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We prove that a logarithmic foliation corresponding to a generic line arrangement of

d + 1 ≥ 3 lines in the complex plane, with pairwise natural and co-prime residues, is a

smooth point of the center set of plane foliations (vector fields) of degree d.

1 Introduction

The present paper is a contribution to the classical center-focus problem (the problem

of distinguishing between a center and a focus of a plane vector field). We consider the

set of complex polynomial plane vector fields of degree at most d, or equivalently, affine

polynomial degree d foliations in C2:

F(d) = {
F(P(x, y)dy − Q(x, y)dx) | P, Q ∈ C[x, y], deg(P), deg(Q) ≤ d

}
.

We identify F(d) to the set of coefficients of the polynomials P, Q (that is to say to

C(d+1)(d+2)). We say that a given foliation (a point in F(d)) has a Morse center at p ∈ C2,

or simply a center, if it allows a local analytic first integral, which has a Morse critical

point at p. It is well known that the Zariski closure of the set of foliations with a Morse

center, the so-called center set, is an algebraic set; see [15, 16]. We denote this center set
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2 L. Gavrilov and H. Movasati

by M(d) ⊂ F(d). It has a canonical decomposition (up to a permutation)

M(d) = ∪iL̄i, L̄i �⊆ L̄j, i �= j (1)

into closed irreducible algebraic varieties L̄i. The center-focus problem in this setting

is to describe the irreducible components L̄i of the center set M(d). The problem is

largely open, except in the quadratic case (d = 2). It follows from Dulac’s computation

of quadratic systems with a center [6] that M(2) has four irreducible components,

parameterized via their explicit first integrals. In the case, d > 2 only some irreducible

components of M(d) are known. For a conjecturally complete list of cubic systems with

a center, we refer the reader to [3, 4, 22, 23].

Suppose that L ⊂ M(d) is an irreducible algebraic set (algebraic variety) formed

by foliations with a center. To show that its Zariski closure L̄ is also an irreducible

component of M(d), like in (1), is a local problem. Therefore, we may choose a suitable

point F0 ∈ L ⊂ M(d) and compare the tangent space of L at F0 and the tangent space

of M(d) at F0. If the dimension of these spaces are the same, then the condition L �⊆ Lj

(1) is certainly satisfied and therefore L is an irreducible component of the center set

M(d).

The computation of the tangent cone of M(d) (even if M(d) is not known!) turns

out to be possible by making use of the machinery of Melnikov functions, as shown

by Ilyashenko [12] (in the Hamiltonian case), Movasati [16, 17] (the case of logarithmic

foliations), Zare [20] (pull back foliations), and Gavrilov [8] (centers of Abel equations).

In all these cases it has been shown that the corresponding irreducible algebraic set of

systems with a center is indeed an irreducible component of M(d).

In the present paper we focus our attention to logarithmic foliations of the form

F0 : l1l2 . . . ld+1

(
d+1∑
i=1

λi
dli
li

)
= 0, d ≥ 2, (2)

where λi ∈ C∗ and li = li(x, y) are complex bivariate polynomials of degree one.

Obviously, the foliation F0 has a first integral of the form

lλ1
1 lλ2

2 . . . l
λd+1
d+1 . (3)

In what follows, we suppose that the polynomials li define a line arrangement without

triple intersection points (a general line arrangement) and that λi �= 0. The set of such

foliations is denoted by L(1d+1) = L(1, 1, . . . , 1). The Zariski closure L̄(1d+1) ⊂ F(d)
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Smooth Points of the Space of Plane Foliations with a Center 3

is an irreducible component of the corresponding center set M(d) [17]. If another

irreducible component of M(d) is of dimension at least equal to the co-dimension of

L(1d+1), then it certainly intersects L̄(1d+1). Therefore, the study of the structure of

the center set in a small neighbourhood of L̄(1d+1) implies also a global information

on M(d). Note that if the foliation F0 belongs to the intersection of L(1d+1) with

another irreducible component of the center set, then F0 is a non-smooth point of M(d).

This motivates the following problem, which is partially solved in the paper: Classify

the smooth points of M(d) along the irreducible component L(1d+1). We prove the

following:

Theorem 1. Let λi, i = 1, . . . , d + 1, be mutually prime distinct natural numbers.

Let li = li(x, y), i = 1, . . . , d + 1, be linear bivariate polynomials defining a generic

line arrangement (generic means that there are no triple points). Then the logarithmic

foliation F0 defined by (2) is a smooth point of the center set M(d).

If F0 is a general logarithmic foliation of the form (2) such that F0 is a smooth

point of the center set M(d), then obviously every small degree d deformation with a

persistent center is also a deformation by logarithmic foliations. Therefore, the above

theorem is close to another classical result, which we recall now. Consider the set L(d+
1) ⊂ M(d) formed by Hamiltonian foliations F : dH = 0 where H is an arbitrary degree

d+1 bivariate polynomial. Suppose in addition that H is a “Morse plus” polynomial (has

only Morse critical points with distinct critical values). It is proved by Ilyashenko [12],

that if in a deformation of the Morse plus Hamiltonian foliation dH the center persists,

then this deformation is Hamiltonian too. The proof implies also that F : dH = 0 is a

smooth point of M(d).

It is clear that when two irreducible components of M(d) intersect at F0, then

F0 is a non-smooth point of M(d). It is less known that even when F0 does not belong to

different irreducible components of M(d), it can still be a non-smooth point of M(d).

This happens even in the quadratic case (d = 2); for an example, see the last section of

the paper.

Our final remark is that it follows from the computation of the tangent cone

(which turns out to be a tangent space) that L(1d+1) is an irreducible component of the

center set M(d). This proof is quite different compared to the original proof [17], as the

tangent cone to M(d) is computed at a smooth point F0 (like in [12]).

