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We classify all primes appearing in the denominators of the 
Hauptmodul J and modular forms for non-arithmetic triangle 
groups with a cusp. These primes have a congruence condition 
in terms of the order of the generators of the group. As a 
corollary we show that for the Hecke group of type (2, m, ∞), 
the prime p does not appear in the denominator of J if and 
only if p ≡ ±1 (mod m).
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1. Introduction

The theory of automorphic forms for Fuchsian groups was first developed by Poincaré. 
His construction is based on series carrying nowadays his name, analogous to the clas-
sical Eisenstein series (Fuchsian theta-series in his terminology). A disadvantage of this 
method is that explicit q-expansions which are fruitful part of the theory of modular 
forms for arithmetic groups are not available for these groups. An alternative approach 
with concentrating on explicit q-expansions for a special case, namely hyperbolic triangle 
groups is available. Here we briefly explain this method (for details see [3]).

* Corresponding author.
http://dx.doi.org/10.1016/j.jnt.2014.05.025
0022-314X/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jnt.2014.05.025
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
http://dx.doi.org/10.1016/j.jnt.2014.05.025
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnt.2014.05.025&domain=pdf


68 H. Movasati, K.M. Shokri / Journal of Number Theory 145 (2014) 67–78
Let us consider the Halphen system

⎧⎪⎨
⎪⎩

ṫ1 = (a− 1)(t1t2 + t1t3 − t2t3) + (b + c− 1)t21
ṫ2 = (b− 1)(t2t1 + t2t3 − t1t3) + (a + c− 1)t22
ṫ3 = (c− 1)(t3t1 + t3t2 − t1t2) + (a + b− 1)t23

(1)

with

1 − a− b = 1
m1

, 1 − b− c = 1
m2

, 1 − a− c = 1
m3

= 0, (2)

and m1 ≤ m2 ∈ N ∪ {∞} with the hyperbolicity condition 1
m1

+ 1
m2

< 1. Here ṫ = q dt
dq

and we consider ti ∈ C[[q]] as formal power series in q with the initial condition:

t1(0) = t3(0) = 0,

t2 =
{

−1 − (m1 + 1)q + O(q2) if m2 = ∞
−1 + (m2

1m2 + m2
1 −m1m

2
2 −m2

2)q + O(q2) otherwise.

The recursion of Halphen system determines uniquely ti’s. If we set q = exp(2πiτ
h ), where 

h = 2 cos( π
m1

) + 2 cos( π
m2

), then ti’s are meromorphic functions on Im(τ) > τ0 for some 
real positive τ0. Now, rescaling q by multiplying a constant, ti’s become meromorphic 
on the whole upper half-plane with modular property with respect to the triangle group 
Γt := 〈γ1, γ2, γ3〉 ⊂ SL(2, R) of type t = (m1, m2, ∞), where

γ1 =
(

2 cos( π
m1

) 1
−1 0

)
, γ2 =

(
0 1
−1 2 cos( π

m2
)

)
, γ3 =

(
1 h

0 1

)

γ1γ2γ3 = γm1
1 = γm2

2 = −I2×2. (3)

The Hauptmodul for this triangle group is given by

J = t3 − t2
t3 − t1

. (4)

We define

E
(1)
2k := (t1 − t2)(t3 − t2)k−1 ∈ 1 + qQ[[q]], (5)

E
(2)
2k := (t1 − t2)k−1(t3 − t2) ∈ 1 + qQ[[q]]. (6)

In [3] we showed that the algebra of automorphic forms for the group Γt with m1 ≤
m2 < ∞ is generated by

E
(1)
2k , 3 ≤ k ≤ m1, E

(2)
2k , 2 ≤ k ≤ m2,
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and when m1 < m2 = ∞, the algebra is generated by

E
(1)
2k , 1 ≤ k ≤ m1.

For the triangle group of type (∞, ∞, ∞) see [3]. The coefficients of J are rational 
numbers apart from the rescaling (transcendental) constant. This constant appears to fit 
the convergence of J in the whole upper half-plane (see [13] for a proof of transcendence 
of this constant). The rationality comes out from the recursion of the Halphen system 
for the coefficients of ti. A natural question would be a classification of primes which 
appear in the denominators. In [3] we stated a conjecture concerning this problem. The 
aim of this article is to give a complete answer to this question. We recall that a power 
series f is called p-integral if, after multiplication of f by a constant, its coefficients are 
p-adic integers. We say an algebra of power series in Q[[q]] is p-integral if it has a basis 
with p-integral elements. We say an object (function or algebra) is ‘almost’ integral if it 
is p-integral for all but finitely many p.

Theorem 1. Let m1 ≤ m2 ∈ N and p be a prime with p > 2m1m2. The Hauptmodul J , 
defined in (4), for the triangle group of type (m1, m2, ∞) is p-integral if and only if for 
some ε = ±1 and ε′ = ±1 we have

(
p

2m1≡ ε, p
2m2≡ ε′ε

)
or

(
p

2m1≡ m1 + ε, p
2m2≡ m2 + ε′ε

)
.

For the triangle group (m, ∞, ∞) and p > 2m the Hauptmodul J is p-integral if and only 
if

p
2m≡ ±1.

We need the condition p > 2m1m2 for the ‘if’ part of the theorem and the ‘only if’ 
part only requires only that p does not divide 2m1m2. Some computations show that 
the theorem must be valid with this weak hypothesis on p. For example for (2, 5, ∞), 
our experimental computations shows that the J function up to 183 terms is p-integral 
for p = 11, 19 (see below, Corollary 2).

Corollary 1. The Hauptmodul J for a triangle group is almost integral if and only if

(m1,m2,∞) = (2, 3,∞), (2, 4,∞), (2, 6,∞), (2,∞,∞), (3, 3,∞), (3,∞,∞),

(4, 4,∞), (6, 6,∞), (∞,∞,∞).

