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Abstract

Clemens’ conjecture states that the the number of rational curve in a generic quintic
threefold is finite. If it is false we prove that certian periods of rational curves in such a
quintic threefold must vanish. Our method is based on a generalization of a proof of Max
Noether’s theorem using infinitesimal variation of Hodge structures and its reformulation in
terms of integrals and Gauss-Manin connection.

1 Introduction
Clemens in [Cle84, page 300] in his study of Griffiths’ Abel-Jacobi mapping, conjectures that
the number of rational curves of degree d in a generic quintic threefold must be finite. The main
motivation for this is a counting of equations and parameters of a rational curve inside a quintic
and its verification for degree 1 and 2 curves by Sh. Katz. Since then the conjecture is proved for
d ≤ 11. For an overview and many related references see [Cot12, Cle21]. In this note we discuss
a possible generalization of a proof of Noether-Lefschetz theorem in the framework of families of
curves in quintic threefolds. It states that for a generic smooth surface X in P3, the only curves
in X are obtained by intersecting X with another surface. Equivalently, the Picard number of
X is equal to one. The infinitesimal variation of Hodge structures (IVHS) developed by Ph.
Griffiths and his coauthors in [CGGH83] gives a rigorous proof of Noether-Lefschetz theorem.
In [Mov21, Section 14.4] we have rewritten this proof using integrals (periods). The main idea
lies in the fact that the restriction of holomorphic two forms over a curve is identically zero, and
hence its integration over the curve is zero. If we have a full family of such surfaces and curves
then we can make derivation of such integrals with respect to the underlying parameters (this
is the origin of Gauss-Manin connection and IVHS) and we conclude that the integration of all
elements of the primitive cohomology of X over the curve is zero. This concludes the proof. In
the present text we mimic this proof and this leads us to our main result.

Theorem 1. If Clemens’ conjecture is false in degree d then for a holomorphic family of degree
d rational curves Zs, s ∈ (C, 0) in a generic quintic threefold X and any ω ∈ F 2H3

dR(X) we
have

(1)
∫
Zs

ω

ds
= 0,

where F • is the Hodge filtration of H3
dR(X).

By an analytic family of algebraic cycles Zs, s ∈ (C, 0) in X we mean the following. We take
an analytic variety Z, holomorphic maps f : Z → (C, 0) and g : Z → X such that f is proper
and for all s ∈ (C, 0), g restricted to Zs := f−1(s) is an injection. The Gelfand-Leray form ω

ds in
our context is only defined for ω ∈ F 2H3

dR(X) = H30 ⊕H21, for which the pull-back of ω to the
two dimensional variety Z by f can be divided by df . Similar to the case of Abel-Jacobi map,
we also use the integration over the path of homology between two algebraic cycles. According
to [Cle84] this goes back at least to [Wei62, page 333] which in turn must be inspired by Picard’s
intensive study of two dimensional integrals in [PS06]. The proof of Theorem 1 actually implies
that the Abel-Jacobi map attached to Zs, s ∈ (C, 0) is identically zero, however, this is much
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weaker statement than the vanishing 1, see Section 7. The integration over algebraic cycles
as in (1) appears first in Deligne’s study of absolute Hodge cycles, see [DMOS82], and further
applications of this in the study of Hodge loci has been initiated in [Mov21, Chapters 18,19]
[MV18].

The sketch of the proof of Theorem 1 is as follows. If a generic quintic contains an infinite
number of genus g curves then we have to rigorously define families of rational curves which vary
inside families of quintic threefolds. This is done in Section 2 for rational curves. This is the
only place which we consider g = 0 and it is expected that Theorem 1 is true for curves of any
genus. For instance, in Section 7 we show that for curves which are obtained by the intersection
of X with P2 ⊂ P4 we have automatically (1). We then study integrals over homology paths
between two curves and give a formula for its derivation, see Section 3. Some of these integrals
are identically zero. This is described in Section 4. Derivating these integrals we get more
vanishing integrals and this finishes the proof in Section 5. In Section 6 we describe how one can
compute integrals (1) and as an example we perform this computation for a well-known family
of lines inside Fermat quintic. The condition X to be generic in Theorem 1 comes from our
difficulties in Section 2 to handle families of algebraic cycles. We expect that for any family of
rational curves inside any smooth quintic threefold, (1) is not identically zero in s.