The article is organized in the following way. In Section 2, we develop the

Picard–Lefschetz theory of the fibration of the polynomial xnym where n, m are natural

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnac312/6821304 by IM

PA-Instituto M
atem

atica Pura e Aplicada user on 16 N
ovem

ber 2022



4 L. Gavrilov and H. Movasati

numbers (not necessarily coprime). In Section 3 we study the topology of the fibers of f

f = ln1
1 ln2

2 . . . l
nd+1
d+1 ,

where li are lines in a general position and ni are positive integers without common

divisors. (We do not suppose that ni, nj are relatively prime). As a by-product we

get a genus formula for the fibers of f . In Section 4 we generalize a theorem due to

A’Campo and Gusein-Zade [1, 10] in the context of a logarithmic foliation defined by the

polynomial f . In Section 5 we compute the orbit of a vanishing cycle under the action of

the monodromy in the homology bundle of f . As a by product, this implies that the orbit

of this vanishing cycle contains the homology of the compactified fiber. This is the only

place where we use the fact that nis are pairwise coprime. Summing up all these results

leads to the proof of Theorem 1 given in Section 6.

2 The Picard–Lefschetz Formula of a Plane Non-Isolated Singularity

The first attempt to describe Picard–Lefschetz theory of fibrations with non-reduced

fibers is done in [5]; however, the main result of this paper (Theorem 4.4) is not

applicable in our context, and so we elaborate Theorem 2, which explicitly describe

a kind of Picard–Lefschetz formula.

In this section we consider the local fibration f : (C2, 0) → (C, 0) given by f =
xmyn, where m, n are two positive integers. We will use the notation

e := (m, n), p := m

e
, q := n

e
,

where (m, n) = gcd(m, n) means the greatest common divisor of m and n. It might be

easier to follow the content of the present section for the case e = 1. For t ∈ R+, let

� :=
{
(r, s) ∈ R+ × R+,

∣∣∣rmsn = t
}

.

We consider it as an oriented path in f −1(t) for increasing s for which we use the letter

γ . We consider the following parameterization of the fiber f −1(t) for t ∈ R+:

R × � → f −1(t), h = 0, 1, 2, . . . , e − 1 (4)

(θ , r, s) �→ (x, y) = (re2π i(θq+ h
m ), se−2π iθp).
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Smooth Points of the Space of Plane Foliations with a Center 5

The fiber f −1(t) consists of e cylinders indexed by h, and the above parametrization is

periodic in θ with period 1.

Definition 1. By a straight path in f −1(t) we mean a path that is the image of a path

α in R × � under the parameterization (4) and with the following property: α maps

bijectively to its image under the projection R × � → R.

For simplicity, we consider the parameters with |t| < 1 and define Lt := f −1(t)∩B,

where B is the complex square {(x, y) ∈ C2 | |x| ≤ 1, |y| ≤ 1}. In this way, Lt is a

union of e compact cylinders, let us say Lt = ∪e−1
h=0Lt,h. A circle in each cylinder Lt,h

is parameterized with fixed (r, s) and for (r, s) = (1, |t| 1
n ) and (|t| 1

m , 1) we get two circles

of its boundary and denote them by δ1,h and δ2,h, respectively, and give them a natural

orientation coming from θ ∈ [0, 1] running from 0 to 1. We denote by δh : [0, 1] → Lt,h the

closed path given by the parameterization (4) and fixed (r, s). This is homotopic to δ1,h

and δ2,h. We also denote by γh the non-closed path in Lt,h given by the parameterization

(4) and θ = 0. Note that γ := γ0 is the only path from (1, t
1
n ) to (t

1
m , 1) in the real

plane R2.

We consider in B two transversal sections 	1 := {x = 1}, 	2 := {y = 1} to the x

and y-axis, respectively, and define 	 := 	1 ∪ 	2. The intersections {|x| = 1} ∩ Lt and

{|y| = 1} ∩ Lt are the union of circles ∪e−1
h=0δi,h for i = 1, 2 respectively, and they have the

following finite subsets:

	1 ∩ Lt = {
ζk,h, k = 0, 1 · · · , q − 1, h = 0, 1, . . . , e − 1

}
,

	2 ∩ Lt = {
ξl,h, l = 0, 1, · · · , p − 1, h = 0, 1, . . . , e − 1

}
,

where

ζk,h := (1, t
1
n e−2π i( km−h

n )), ξl,h := (t
1
m e2π i( ln+h

m ), 1). (5)

For 	1 ∩ Lt we have set θ = mk−h
[m,n] and for 	2 ∩ Lt we have set θ = nl

[m,n] , where [m, n] :=
lcm(m, n) is the lowest common multiple of m and n. We have a natural action of the

multiplicative group of n-th (resp. m-th) roots of unity on the set 	1 ∩ Lt (resp. 	2 ∩ Lt),

which is given by multiplication in the second coordinate.

Proposition 1. The relative homology group H1(Lt, Lt ∩ 	;Z) is freely generated Z-

module of rank n + m.
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6 L. Gavrilov and H. Movasati

Fig. 1. A cylinder and straight path.

Proof. This follows from the long exact sequence in homology of the pair Lt, Lt ∩ 	:

0 → H1(Lt) → H1(Lt, 	 ∩ Lt) → H0(	 ∩ Lt) → H0(Lt) → 0

‖ ‖ ‖ ‖
Ze Zm+n Zm+n Ze

�

Since p and q are coprime positive integers, we can find a, b ∈ Z such that

ap − bq = 1, 0 ≤ a ≤ q − 1, 0 ≤ b ≤ p − 1,

for p, q ≥ 2. Equivalently, am − bn = e. We also consider the following cases:

{
a = 1, b = 0 if p = 1

a = 1, b = p − 1 if q = 1
.

