∈ G and RA(τ, z) =
λδ−µγ−zγ

γτ+δ . We have

ã(τ, z) = a(i(τ, z)) = a

(
i

(
ατ + β

γτ + δ
,
z + λτ + µ

γτ + δ

)
g

)
=(a • g)

(
i

(
ατ + β

γτ + δ
,
z + λτ + µ

γτ + δ

))
= (γτ + δ)−2ã

(
ατ + β

γτ + δ
,
z + λτ + µ

γτ + δ

) (44)

Hence ã satisfies the first two properties of weak Jacobi forms for k = 2,m = 0. For the transfomation law of
c̃, consider the following three type generators of SL(2,Z)⋉Z2:

H =

1 λ µ
0 1 0
0 0 1

 , T =

1 0 0
0 1 1
0 0 1

 , S =

1 0 0
0 0 −1
0 1 0

 .

Using the equality (43), one may find that

RH = λ, RT = 0, RS = − z

τ
.

Recall that g ∈ G acts on c by c • g = k−1c+ v. Similar considerations (equality (44)) as above yields that

c̃(τ, z + λτ + µ) = c̃(τ, z)− λ (45)
c̃(τ + 1, z) = c̃(τ, z) (46)

c̃

(
−1

τ
,
z

τ

)
= τ c̃(τ, z) + z (47)

In conclusion, the transformation law for a, b, c, t1, t2, t3 coincide with the transformation law for quasi Jacobi
forms ℘ (resp. ℘

′ , J1, E2, E4, E6) of weight 2 (resp. 3, 1, 2, 4, 6) and index zero. Note that ã and b̃ are
holomorphic except at the points (z, τ), where z ∈ Λτ . In other words, for any fixed τ , z = 0 is a pole of ã
and b̃. Because Rz(a) = b and b2 = 4a3 − t2a− t3, the functions ã and b̃ are elliptic functions of pole order
respectively 2 and 3 at z = 0, and hence, up to constant they are equal to ℘ and ℘

′ . The computation of
those constants also follows from b2 = 4a3 − t2a− t3. It remains to prove the theorem for c̃. Through (3) and
(4), we know that ã, b̃, c̃, t̃1, t̃2, t̃3 form a solution of −Rτ and Rz. These are the same differential equations
satisfied by J1, ℘ and ℘

′
, E2, E4 computed in [26, Lemma 48] (after inserting the 2πi factors). It is easy to

see that if we have two solutions of −Rτ and Rz with the same t1, t2, a, b then their c is also the same. □
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9.4 The Serre-Jacobi derivative

The algebra of classical modular froms is not closed under the derivative ∂
∂τ , but the modularity can be

recovered by adding a multiple of E2. We then get a differential operator on modular forms, which is called
the Serre derivative. If we identify the algebra of quasi modular forms with C[t1, t2, t3], the Serre derivative
can be defined as

∂S : f → ∂τf − (wf − sf )t1f,

where wf is the weight of f and sf is the depth or differential order (degree in t1) of f . For example,
Ramanujan differential equations, see [18, Proposition 4.1], is equivalent to

∂S(t1) = − t2
12

, ∂S(t2) = −6t3, ∂S(t3) = − t22
3
.

For even weight Jacobi forms, Oberdieck [25, Lemma 10] defines the similar differential operator, which is
called the Jacobi-Serre derivative. We slightly modify such a diffential operator as follows. We first note that
a solution of Rτ and Rz is given by

−(2πi)℘(τ, z) , i
3
2 (2πi)

3
2℘

′
(τ, z) , −i(2πi)

1
2 J1(τ, z),

2πi

12
E2(τ) , 12

(
2πi

12

)2

E4(τ) , 8

(
2πi

12

)3

E6(τ),

which we denote by a, b, c, t1, t2, t3. We define

∂J : C[a, b, c, t1, t2,
1

∆
] → C[a, b, c, t1, t2,

1

∆
]

as follows:
∂J(f) = ∂τf − (wf − sf )t1f − c∂zf,

for f ∈ C[a, b, c, t1, t2, 1
∆ ] , where kf is the weight of f and sf is the degree in t1 variable.

Proposition 9.3. The Serre-Jacobi derivative ∂J(f) does not increse the degree in t1 and c. It increases the
weight by 2.

Proof . First, note that

∂J(a) = −2a2 +
t2
3
, ∂J(b) = −3ab, ∂J(c) = − b

2
− ct1, ∂J(t1) = − t2

12
, ∂J(t2) = −6t3

We need to consider polynomials of the form f := tn1P (a, b, c, t2) (resp. f := cnP (a, b, t1, t2)), where P is
homogeneous, and observe that ∂J(f) does not increase degree in t1 (resp. c). The computation is easy and
it is left to the reader.

10 Last comments

There are many directions that we could work fruther. We do not know what kind of modular form theory
we get if we consider moduli spaces of elliptic curves with more than two marked points. This might lead into
a natural generalization of Jacobi forms. Another question is the geometrization of algebra of Jacobi forms
of arbitrary index. This is under investigation by the first two authors, and the novelty is the consideration
of limit mixed Hodge structures in our framework. The applications of our geometric view toward modular
forms range from reinterpretation of BCOV anomaly equation, see [1] to new parameter spaces for Hodge
loci, see [21]. We hope that more arithmetic applications will arise in the future.
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