I presented the main ideas of the present paper in an informal online seminar and I would
like to thank the audience for their comments and questions. This includes Ethan Cotterill
who introduced me to the recent preprint [Mus21], Roberto Villaflor with whom I had useful
discusions regarding the Abel-Jacobi map, and Younes Nikdelan, Jin Cao, Jorge Duque and
Felipe Ramos. Finally, many thanks go to P. Deligne who wrote two useful letters for the first
draft of the present paper. These can be found in the author’s webpage.

2 Hilbert schemes
In the following we will discuss Hilbert schemes. We will not use scheme structure of these
objects; only the underlying analytic variety will be used. Let T be an open subset of a Hilbert
scheme parametrizing smooth projective varieties X ⊂ PN of dimension 2n + 1. Let also S be
another component of a Hilbert scheme of projective varieties Z ⊂ PN of dimension n. We
consider the incidence scheme

I := {(X,Z) ∈ T× S|Z ⊂ X}.

We fix an irreducible component Ĩ of I, consider the projections π : I → T, Ĩ → T and denote
their images by V and Ṽ, respectively. From now on we denote by t a point in T and by Xt

the corresponding projective space. Our main example is T := P (C[x0, x1, . . . , xn+1]a) with
n = 3, a = 5 and the following with N = 4 which is not actually a Hilbert scheme but it will
be enough for our purposes. A rational curve is given by the image of a map

f : P1 → PN , [x : y] 7→ [f0(x, y) : · · · : fN (x, y)],

where fi(x, y) are homogeneous polynomials of degree d in x, y. We may expect that the quotient

(2) P
(
C[x, y]N+1

d − C[x, y]dCN+1
)
/PSL(2,C),

exists as an algebraic variety over C, where C[x, y]CN+1 corresponds to those f such that its
image is a point. We may also expect that the universal family over S exists. This is(

P1 × P
(
C[x, y]N+1

d − C[x, y]dCN+1
))

/PSL(2,C),
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Figure 1: Incidence scheme

where the action of A ∈ PSL(2,C) in P1 is given by the inverse of A, and hence, we have
well-defined map

F : P → PN , [x : y], (f0, f1, . . . , fN ) 7→ [f0(x, y); f1(x, y) : · · · : fN (x, y)].

We have a natural projection P → S such that its fibers are rational curves and F restricted
to these fibers restores the map f . E. Cotterill reminded me that the moduli space S has a
natural stratification given by the geometric genus of the rational curve. Each strata might be
isomorphic to a Hilbert scheme of rational curves of degree d in PN . It might be clarifying to
write down the details of all this. We avoid these details and simply define:

(3) S := P
(
C[x, y]N+1

d − C[x, y]dCN+1
)
, P := P1 × S.

In this way we have an action of PSL(2,C) on the incidence scheme I such that it leaves the
fibers of I → T invariant. In this example it is known that I is irreducible for d ≤ 11, however,
for d ≥ 12 it might have many irreducible components, see [Cot12] and the references therein.
We take smooth points t0 ∈ Ṽ, p ∈ Ĩ with π(p) = t0 and p is a regular point of π, that is, the
derivative of π at p is surjective. This follows from: Let π : (Cn, 0) → (Cm, 0) be a surjective
holomorphic map. Then the locus of points p ∈ (Cn, 0) such that the derivative of π at p is
not surjective, is a proper analytic subset of (Cn, 0), and hence its complement is dense. By
implicit function theorem, we can take coordinate system (t, s) ∈ (Cn × Cm, 0) ∼= (̃I, p) and
t ∈ (Cn, 0) ∼= V such that π is just projection in the t coordinate, see Figure 1. We get a family
(Xt, Zt,s) such that Zt,s ⊂ Xt.

Remark 1. In the context of Hilbert schemes this family is flat. For simplicity, we start with
a pair (X,Z) such that both X and Z are irreducible, and hence, we can assume that Xt and
Zt,s are irreducible. In our main example 3, since we have also the action of PSL(2,C) on the
fibers of Ĩ → T and this action has only discrete (dimension zero) stabilizers, we replace (Cm, 0)
with some linear subspace (Cm−3, 0) which intersects the orbits of PSL(2,C) in discrete sets.

If V is a proper subset of T (π is not dominant) then a generic X does not contain any
algebraic cycle Z. If T = Ṽ and m = 0 for all components Ĩ of I then we have a finite number
of Z inside a generic X. Note that n = dim(Ṽ) and n+m is the dimension of Ĩ. From now on
we consider the case m > 0. For our main example this means that we assume that Clemens’
conjecture does not hold. Our main goal in this section is to describe instances such that the
following property holds:
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Property 1. We have

1. The homology classes of Zt,s1 , Zt,s2 in H∗(Xt,Z) for s1, s2 ∈ (Cm, 0) and t ∈ (Cn, 0) are the
same. The homology path δt between Zt,s1 and Zt,s2 is supported in the family of algebraic
cycles ∪s∈(Cm,0)Zt,s ⊂ Xt.