If we change the order of p and q we only need to replace a and b with q − a and p − b,

respectively.

Theorem 2. Let γ be a straight path that connects ζk,h ∈ Lt ∩ 	1 to ζl,h ∈ Lt ∩ 	2:

{
ζk,h+1 to ξl,h+1 if h + 1 < e,

ζk−a,0 to ξl−b,0 if h + 1 = e.
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Smooth Points of the Space of Plane Foliations with a Center 7

In particular, we have the classical Picard–Lefschetz formula

M [m,n](γ ) = γ + δ, (6)

where [m, n] is the lowest common multiple of m and n.

Proof. We consider the differential form ω := mdx
x = −ndy

y in Lt, where the last

equality is written restricted to Lt. We observe that

∫
γh

ω = ln(t),

∫ δ(θ+α)

δ(θ)

ω = 2π i[m, n]α, and hence
∫

δ

ω = 2π i[m, n].

Actually, in the first formula γ can be any path with parametrization in (4) with fixed θ .

We have

ζk,he2π i 1
n = (1, e−2π i( km−(h+1)

n )) =
{

ζk,h+1 if h + 1 < e

(1, e−2π i (k−a)m
n ) = ζk−a,0 if h + 1 = e

(7)

and

ξl,he2π i 1
m = (e−2π i( ln+(h+1)

m ), 1) =
{

ξl,h+1 if h + 1 < e

(1, e−2π i (l−b)n
m ) = ξl−b,0 if h + 1 = e

. (8)

For the equalities in the case h + 1 = e we have used e = am − bn. The above equalities

imply that M(γ ) has the right starting and end points as announced in the theorem. By

Cauchy’s theorem, we have

∫
γ

ω =
∫

γh

ω + 2π i[m, n]
nl

[m, n]
− 2π i[m, n]

mk − h

[m, n]
=

∫
γh

ω + 2π i(nl − mk + h).

Now, we consider a straight path γ̃ in Lt,h+1 that connects (7) to (8). A similar formula

for γ̃ as above, and knowing that
∫
γh

ω = ∫
γh+1

ω = ln(t), give us

∫
γ̃

ω =
∫

γ

ω + 2π i,
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8 L. Gavrilov and H. Movasati

Fig. 2. A passage from one transversal section to another: n = 9, m = 6.

which implies M(γ ) = γ̃ for h + 1 < e. For h + 1 = e this follows from

∫
γ̃

ω =
∫

γ0

ω + 2π i[m, n]
n(l − b)

[m, n]
− 2π i[m, n]

m(k − a)

[m, n]
=

∫
γ0

ω + 2π i(nl − mk + e).

As a corollary we can get the classical formula for the monodromy M [m,n](γ ) in (6). We

know that Me(γ ) is the straight path connecting ζk−a,0 to ξl−b,0, and so its pq times

iteration is the straight path connecting ζk−pqa,0 to ξl−pqb,0. Since ap − bq = 1 we

get (6). �

In order to make the content of this section more accessible for applications,

we have made Figure 3 and an example of it in Figure 2, which shows the deformation

retract of Lt for which one can describe the action of monodromy. The points in 	i ∩
Lt, i = 1, 2 are ordered according to the usual order of roots of unity and we identify

them with 	1 := {0, 1, 2, . . . , n − 1} and 	2 := {0, 1, 2, . . . , m − 1}, respectively. In this way,

	1 ∩ Lt,h = {h, e + h, 2e + h, . . . , (q − 1)e + h},
	2 ∩ Lt,h = {h, e + h, 2e + h, . . . , (p − 1)e + h}.

In 	1 ∩ Lt,h and 	2 ∩ Lt,h we take minus h and divide by e and connect them to 	1,h :=
{0, 1, 2, . . . , q − 1} and 	2,h := {0, 1, . . . , p − 1}, respectively. We consider another copy

	′
1,h of 	1,h and connect x ∈ 	1,h to x(−p)−1 ∈ 	′

1,h modulo q and another copy 	′
2,h of

	2,h connecting x ∈ 	2,h to xq−1 ∈ 	′
2,h modulo p. Now, all the points of 	′

i,h, i = 1, 2 are

connected to a single point ph for which we also consider a loop δh at ph with orientation.

We now describe the monodromy. Consider a path γ from ie + h ∈ 	1 to je + h, which

turns in δh, sγ ∈ Z times. If h < e−1, the monodromy M(γ ) of γ is a similar path starting

from ie + h + 1 and je + h + 1 and turning in the loop δh+1, sγ times. If h = e − 1, then
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Smooth Points of the Space of Plane Foliations with a Center 9

Fig. 3. The passage from 	1 to 	2.

M(γ ) starts from ie and ends in jb. If γ passes through k ∈ 	′
1,e−1 and l ∈ 	′

2,e−1, then

M(γ ) passes through k − a ∈ 	′
1,0 and l − b ∈ 	′

2,0. The number of turns in δ0 of M(γ ) is

sγ +
[

k−a
q

]
+

[
l−b
p

]
.

3 Product of d + 1 Lines in General Position

We consider the polynomial

f = ln1
1 ln2

2 . . . l
nd+1
d+1 , (9)

where li are lines in a general position and ni are positive integers without common

divisors. We do not suppose that ni, nj are relatively prime. Let

Lt = {(x, y) ∈ C2 : f (x, y) = t}.

Theorem 3. If t is a regular value of f , then

H1(Lt,Z) ∼= Z(d−1)(n1+n2+···+nd+1)+1. (10)

Proof. We fix a fiber X := Lt with t near to zero, consider the projection in x coordinate

π : X → C, (x, y) → x, and assume that the parallel lines x =constant are transversal to

lines li and any two intersection points of li’s have not the same x-coordinate. It turns

out that the set of critical points of π is a union of d(d+1)
2 sets Pij, which is near to

li ∩ lj. Let Cij = π(Pij) and consider a regular point b ∈ C for π and 	 := π−1(b). This
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10 L. Gavrilov and H. Movasati

is a union of
∑d+1

i=1 ni distinct points. Let also Dij be a small disc around Cij and bij

be a point in its boundary. A classical argument in the topology of algebraic varieties

involving deformation retracts and excision theorem (see for instance [14, 5.4.1] and [18,

Section 6.7]) gives us

H1(X, 	,Z) = ⊕ijH1(π−1(Dij), π
−1(bij),Z). (11)

Now π−1(Dij) is a union of (ni, nj) cylinders with ni + nj points from π−1(bij) in its

boundary (as in Section 2) and (
∑d+1

k=1 nk) − ni − nj discs, each one with one point from

π−1(bij) in its boundary. Using Proposition 1 we conclude that

H1(X, 	) ∼= Zd(n1+n2+···+nd+1).

The identity (10) follows from the long exact sequence of the pair X, 	

0 → H1(Lt) → H1(Lt, 	) → H0(	) → H0(Lt) → 0

‖ ‖ ‖
Zd(n1+n2+···+nd+1) Zn1+n2+···+nd+1Z

�

Corollary 1. The genus of the curve Lt equals

1

2

(
(d − 1)n + 2 −

d+1∑
i=1

(ni, n)

)
, n :=

d+1∑
j=1

nj,

where f := ln1
1 ln2

2 · · · l
nd+1
d+1 and t is a regular value of f .

Proof. By genus of Lt we mean the genus of the compactified and desingularized curve.

The hypothesis gcd(n1, n2, . . . , nd+1) = 1 and t is not a critical value of f , together imply

that the curve f = t is an irreducible polynomial. The curve f = t intersects the line at

infinity P1 at the intersection pi of the lines li = 0 with P1. Near pi our curve has (ni, n)

local irreducible components because

f − t = (aix + byi + ciz)ni

zn gi,

where li = aix + byi + ci and gi is a holomorphic function near pi with g(pi) �= 0. �

The genus of the degree three curve {xy(x + y − 1) = 1} is one. The genus of the

degree six curve {xy2(x + y − 1)3 = 1} is also one.
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Smooth Points of the Space of Plane Foliations with a Center 11

Fig. 4. Deformation retract of Lt.

Fig. 6. Deformation retract of Lt for four lines with multiplicities 1,2,3,4.

We are going to define a graph G with
∑

i�=j(ni, nj)+
∑d+1

i=1 ni vertices. The (ni, nj)

vertices corresponds to the intersection points li ∩ lj. The ni vertices corresponds to the

intersection of the line 	 in the proof of Theorem 3 with the fiber Lt, t near to zero. Each

group of (ni, nj) vertices are connected with ni edges, each one with ni
(ni,nj)

edges, to ni

vertices in the second group corresponding the intersection of 	 with Lt near li = 0. This

description is trivially unique for (ni.nj) = 1. If (ni, nj) �= 1 we have to determine the

decomposition of ni vertices into ni
(ni,nj)

sets of cardinality (ni, nj). This might be done

using the description of the deformation retract at the end of Section 2. Moreover, we

consider a loop for each (ni, nj) vertices. This will correspond to the saddle vanishing

cycles. From the proof of Theorem 3 it follows that

Proposition 2. The graph G is a deformation retract of Lt.
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12 L. Gavrilov and H. Movasati

Fig. 5. Getting the graph Ǧ from G.

For f and lines li defined over real numbers, there is another way to describe

a simpler graph Ǧ that shows the homotopy type of Lt. Each vertex in the ni group is

connected with d edges to d vertices corresponding to the intersection of li with other

lines. We order them as they meet li. We replace this with the one in Figure 5 and we get a

graph Ǧ with
∑

i�=j(ni, nj) vertices, which can be described easily using the real geometry

of lines as follows. We cut out infinite segments of the union of lines ∪d+1
i=1 li ⊂ R2, replace

each intersection point li ∩ lj with (ni, nj) vertices, and replace each finite segment that

connects li ∩ lj to li ∩ lk (and does not intersects other lines in its interior) with ni edges

connecting (ni, nj) vertices with (ni, nk) vertices, provided that each vertex in the first

and second group has only ni
(ni,nj)

and ni
(ni,nk)

edges, respectively. Moreover, we consider

a loop in each (ni, nj) vertices. We obtain the new graph Ǧ.

Remark 1. The deformation retracts above appeared first in the study of the topology

and the monodromy of the logarithmic foliation with first integral f = xpyp(1 + x + y)

in [2] in relation with the classical paper [19].

4 Computation of Intersection Indices

The computation of intersection indices between vanishing cycles is an important ingre-

dient in the study of deformations of singularities. By analogy we define intersection

index for paths in the leafs of a holomorphic foliation. Our main result Theorem 4

in this section is a generalization of a theorem by Gusein-Zade and A’Campo; see

[17, Section 2].

Let us consider a holomorphic foliation F(ω) in R2 given by a polynomial 1-form

ω with real coefficients. We consider an open subset U ⊂ R2 with exactly two saddle
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Smooth Points of the Space of Plane Foliations with a Center 13

Fig. 7. Two saddles.

singularities O1 and O2 of F and assume that O1 and O2 have a common separatrix.

We assume that the 1-forms ω near Oi, i = 1, 2 in local coordinates (xi, yi) is given by

the linear equation xidyi + αiyidxi, αi > 0, and so, it has the meromorphic local first

integral yix
αi
i . In a neighborhood of Oi, the foliation has two separatrices xi = 0 and

yi = 0. The common separatrix is given by yi = 0. We consider transversal sections to F
at the points b0, b1, b2 respectively in the common separatrix, x1 = 0 and x2 = 0. Let γ0

be the real trajectory of F , which connects a point p1 ∈ 	1 to p2 ∈ 	2 crossing the point

p0 ∈ 	0; see Figure 7.