2. For s fixed and t1, t2 ∈ (Cn, 0), the homology class of Zt1,s is mapped to the homology class
of Zt2,s under the monodromy map H∗(Xt1 ,Z) → H∗(Xt2 ,Z).

Even though the varieties Xt are C∞ isomorphic, the algebraic cycles Zt1,s, Zt2,s might not
be isomorphic topologically. For instance, Zt1,s might be a curve with only one nodal singulariy
and Zt2,s a curve with only one cuspidal singularity.

Proposition 1. If S parameterizes rational curves of degree d as in (3) then Property 1 holds.

Proof. We have an small open smooth set U of Ĩ with the coordinate system (t, s). We get
a holomorphic family ft,s : P1 → PN , [x : y] 7→ [f0(x, y) : · · · : fN (x, y)], where fi(x, y) are
homogeneous polynomials of degree d in x, y depending holomorphically in (t, s). Such fi’s are
just the ingredients of the projection of (t, s) under U → S (recall the definition of S in 3). By
definition the image of ft,s is Zt,s. We get map ft,s,∗ : H2(P1,Z) → H2(Xt,Z), and since Z is
discrete, we conclude the desired property. By our considerations in Remark 1, for fixed t the
family of algebraic cycles Zt,s is not constant in s.

From now on we replace (Cm, 0) with a one dimensional subspace and assume that m = 1.

Definition 1. Let X be a smooth projective variety and Z1, Z2 ⊂ X be two algebraic cycles.
We say that Z1 is strongly algebraically equivalent to Z2 if we have a holomorphic family of
algebraic cycles Zs, s ∈ (C, 0) such that

1. Z1 and Z2 are two members of this family.

2. The homology path δ between Z1 and Z2 is supported in the family of algebraic cycles
∪s∈(C,0)Zs ⊂ X.

Remark 2. From the first item of the above definition it follows that the homology classes of
Z1, Z2 in H∗(X,Z) are the same, see for instance [Ful98, Proposition 19.1.1, page 373] for this
implication. It is natural to expect that the second item holds automatically, however, this does
not seem to be the case. The proof in the mentioned reference is not adaptable to provide this
stronger statement.

Recall Property 1. For fixed t and s1, s2 ∈ (Cm, 0), Z1,t := Zt,s1 and Z2,t := Zt,s2 are strongly
algebraically equivalent. Definition 1 combines topological and algebraic ingredients, whereas
the the classical definition of algebraic equivalence in algebraic geometry is purely algebraic. It
would be instructive to compare these definitions.

Remark 3. A more general definition is as follows: Let X be a smooth projective variety and
and Z1, Z2 ⊂ X be two irreducible subvariety of X. We say that Z1 and Z2 are flat algebraically
equivalent if we have have holomorphic maps f : Z → (Cm, 0) and g : Z → X such that f is
flat and g restricted to the fibers of f is an injection. Duco van Straten kindly reminded me
[January 14, 2019] that “the requirement of flatness of a cycle is not a reasonable condition at all.
Flatness is just too special. There is the notion of families of cycles used by Barlet in analytic
and by Kollar in algebraic geometry[see [Kol95], page 45-46 and [Bar75]]. It is very ugly and
algebraically hard to use, but geometrically reasonable.” For our purpose we need Proposition
1 which is very specific to rational curves. One might expect that if two irreducible algebraic
cycle Z1, Z2 ⊂ X are flat algebraically equivalent then they are homologically equivalent. It is
not known to the author whether this is true for rational curves.
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Figure 2: Gauss-Manin connection

Remark 4. We take two transversal sections Σ1 and Σ2 in (I, p) to the fiber of π such that
under projection π they are biholomorphic to (Cn, 0). For instance, Σi := {s = si} for two
values s1 and s2 of s. We have a family Z1,t, Z2,t ⊂ Xt, t ∈ (Cn, 0) such that Z1,t := Zt,s1 and
Z2,t := Zt,s2 are strongly algebraically equivalent, see Figure 2.

3 Gauss-Manin connection
In this section we write down a formula which can be formulated in terms of the Gauss-Manin
connection in relative cohomology, however, for the sake of simplicity and avoiding unnecessary
notations, we present it as derivating integrals over non closed homology classes.