We consider now the complex foliation F in C2 and use the same notation

for complexified objects. We consider a path λ : R → 	0, which has period one and

restricted to [0, 1] turns once around b0 anticlockwise. The path γ0 from p1 to p2 can be

lifted to a unique path γt in a leaf of F , which crosses λ(t) ∈ 	0 and connects q1(t) ∈ 	1

to q2(t) ∈ 	2. This lifting in general is not possible; however, in our situation this follows

from the fact that O1 and O2 are linearizable and αi ∈ R. Since αi > 0, the trace of qi(t)

in 	i will give us paths λi in 	i turning around bi anticlockwise. If we assume that λ(1
2 )

is again in the real domain R2 and it lies in a real leaf γ of F in the other side of the

common separatrix, then we have the main result of this section.

Proposition 3. With the notations as above

〈γ 1
2
, γ 〉 = +1, (12)

where we have oriented γ from O1 to O2.
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14 L. Gavrilov and H. Movasati

Fig. 8. Projection into the common separatrix.

Proof. We look at the projection π(γt) of the path γt in the common separatrix and

we see Figure 8. The projection can be constructed in a C∞ context by gluing the local

transversal foliations dxi = 0, i = 1, 2. The intersection number is not changed under

this projection and (12) follows. �

Remark 2. The above proof uses arguments close to the one used by Gusein-Zade

[10] for germs of isolated singularities. A second proof can be produced by making

use of more elaborated arguments of A’Campo [1, pp. 23–24] as follows. Consider the

complex conjugate path γ 1
2

= γ− 1
2
. As the complex conjugation inverses the orientation

then 〈γ− 1
2
, γ 〉 = −〈γ 1

2
, γ 〉. On the other hand, the class γ 1

2
−γ− 1

2
can be represented by two

disjoint paths α1, α2 connecting 	1 to 	1 and 	2 to 	2, respectively. These paths define

geometrically the holonomy of the two vertical separatrices. It remains to compute the

intersection index of α1 (representing holonomy) and the class of γ 1
2

(representing the

Dulac map near O1). This is of course a local computation in a neighborhood of O1 and

it follows from the local description of a complex saddle that their intersection index

equals one. Similar computation holds for α2 from which the result follows.

A third proof can be obtained by deformation. Namely, it suffices to note that

the intersection index depends continuously on parameters, hence it is a constant. Such

a deformation is possible in any compact interval for the parameter, provided that the

initial and end points of the path on the cross-section 	1 and 	2 are sufficiently close

to the vertical separatrix. Therefore, it is enough to check the claim of the theorem for

some toy example, like df = 0 with f = (x2 − 1)y, in which an explicit computation of

different paths and their deformations is possible.

Remark 3. Proposition 3 holds true without the assumption that the saddle are

linearizable (with similar proof). We only need to know the asymptotic behavior of the

Dulac map.
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Smooth Points of the Space of Plane Foliations with a Center 15

5 The Orbit of a Vanishing Cycle of Center Type

Let us consider the polynomial f given by (9). The map f : C2 → C defines a locally

trivial fibration over the set C\C, where C consists of critical values of f . The set C

is the union of d(d−1)
2 values of critical points of center type (which we assume that

such critical values are distinct) and the critical value 0 over the d(d+1)
2 saddle points,

which are intersection of lines. We choose a point b ∈ C with Im(b) > 0 and fix straight

paths γc, c ∈ C joining b to the points in C (a distinguished set of paths). Let also

hc : H1(Lb,Z) → H1(Lb,Z) be the monodromy along γc until getting near to c, turning

around c anticlockwise and returning to b along γ −1
c . Let δc ∈ H1(Lb,Z) be the center

vanishing cycle along λc, c �= 0. Along γ0 we get
∑

i�=j (ni, nj) saddle vanishing cycles in

H1(Lb,Z). We denote by Lb the curve obtained by a smooth compactification of Lb.

Theorem 4. Assume that ni’s are pairwise coprime. The Q-vector space Oδ ⊂
H1(Lb,Q) generated by the action of monodromy on a fixed center vanishing cycle δ

has codimension d in H1(Lb,Q). Moreover,

Oδ =
{
γ ∈ H1(Lb,Q)

∣∣∣ ∫
γ

dli
li

= 0, i = 1, . . . , d + 1
}

(13)

and the restriction of the map H1(Lb,Q) → H1(Lb,Q) induced by inclusion, to Oδ is

surjective.

Proof. Let S ⊂ H1(Lb,Q) be the Q-vector space generated by saddle vanishing cycles.

We first compute the action of monodromy in H1(Lb,Q)/S. For this we prove that all

center vanishing cycles are in Oδ. Consider center vanishing cycles δ = δc1
, δc2

, the

critical points p1, p2 with f (pi) = ci, which are inside two adjacent polygons P1 and P2

formed by the lines li = 0. Let l1 be the line of the common edge, which has multiplicity

n1. We are in the situation of Proposition 3. The restriction of the map f to 	0 in a local

coordinate z in 	0 is given by z �→ zn1 . Let p0, p̃0 be two points in the real transversal

section 	0 in R2, p0 above and p̃0 under the line l1, and λ as in before Proposition 3. The

image of λ under f |	0
is a path that starts at f (p0) and turns n1

2 times around 0 ∈ C.