Let us consider a projective variety X of dimension 2n+1 and two algebraic cycles Z1, Z2 ⊂ X
of dimension n such that their homology class [Z1] and [Z2] are equal in H2n(X,Z), that is, Z1 is
homologous to Z2. Let Y = Z1 ∪Z2 and δ ∈ H2n+1(X,Y ) be the homology between Z1 and Z2,
that is, it is mapped to [Z2]−[Z1] ∈ H2n(Y,Z) under the boundary map H2n+1(X,Y ) → H2n(Y ).

We consider a one parameter holomorphic family (Xt, Yt), t ∈ (C, t0) of such objects, that is
we have a proper submersion π : X → (C, t0) and Y = Z1 ∪ Z2 ⊂ X with the properties of fibers
as above. From this we mainly mean the family (Xt, Z1,t ∪ Z2,t) constructed in Proposition 1,
see also Remark 4. The subindex t, for instance δt ∈ H2n+1(Xt, Yt), will be used in order to
emphasize the dependence in t. For a complex manifold M , Ωi

M∞ and Ωi
M denotes the set of

global C∞ and holomorphic i-forms in M , respectively. Let ω ∈ Ω2n+1
X∞ and α ∈ Ω2n

Y∞ such that

dω ∈ π−1Ω1
(C,t0) ∧ Ω2n+1

X∞ , ω|Y − dα ∈ π−1Ω1
(C,t0) ∧ Ω2n

Y∞ .

In the following theorem we have assumed that the integrals depends holomorphically in t. One
can achieve this by considering algebraic de Rham cohomology and it is the case when Xt’s are
hypersurfaces.

Theorem 2. We have

(4) ∂

∂t

∫
δt

ω =

∫
δt

dω

dt
+

∫
Z2,t

ω|Y − dα

dt
−
∫
Z1,t

ω|Y − dα

dt
+

∂

∂t

(∫
Z2,t−Z1,t

α

)
.

Proof. We define Dt to be the locus in X which δt sweeps:

Dt = ∪s∈[0,1]δγt(s) ⊂ X
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such that γ is a path in (C, t0) connecting t0 to t, see Figure 2. Note that Dt is oriented in a
canonical way such that

∂Dt := (π|Z1)
−1(γ) + δt − (π|Z2)

−1(γ)− δt0 = γ1 + δt − γ2 − δt0 ,

see Figure 2. By Stokes theorem we have∫
δt

ω =

∫
Dt

dω +

∫
δt0

ω +

∫
γ2

(ω|Z2 − dα)−
∫
γ1

(ω|Z1 − dα) +

∫
γ2−γ1

dα.

Taking the differential ∂
∂t of the above equality and using the Fubini’s theorem we get the desired

result.

4 A kind of Hodge cycle
For a smooth projective variety X, the integration of F n

2
+1Hn

dR(X) over an algebraic cycle of
dimension n

2 in X is zero, and this simple fact leads us to the notion of Hodge cycle and then
the Hodge conjecture, see [MV21, Section 5.13]. In this section we follow a similar argument
to distinguish between algebraic equivalence of algebraic cycles in the sense of Definition 1 and
homology between algebraic cycles. For a pair of algebraic varieties Y ⊂ X, the relative algebraic
de Rham cohomology and its Hodge filtration are defined as hypercohomology of complexes:

Hm
dR(X,Y ) := Hm(X,Ω•

X,Y ), F iHm
dR(X,Y ) := Hm(X,Ω•≥i

X,Y ),

where Ωm
X,Y := Ωm

X × Ωm−1
Y is equipped with d : Ωm

X,Y → Ωm+1
X,Y , d(ω, α) := (dω, ω|Y − dα). In

particular, we will consider a good covering {Ui}i∈I of X and consider elements of cohomologies
relative to this covering. For more details see [MV21].

Proposition 2. Let X be a smooth projective variety of dimension 2n + 1 and let Z1, Z2 be
two subvarieties of X of dimension n. If Z1 and Z2 are strongly algebraically equivalent (in the
sense of Definition 1) then

(5)
∫
δ
Fn+2H2n+1

dR (X,Y ) = 0,

where δ is the homology between Z1 and Z2.

Proof. The homology path δ between Z1 and Z2 is supported in the family of algebraic cycles
∪s∈(C,0)Zs which is the image of a holomorphic map g : Z → X with dim(Z) = n + 1. By
definition, Fn+2H2n+1

dR (X,Y ) contains only differential i-forms with i > n + 1. Therefore, the
pull-back of this piece of the Hodge filtration to Z is identically zero, and hence, its restriction
to Image(g) and its integration over δ is zero.