The conclusion is that h
[ n1

2 ]+ε

0 (δc1
) has a non-zero intersection with δc2

, where ε = 0 if

f (p0) > 0 and ε = 1 if f (p0) < 0. Using the classical Picard–Lefschetz formula (see

Theorem 2) we conclude that δc2
∈ Oδ. Further applications of Picard–Lefschetz formula

will imply that all center vanishing cycles are in Oδ.
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16 L. Gavrilov and H. Movasati

Our hypothesis on ni’s implies that over the point li ∩ lj we have exactly one

saddle vanishing cycle. For a finite polygon in the complement of ∪d+1
i=1 li in R2, let

a1, a2, . . . , as be the multiplicity of its edges formed by the lines l1, l2, . . . , ls. Let also δ

be the center vanishing cycle inside this polygon. We look δ in the deformation retract

G of Lb in Proposition 2. The monodromy ha1a2···âi···as(δ), where âi means ai is removed,

fixes all the edges of δi except for the i-the edge, and its iteration will replace its i-th

edge with any other ai paths in the deformation retract of Lb. Moreover, any path in

H1(G,Z)/S is a linear combination of center vanishing cycles. The conclusion is that

the action of the monodromy on H1(Lb,Q)/S generates the whole space. By the classical

Picard–Lefschetz formula we have

ha(δ) = δ +
s∑

i=1

a

aiai+1
δi,i+1, a := a1a2 · · · as, s + 1 := 1, (14)

where δi,i+1 is the saddle vanishing cycle over li ∩ li+1. It follows that by the action of

monodromy, we can generate a sum of saddle vanishing cycles as above. It is easy to see

that these elements are linearly independent in H1(Lb,Q). The codimension in S of the

Q-vector space generated by these elements is exactly d.

Let δi,h, i = 1, 2, . . . , d + 1, h = 1, 2, . . . , (n, ni) be the closed cycles around the

points at infinity pi,h of Lb corresponding to the intersection of li with the line at infinity.

An easy residue calculation shows that

∫
δj,h

dli
li

=
⎧⎨
⎩

n−nj
(n,nj)

i = j
−nj

(n,nj)
i �= j

. (15)

This shows that cohomology classes of the d + 1 logarithmic one-forms dli
li

in H1
dR(Lb)

generate a vector space of dimension d (there is one linear relation between these

forms restricted on Lb). The equality (13) follows, as both sides of the equality are of

codimension d and ⊆ is trivially true. Moreover, by (15) we have δi,h − δi,0 ∈ Oδ, i =
1, 2, . . . , (n, ni) − 1 and H1(Lb,Q) is a direct sum of Oδ with the the Q-vector space

generated by δi,0, i = 1, 2, . . . , d. �

Remark 4. A purely topological argument for the last part of the proof of

Theorem 4 can be formulated following [17, Section 2] and it is as follows. Let us

choose the anticlockwise orientation of R2 for the center vanishing cycles. We can give

an orientation to the saddle vanishing cycle δ attached to li ∩ lj in such a way that it

intersects positively the center vanishing cycles in the finite polygons with li ∩ lj vertex.
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Smooth Points of the Space of Plane Foliations with a Center 17

For any line li, let δi be the alternative sum of saddle vanishing cycles in the order that li
intersects others. It turns out that the intersection of δi’s with center vanishing cycles is

zero. Since it is invariant under monodromy h0 around 0, its intersection with all hk(δ),

δ center vanishing cycle, is also zero. The conclusion is that the intersection of δi with

all the elements in H1(Lb,Z) is zero and hence it is in the kernel of H1(Lb,Q) → H1(Lb,Q).

After taking a proper sign for δi, we know that
∑d+1

i=1 δi = 0. Now, it is an elementary

problem to check that δi, i = 1, 2, . . . , d and d(d−1)
2 elements (14) attached to each

polygon are linearly independent and form a basis for the vector space generated by

saddle vanishing cycles.

6 Proof of Theorem 1

Let C[x, y]≤1 be the complex vector space of bi-variate complex polynomials of degree at

most one. The set L(1d+1) ⊂ F(d) of logarithmic foliations (2) is parameterized by the

map

τ : Cd+1 × C[x, y]d+1
≤1 → F(d) (16)

τ(λ1, . . . , λd+1, l1, . . . , ld+1) = l1 · · · ld+1

d+1∑
i=1

λi
dli
li

(17)

and hence it is an irreducible algebraic set.

Let l1, . . . , ld+1 be linear polynomials defining a generic line arrangement on C2,

and let n1, . . . , nd+1 be mutually prime distinct natural numbers. The differential Dτ of

τ at the point (n1, . . . , nd+1, l1, . . . , ld+1) applied to the vector (λ1, . . . , λd+1, p1, . . . , pd+1)

is

l1l2 · · · ld+1

{
d+1∑
i=1

λi
dli
li

+
(

d+1∑
i=1

pi

li

)(
d+1∑
i=1

ni
dli
li

)
+ d

(
d+1∑
i=1

ni
pi

li

)}
. (18)

It is easy to check that if a vector (λ1, . . . , λd+1, p1, . . . , pd+1) is in the kernel of Dτ , then

for every i the polynomial pi is colinear to li. We deduce from this that the d + 1 vectors

(n1, . . . , nd+1, 0, . . . , li, . . . , 0)

form a basis of the kernel of Dτ , and its rank is 3(d+1). In particular, in a neighbourhood

of the point τ(n1, . . . , nd+1, l1, . . . , ld+1), the algebraic set L(1d+1) is smooth of dimension

3(d + 1).
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18 L. Gavrilov and H. Movasati

Let ω0 be the polynomial one-form defined by

ω0 := τ(n1, . . . , nd+1, l1, . . . , ld+1),

where we assume {łi}i to be with real coefficients. We denote by δt ⊂ {f = t} a continuous

family of real vanishing cycles around a real center of ω0, where the parameter t is the

restriction of the first integral f = �d+1
i=1 lni

i to a cross-section to {f = t}. Let

Fε : ωε := ω0 + εω1 + · · · ,Fε ⊂ F(d) (19)

be an arbitrary real one-parameter deformation of F0. As it is well known, the first

return map associated to the family δt and the deformation Fε of F0 takes the form

t → t + ε

∫
δt

ω̃1 + O(ε2), ω̃1 = ω1

l1 · · · ld+1
.