Remark 5. The vanishing (5) follows the same principle which has produced the Hodge
conjecture, see [MV21, Proposition 5.12, Section 5.13]. One might speculate (similar to the
Hodge conjecture) that its inverse is true, that is, if Z1 and Z2 as above are homologous
and we have (5) then they are strongly algebraically equivalent. Note that there might not
exist closed cycles δ ∈ H2n+1(X,Q) such that (5) happens, in other words we might have
H2n+1(X,Q) ∩

(
Hn,n+1 ⊕Hn+1,n

)
= 0. Therefore, our speculation does not follow from refor-

mulation of the generalized Hodge conjecture by A. Grothendieck.

Proposition 3. Under the canonical map H2n+1
dR (X,Y ) → H2n+1

dR (X), the piece of Hodge filtra-
tion F iH2n+1

dR (X,Y ) is mapped isomorphically to F iH2n+1
dR (X) for i ≥ n+2. For i ≤ n+1, the

kernel of F iH2n+1
dR (X,Y ) → F i

dRH
2n+1(X) is one dimensional.
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Proof. We have the long exact sequence

(6) H2n
dR(X) → H2n

dR(Y ) → H2n+1
dR (X,Y ) → H2n+1

dR (X) → H2n+1(Y ) = 0

and hence H2n+1
dR (X,Y ) → H2n+1

dR (X) is surjective. Moreover, H2n
dR(Y ) is of dimension 2 gen-

erated by the cohomology classes [Z1] and [Z2]. After writing the above long exact sequence
in homology and using the fact that Z1 and Z2 are homologous in X through δ, we observe
that the integration of the images x1 and −x2 of [Z1] and −[Z2] in H2n+1

dR (X,Y ) over δ are the
same and over the image of H2n+1(X) → H2n+1(X,Y ) are zero. This implies that the image of
H2n

dR(Y ) → H2n+1
dR (X,Y ) is one dimensional generated by x1 = −x2. We take a good covering U

of (X,Y ). It turns out that an element of H2n+1
dR (X,Y ) relative to this covering is of the form

(7) ω = (ω0, 0) + (ω1, α0) + · · ·+ (ωn, αn−1) + (ωn+1, αn) + (ωn+2, 0) + · · ·+ (ω2n+1, 0)

(ωj , αj−1) ∈ C2n+1−j(U ,Ωj
X,Y ),

We have αj = 0, j = n + 1, · · · , 2n because dim(Y ) = n. This implies the statement on the
pieces of Hodge filtration.

For i = n+ 1 we can say a little bit more.

Proposition 4. We have

Fn+1H2n+1
dR (X,Y ) = F̌n+1H2n+1

dR (X)⊕ Ȟ2n
dR(Y )

where

F̌n+1H2n+1
dR (X) :=

{
ω ∈ Fn+1H2n+1

dR (X,Y )| αj = 0, j = 0, 1, 2, · · · , n
}
,

Ȟ2n
dR(Y ) := Image

(
H2n

dR(Y ) → H2n+1
dR (X,Y )

)
.

Proof. In the Cech cohomology representation of ω ∈ H2n+1
dR (X,Y ) in (7), we can also assume

that αj = 0, j = 0, 1, 2, · · · , n − 1. The argument is as follows. The restriction of U to Y
is also a good covering, but might have more than n + 1 open sets. We know that relative
to U|Y we have H2n(Y,Ω0|Y ) = 0. This cohomology contains an element represented by α0.
This implies that we can modify ω with a DX,Y exact element such that α0 becomes zero.
This process can be continued until getting αn−1 = 0. It follows from the closedness of ω that
(−1)n+1dωn+δ(αn) = 0. Therefore, if we define Ȟ2n+1

dR (X) similar as above, its dimension might
be less than the dimension of H2n+1

dR (X) and we may not have a decomposition of H2n+1
dR (X,Y ).

However, if we consider its Fn+1 piece, then ωn = 0 and δαn = 0. We have now (0, α) which is
in Ȟ2n

dR(Y ) and we get the desired decomposition.

Using the long exact sequences of the pair (X,Y ) both in homology and cohomology we have

(8)
∫
δ
α̃ =

∫
Z2−Z1

α, ∀α ∈ H2n
dR(Y ),

and α̃ is the image of α under H2n
dR(Y ) → H2n+1

dR (X,Y ).
Let Zs, s ∈ (C, 0) be a family of algebraic cycles as in Introduction. We fix points s0, s ∈

(C, 0), and a path γ which connects s0 to s in (C, 0). Let n be the complex dimension of the
fibers and Ys = Zs ∪ Zs0 . We consider ω ∈ F̌n+1H2n+1

dR (X) and

I(s) :=

∫ Zs

Zs0

ω :=

∫
f−1(γ)

ω.
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Since ω is a closed differential 2n+1, this integral does only depends on the homotopy class of γ.
By the definition of Hodge filtration, the Cech cohomology representation of ω ∈ Fn+1H2n+1(X,Ys)
in (7) starts with (ωn+1, αn). Moreover, its pull-back by g contains only the term (ωn+1, αn). By
definition of F̌n+1H2n+1

dR (X) we have αn = 0 and define the Gelfand-Leray form in our context
as

ω

df
:=

ωn+1

df
∈ H2n

dR(Zs).

Proposition 5. We have
I ′(s) =

∫
Zs

ω

df
.

Proof. We use Fubini’s theorem:

I(s) =

∫
f−1(γ)

ω

df
∧ ds =

∫
γ

(∫
Zs

ω

df

)
ds.

Remark 6. If instead of (C, 0) we use an algebraic (compact) curve C, I(s) is a multi valued
function with branching points in the set of atypical values of f . We denote it by A ⊂ C (it
also includes the singularities of C). The difference of two branches of I is the period

∫
f−1(γ) ω,

where γ is a closed path in C\A. In this case Proposition 5 implies that I ′(s) is a meromorphic
function on C.

5 Proof of Theorem 1
We will use Griffiths description of the cohomology of hypersurfaces in [Gri69]. Let T be the
parameter space of smooth hypersurfaces of degree d in P2n+2, F =

∑
t∈T tαx

α be the universal
homogeneous polynomial of degree d in x = (x0, x1, · · · , x2n+2) and X := {F = 0} ⊂ P2n+2 ×T.
We define

ωP = Resi
PΩ

F k
, deg(P ) = k · d− (2n+ 3), Ω :=

2n+2∑
i=0

(−1)ixid̂xi

For the case (2n + 3)|d we also define ω := ω1 (1 refers to the constant polynomial 1). This
gives us ωP ∈ H2n+1(X), and since H2n+1

dR (X,Y ) → H2n+1
dR (X) is surjective it comes from

an element in H2n+1
dR (X,Y ) which we denote it again by ωP . By Proposition 3, for degP =

kd − (2n + 3), k ≤ n this element is unique as Fn+2H2n+1
dR (X,Y ) → Fn+2H2n+1

dR (X) is an
isomorphism, and by Proposition 4 for k = (n+ 1) we can choose a unique ωP ∈ H2n+1(X,Y ).

Consider the case n = 1 and d = 5. Assume that Clemens’ conjecture is not true. It
follows that for a component Ĩ of I, the map π : Ĩ → T in Section 2 is surjective, and hence,
V = T. Moreover, the irreducible components of fibers of π have dimension ≥ 3 (recall that
they are PSL(2,C)-invariant). We take t0 ∈ T which is still a generic point of T, and we
cannot assume that Xt0 is the Fermat variety. We get a holomorphic family of algebraic curves
Z1,t, Z2,t ⊂ Xt, t ∈ (T, 0) such that Z1,t and Z2,t are strongly algebraically equivalent. We use
Proposition 2 and we get

(9)
∫
δ
ω = 0.

Note that by Proposition 3, F 3H3(X,Y ) is one dimensional and it is generated by ω. We write
ω in a covering and it is of the form (ω3, 0), where ω3 = {ω3,i}. Note that the element ω3

restricted to Y is identically zero, and hence in Theorem 2 the corresponding α can be taken 0.
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Since ω is DX,Y -closed, we have dω = dt∧ ∗ and δω = dt∧ ∗. Consider a derivation ∂
∂t in T, for

instance take F = F0 + txi, where xi is a homogeneous monomial of degree d in x. Since Ĩ → T
is surjective, we can have such derivations for all monomials xi of degree d. We have

(10) d

(
PΩ

F k

)
= dt ∧

−k ∂F
∂t PΩ

F k+1

where d is the differential in the variety (P4 ×T)\X. This can be seen easily after passing to an
affine coordinate. Taking residue we have

dωP = dt ∧ ω−k ∂F
∂t

P

We make the derivation of (9) with respect to t, use Theorem 2 and conclude that

(11)
∫
δ
ωP = 0, ∀P ∈ C[x]5.

In the Cech cohomology representation of ωP as above, it is of the form (ω3, 0)+(ω2, 0) because

DX,Y (ω
3, 0) = (dω3, 0) + (δω3, 0).