We first prove the following:

Theorem 5. The Melnikov integral M1(t) := ∫
δt

ω1
l1···ld+1

vanishes identically if and only

if the degree d differential one-form ω1 can be written in the form (18), for suitable

linear polynomials pi and positive real numbers λj.

Proof. If ω1 is of the form (18), then we have

ω1

l1 · · · ld+1
= d log �d+1

i=1 lλi
i +

(
d+1∑
i=1

pi

li

)
ω0 + d

(
d+1∑
i=1

ni
pi

li

)

and hence
∫
δt

ω̃1 vanishes identically.

Conversely, if the Abelian integral
∫
δt

ω̃1 vanishes identically in t, then it vanishes

on every other family of cycles, which are in the orbit of δt, and hence on the vector space

Oδt
⊂ H1(Lt) spanned by the orbit. By Theorem 4 the dual of Oδ in H1

dR(Lt) has a basis

given by dli
li

, i = 1, 2, . . . , d. Therefore, there are unique functions λi(t), i = 1, 2, . . . , d,

such that the cohomology class of the form

ω̃1 −
d∑

i=1

λi
dli
li

(20)
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Smooth Points of the Space of Plane Foliations with a Center 19

in H1
DR(Lt) is zero for all t. It is standard to show further that λi(t) are single valued, of

moderate growth, have no poles, and finally tend to constants when t tends to infinity.

Thus, λi are constants, which can be even explicitly computed by making use of (15).

With the same arguments as in [16, Theorem 4.1] we deduce that if a one-form

on Lt is co-homologically zero, then it is relatively exact, that is to say

ω̃1 −
d+1∑
i=1

λi
dli
li

= dP̃ + Q̃ω̃0, (21)

where P̃ and Q̃ have only poles of order ≤ 1 along the lines li = 0 and the line at infinity

and ω̃0 = ω0
l1l2···ld+1

. The crucial observation is that the one-form (21) is logarithmic along

the line at infinity (after compactifying C2 to P2). Namely, ω1 is of (affine) degree ≤ d,

which implies ω̃1 and dω̃1 have a pole of order at most one along the infinite line of P2.

This implies that dQ̃ ∧ ω̃0 has pole order ≤ 1 at infinity, and hence Q̃ is holomorphic

at infinity, and by the equality (21), P̃ is also holomorphic at infinity. The conclusion is

that we can write

P̃ = P

l1l2 · · · ld+1
, Q̃ := Q

l1l2 · · · lf +1
,

where P, Q ∈ C[x, y] are polynomials of degree ≤ d+1. Multiplying the equality (21) with

l1l2 · · · ld+1 and considering it modulo li = 0, we get li|P − Qni. If ni �= nj this implies

that P and Q vanishes in the intersection points li ∩ lj. Knowing the degree of P and Q,

we conclude that both P and Q are of the form l1l2 · · · ld+1(
∑d+1

i=1 ai
pi
li

), where deg(pi) ≤ 1

and ai ∈ C depend on P, Q. Substituting this ansatz for P and Q in (21) we get the desired

form of ω1 in (18). �

Proof of Theorem 1. F0 is a smooth point on L(1d+1) and

L(1d+1) ⊂ M(d) ⊂ F(d).

The geometric meaning of Theorem 5 is that the tangent space of L(1d+1) and M(d) at

the point F0 are the same and that they are given by (18). Therefore, F0 is a smooth

point on M(d) and, moreover, L(1d+1) is an irreducible component of the center set

M(d). Note that there are no other components of M(d) containing F0 and tangent to

L(1d+1), otherwise the Zariski tangent space would be bigger. �

Remark 5. Assuming Theorem 5 we may deduce Theorem 1 by general arguments,

which we sketch in what follows; see [8, Section 3.2] for details.
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20 L. Gavrilov and H. Movasati

Let F0 ∈ F(d) be a polynomial foliation with a center, and consider a small

deformation F ∈ F(d) of F0 ∈ F(d) defined as in Theorem 1. Equivalently, we consider

a degree d deformation ω0 + ω1 of a degree d polynomial form ω0, defining a foliation

with a center. As above, let δt be a family of cycles in the leaves of F0 that vanish at the

center. Let B = (b1, b2, . . . , bN) be generators of the associated Bautin ideal. The variety

of B is the “center set”, which consists of foliations with a Morse center. The Bautin

ideal B is an ideal of the local ring of convergent power series and we can “divide” the

displacement map P(t) − t in B, associated to the family of vanishing cycles δt of F0 to

obtain a finite sum

P(t) − t =
N∑

i=1

bi(�i(t) + . . . ). (22)

Here the dots replace some convergent power series in the parameters and t, which

vanish at F0, so at F0 the return map P is the identity map. It is fundamental fact that

there is a one-to-one correspondance between Melnikov functions (of any order) and

points on the exceptional divisor of the blow up of the Bautin ideal B at F0; see [8,

Corollary 2].

Along the same lines, there is a one-to-one correspondance between the vector

space of first order Melnikov functions and the vector space of differentials Dbi

(linear functions) of the generators bi at F0. It follows from Theorem 5 that the co-

dimension of the vector space of all first-order Melnikov functions is 3(d + 1), hence its

dimension is

k = dimF(d) − 3(d + 1) = d2 − 1.

There is no loss of generality to suppose that Dbi, i = 1, . . . , k is a basis of the vector

space of all differentials Dbj, j = 1, . . . , N. Then the k functions �1(t), . . . , �k(t) defined

in (22) are the k linearly independent first-order Melnikov functions associated to the

deformation. Obviously, the set

b1 = b2 = · · · = bk = 0

is smooth at F0, and moreover contains L(1d+1). By dimension count it is equal to it in

an appropriate neighbourhood of F0. This already shows that L(1d+1) is smooth at F0,

but even more. As all generators bj vanish along L(1d+1), then the variety of the Bautin

ideal B coincides with L(1d+1) locally near F0. In other words, L(1d+1) is an irreducible

component of the center set, a fact already shown in [17].
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Smooth Points of the Space of Plane Foliations with a Center 21

Remark 6. Our hypothesis in Theorem 1 suggests to study the subset of (Q+)d given

by points ( n1
nd+1

, n2
nd+1

, . . . , nd
nd+1

), where nis are pairwise relatively prime positive integers.

For instance, it is not clear whether this set is dense in (Q+)d or not. Note that its

projection in each coordinate is dense and the fibers of this projection are discrete sets.

7 Quadratic Foliations

For quadratic foliations, that is, the case d = 2, the classification of components of

M(2) follows from the computations of Dulac in [6]; see [8, Appendix A], [15, Theorem

1.1], and [13, Section 13.9]. The algebraic set M(2) has four components:

1. L(13);

2. the set L(1, 2) of logarithmic foliations of the form

f1f2(λ1
df1

f1
+ λ2

df2

f2
), deg(f1) = 1, deg(f2) = 2, λ1, λ2 ∈ C − {0};

3. the set L(3) of Hamiltonian foliations F(df ), deg(f ) = 3;

4. an exceptional component obtained by the action of the affine group Aff(C2)

on the foliation with the first integral (x2+2y+α)3

(x3+3xy+1)3 , α ∈ P1

(see [9, Proposition 4.7]). Using this, one may prove the following: the only singular

points of M(2) in L(13) are L(13) ∩ L(1, 2) and L(13) ∩ L(3), that is,

Sing M(2) ∩ L(13) =
(
L(1, 2) ∩ L(13)

)
∪

(
L(3) ∩ L(13)

)
. (23)

A finer result is the classification of the components of the Bautin scheme, which is done

by many authors and for many subspaces of F(2); see [21] and references therein for an

overview of this. Following [13] we consider the following normal form of quadratic

systems with a Morse center at the origin:

{
ẋ = −ix + Ax2 + Bxy + Cy2,

ẏ = iy + C′y2 + B′xy + A′x2,
A, B, C, A′, B′, C′ ∈ C. (24)

The Bautin ideal of the above system has been extensively studied in the literature; see

[13, 21]. The Bautin ideal associated is generated by g2, g3, g4, where

g2 := AB − A′B′,

g3 := (2A + B′)(A − 2B′)CB′ − (2A′ + B)(A′ − 2B)C′B,

g4 := (BB′ − CC′)((2A + B′)B′2C − (2A′ + B)B2C′).
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22 L. Gavrilov and H. Movasati

The computation of the primary decomposition of this ideal implies four reduced

components that are explicitly written in [21, Theorem 1]:

1. Lotka–Volterra component L(13): B = B′ = 0;

2. Hamiltonian L(3): 2A + B′ = 2A′ + B = 0;

3. Reversible L(1, 2): AB−A′B′ = B′3C−B3C′ = AB′2C−A′B2C′ = A2B′C−A′2BC′ =
A3C − A′3C′;

4. Exceptional: A − 2B′ = A′ − 2B′ = CC′ − BB′ = 0.

Note that the ideal of the reversible component is radical and is written in a Groebner

basis (in contrast to [13, Section 13] where the corresponding “symmetric” component

turns out to be reducible). We can also compute the ideal of its singular set. It is clear

that the Hamiltonian and Lotka–Volterra components are smooth and the exceptional

component has an isolated singularity at A = · · · = C′ = 0. The reversible component

has more interesting singularities:

Sing(L(1, 2)) = {B = B′ = A = A′ = 0} = L(3) ∩ L(13).

The foliation F with A = B = A′ = B′ = 0, C = C′ = 1 has the first integral f :=
(1

2 − x)(y2 − 1
3 (x + 1)2); see [11, p. 159]. For the computer codes used in this computation,

see the latex file of the present article in arXiv. It must be noted that L(13) itself is not

smooth, for instance, it has a nodal singularity at the foliation with the first integral
x2+y2

2y−1 , which has been studied in [7].

Proposition 4. The singular set of L(13) is the orbit of the affine group Aff(C2) on the

foliation with the first integral (x+1)(y−1)
xy .

For an illustration of the above phenomenon, see [7, Figure 2].

Proof. We know that the kernel of the derivation of the parametrization τ in (16) has

constant dimension. This implies that all singularities of L(13) are due to the non-

injectivity of τ . For a foliation F = F(ω) ∈ Sing(L(13)) we get f = l1l2l3 and g = l̃1 l̃2 l̃3,

where {li = 0}’s (resp. {l̃i = 0}’s) are distinct lines, such that d(ω
f ) = d(ω

g ) = 0, and

hence, F := f
g is a first integral of F . It turns out that one of the lines of {li = 0}

must be equal to one of {l̃i = 0}’s, and since F is of degree 2, F is the quotient of two

lines by another two lines. Further, F − 1 is the quotient of a line with another two

lines. We conclude that up to the action of Aff(C2), the foliation F has the first integral
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F := (x+1)(y−1)
xy . Note that two branches of L(13) near F(ω) correspond to F − 1 = −x+y−1

xy

and F−1
F = −x+y−1

(x+1)(y−1)
. �
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