Therefore, ωP is in F̌ 2H3
dR(X) defined in Proposition 4. We use Proposition 5 and conclude

that
∫
Zs

ωP
ds = 0.

Remark 7. A more constructive way to prove Clemens’ conjecture, is to give an example of
a smooth quintic threefold with isolated rational curves. In this paper we have generalized a
proof of Noether’s theorem, and T. Shioda in [Shi81] has given an explicit example of a surface
of prime degree and with Picard rank equal to one, and hence, he has given a constructive proof
of Noether’s theorem. The following quintic is a natural generalization of Shioda’s example

xd0 + x1x
d−1
2 + x2x

d−1
3 + x3x

d−1
4 + x4x

d−1
1 = 0, d = 5,

and since 5 is a prime number, we may expect that Clemens’ conjecture holds for this quintic

6 Computing period of curves
In order to gather evidences that the periods (1) do not vanish identically in s, one may try to
compute them for well-known families of rational curves inside smooth quintic threefolds, see
for instance [CDVV12, Wal12, Mus21]. In this section, we describe how to compute the period
(1) and perform this for one family of rational curves.

Let X ⊆ Pm+1 be a smooth degree d hypersurface given by X = {F = 0} and

Ω =

m+1∑
i=0

(−1)ixidx0 ∧ · · · d̂xi · · · ∧ dxm+1.

Let P be a polynomial of degree d(q+1)−m− 2) with q ∈ {0, 1, . . . ,m}. By the computations
in [CG80] we know that

(12) Resi

(
PΩ

F q+1

)
=

(−1)m

q!

{
PΩJ

FJ

}
|J |=q

∈ Hq(U ,Ωm−q
X ),
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where ΩJ := ι ∂
∂xjq

(· · · ι ∂
∂xj0

(Ω) · · · ), FJ := Fj0 · · ·Fjq , Fj := ∂F
∂xi

, j0 < j1 < · · · < jq and

U = {Ui}m+1
i=0 is the Jacobian covering restricted to X given by Ui = {Fi 6= 0} ∩ X. We have

also

ΩJ = (−1)j0+j1+···+jq+(q+2
2
)
m−q∑
l=0

(−1)lxkl d̂xkl ,

where k0 < k1 < · · · < km−q is obtained form 0, 1, 2, . . . ,m+1 by removing j0, j1, . . . , jq, see for
instance [Vil18]. We apply this theorem for the Fermat variety of dimension m = 3 and degree
d = 5 and with q = 1. In this case the Jacobian covering is the usual covering by Ui := {xi 6= 0}.
For a homogeneous polynomial P of degree 5 up to constant independent of X, we have

ωP := Resi

(
PΩ

F 2

)
=

 ∑
j2 ̸=j0,j1

(−1)j
∗
2Pxj2

x4j0x
4
j1

dxj3 ∧ dxj4

 ∈ H1(U ,Ω2
X),

where the sum runs over j2 ∈ {0, 1, . . . , 4}\{j0, j1} with {j0, j1, . . . , j4} = {0, 1, . . . , 4}, and j∗2 is
the position of j2 in 0, 1, 2, 3, 4 with j0, j1 removed (counting from zero). Let [x0(s, t) : x1(s, t) :
· · · : x4(s, t)], s ∈ (C, 0), t ∈ P1 be a family of rational curves inside the Fermat quintic threefold.
We write xi(s, t) = xi(t) + syi(t) + O(s) and dxj3 ∧ dxj4 = (x′j3yj4 − x′j4yj3)dt ∧ ds+ O(s). We
conclude that∫

Zs

ωP

ds
=
∑
j0,j1

Resixj0
=0

 P

x4j0x
4
j1

∑
j2 ̸=j0,j1

(−1)j
∗
2xj2(x

′
j3yj4 − x′j4yj3)dt


where Resixj0=0 refers to sum of the residues around the points of xj0 = 0 in P1. Note that
for xi = xi(

at+b
ct+d) with a, b, c, d depending on s, the expression x′j2yj3 − x′j3yj2 is identically zero

because ∂
∂sxi(s, t) = x′i(t)

∂
∂s

(
at+b
ct+d

)
. This is natural because the action of PSL(2,C) on P1 does

not produce families of rational curves. Note also that y0x40+y1x
4
1+ · · ·+y4x

4
4. Families of lines

in the Fermat quintic fourfold has been studied in [AK91]. It has 50 one dimensional families
of the form

[x : y] 7→ [x : −ζy : ay : by : cy], ζ5 = 1, a5 + b5 + c5 = 0.

We set x = t, y = 1 and write this as x(t, s) = [t : −ζ : 1 : s : (−s5 − 1)
1
5 ], s ∈ (C, 0). We have

y = [0 : 0 : 0 : 1 : 0], x′ = [1 : 0 : 0 : 0 : 0] and so the only non-trivial possibility for (j3, j4) is
(0, 3). Therefore, we have (j0, j1, j2) = (1, 2, 4), (1, 4, 2), (2, 4, 1) and hence up to some 2πi factor∫

Zs

ωP

ds
= Resix1=0

(
P

x41x
4
2

x4dt

)
+Resix1=0

(
P

x41x
4
4

(−x2)dt

)
+Resix2=0

(
P

x42x
4
4

(−x1)dt

)
.

The third residue is zero as x2 = −ζ is constant. We set P = x31x
2
2 and as x2 and x4 are

independent of t and we have∫
Zs

ωP

ds
=

x4
x22

− x32
x44

=
(−s5 − 1)

1
5

ζ2
+

ζ3

(−s5 − 1)
4
5

.

It would be also nice to make the computations for the following family of conics described in
[Mus21]:

a2(x0+x1) = b2(x2+x3), bx4 = c(x0+x1), b(x
2
0+x21) = ±ia(x22+x23) = 0, a10+b10−4b5c5 = 0.
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7 Abel-Jacobi map
Let Zs, s ∈ S be a family of curves in a smooth threefold X. We fix a curve Zs0 and the
Abel-Jacobi map is defined as

S → Jac(X) :=
(F 2H3

dR(X))∨

H3(X,Z)
, s 7→

∫ Zs

Zs0

F 2H3
dR(X),

where the integration takes over the homology δ between Zs0 and Z: ∂δ = Zs−Zs0 . For a proof
of the existence of such a homology path see [Ful98, Proposition 19.1.1, page 373], however, note
that from this proof it is not clear whether δ is supported in ∪s∈SZs or not. If the parameter
space S = P1 is the rational curve, it is well-known that there is no non constant holomorphic
map from P1 to a complex compact tori, and hence, the Abel-Jacobi map is zero in this case.
This implies that for some homology δ between Zs0 and Zs we have in

∫
δ F

2 = 0, but not
necessarily δ is supported in ∪s∈P1Zs. There are examples of this situation for which we have
this stronger statement.

Proposition 6. Let Z ⊂ X be an irreducible divisor in X with a singular set of codimesnion
≥ 2 and such that a desingularization Z̃ of Z satisfies H1(Z̃,Q) = 0. Then for any rational
function f in Z and family of curves Zs := f−1(s), s ∈ P1 we have

∫ Zs

Zs0
F 2 = 0, where the

integration takes place over f−1(γ) and γ is any path in P1 connecting s0 to s.

Proof. The pull-back π∗ω of ω ∈ H3
dR(X) by the desingularization map π : Z̃ → Z ⊂ X is an

element in H3
dR(Z̃) which in turn by hard Lefschetz theorem is isomorphic to H1

dR(Z̃). By our
hypothesis this is zero and so π∗ω = Dη, for some 2-cocycle η ∈ ⊕2

i=0C
i(U ,Ω2−i

Z̃
). Here, we are

using the notation of hypercohomology relative to a good covering U of Z̃. Let f̃ = f ◦ π and
Z̃s := f̃−1(s). Since a desingularization is a biholomorphism over a Zariski open subset and no
component of a fiber of f is inside the singular set of Z, it is enough to prove that

∫ Z̃s

Z̃s0
F 2 = 0.

By Stokes theorem we have ∫ Z̃s

Z̃s0

π∗ω =

∫
Z̃s

η −
∫
Z̃s0

η

The map P1 → C, s 7→
∫
Zs

η is holomorphic, and hence, constant.

Remark 8. Note that if dim(X) > 2 then by the long exact sequence of 0 → Z → OX →
O∗

X → 0 and H1(X,OX) = H2(X,OX) = 0, we know that H1(X,O∗
X) ∼= Z and any divisor

is a hypersurface section (not necessarily transversal section) of X. By Lefschetz theorem a
transversal (and hence smooth) hyperplane section Z of X satisfies H1(Z,Q) = 0.

Remark 9. In the proof of Theorem 1 we have the vanishing integral (11) for δ which is
supported in the family of cycles Zs, s ∈ C. This implies that in this context the Abel-Jacobi
map is zero. Theorem 1 is stronger than this.
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