This is the Takeuchi’s classification in [12] of arithmetic triangle groups with a cusp 
and of type (m1, m2, ∞). For explicit uniformizations of modular curves attached to 
these 9 cases see [2].
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Corollary 2. Let 3 ≤ n ∈ N. For a prime p > 4n the Hauptmodul J of the Hecke group 
Γ(2,n,∞) is p-integral if and only if p ≡ ±1 (mod n).

We remind that Corollary 2 was a conjecture made by Leo Garret in his PhD thesis [6]. 
He proved some partial results in this direction. Precisely, he showed that if p ≡ 1 mod 4n, 
then J is p-integral.

Corollary 3. Let p > 2m1m2 be a prime number. The algebra of automorphic forms for 
the triangle group of type (m1, m2, ∞) is p-integral if and only if p satisfies the conditions 
of Theorem 1.

Integrality problem for the coefficients of modular forms for noncongruence subgroups 
of Γ (1) = SL(2, Z)(= Γ(2,3,∞)) was a task in [9]. There, Scholl proves that there exist 
positive integers d and N such that dnan ∈ OF [ 1

N ], where an is the n-th Fourier coeffi-
cient of a modular form of weight k ∈ 1

2Z for some subgroup of Γ (1) and F a number 
field. A conjecture of Atkin and Swinnerton-Dyer predicts that N = 1 if and only if the 
subgroup contains a congruence subgroup (see [1]). The result of Scholl implies that at 
most finitely many distinct primes can appear in the denominators of modular forms for 
a noncongruence subgroup of Γ (1). On the other hand, when the group is not commen-
surable with Γ (1), one would expect infinitely many primes in the denominators. This 
prediction is compatible with our result in the case of hyperbolic triangle groups.

The paper is organized in the following way. In Section 2 we introduce the main 
technique for establishing the results of the paper. This is namely the Dwork method 
which is based on a Lemma due to Dieudonné and a Theorem due to Dwork, see [4,5]. 
In Section 3 we prove the corollaries and give the proof of the main theorem.

The second author would like to thank CNPq-Brazil (150716/2012-5) for financial 
support and IMPA for its lovely research ambient.

2. Dwork method

The main idea in the proof of Theorem 1 is based on the Dwork method. Here we 
briefly review this method.

2.1. Dwork map

For the p-adic integers Zp, the Dwork map δp : Zp → Zp is given by

x =
∞∑
s=0

xsp
s �−→ 1 +

∞∑
s=0

xs+1p
s, 0 ≤ xs ≤ p− 1.

In other words, for every x, with x ≡ x0 (mod pZp), δp(x) := 1 + x−x0
p . Denote by Z(p)

the set of p-integral rational numbers. We have a natural embedding Z(p) ↪→ Zp. The 
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map δp leaves Z(p) invariant because for x ∈ Z(p), δp(x) is the unique number such that 
pδp(x) −x ∈ Z ∩ [0, p − 1]. For rational numbers there exists an alternative definition for 
the Dwork map as follows. Let x = x1

x2
, with x1 and x2 > 0 integers and a prime p which 

does not divide x2, we have

δp(x) := p−1x1 mod x2

x2
, (7)

where p−1 is the inverse of p mod x2 (note that x1 and x2 may have common factors). 
The denominators of x and δp(x) are the same and δp(1 − x) = 1 − δp(x). For any finite 
set of rational numbers, there is a finite decomposition of prime numbers such that in 
each class the function δp is independent of the prime p. Indeed for the set of primes 
p 

x2≡ r, δp(x) only depends on x and r.

2.2. Gauss hypergeometric function

Let us consider the following hypergeometric differential operator

L : θ2 − z(θ + a)(θ + b), (8)

with θ = z d
dz and

a = 1
2

(
1 − 1

m1
+ 1

m2

)
, b = 1

2

(
1 − 1

m1
− 1

m2

)
, (9)

where 2 ≤ m1, m2 ∈ N ∪{∞} and 1
m1

+ 1
m2

< 1. Note that these a, b are slightly different 
from those in the introduction. From now on we will only use (9). The monodromy group 
of the corresponding differential equation is the triangle group of type (m1, m2, ∞), see 
for instance [3]. The Frobenius basis of (8) around z = 0 is given by {F (z), F (z) log z +
G(z)}, where

F (a, b|z) = 1 +
∞∑
i=1

Ai(a, b)zi = 1 +
∞∑

n=1

(a)n(b)n
n!2 zn, (10)

G(a, b|z) =
∞∑
i=1

Bi(a, b)zi =
∞∑

n=1

(a)n(b)n
n!2

(
n−1∑
i=0

1
a + i

+ 1
b + i

− 2
1 + i

)
zn. (11)

Let us define

D(a, b|z) := G(a, b|z)
F (a, b|z) , q(a, b|z) := z exp

(
D(a, b|z)

)
, (12)

and D is called the Schwarz map. The Hauptmodul J introduced in the Introduction is 
given by
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J = 1
z(κ · q) , κ := −2m2

1m
2
2,

where z(q) is the inverse of q as a function in z, for more details see [3].

2.3. Dwork’s theorem

The following lemma is the additive version of Dieudonné–Dwork lemma and fre-
quently is used in the proof of p-integrality of power series.

Lemma 1. Let u(z) ∈ zQp[[z]]. Then exp(u(z)) ∈ 1 + zZp[[z]], if and only if

exp
(
u
(
zp
)
− pu(z)

)
∈ 1 + pZp[[z]].

For a more general statement and the proof see [5], p. 54. The following theorem is 
the main part of Dwork method.

Theorem 2. Let D be the Schwarz map, defined in (12) and p a prime number coprime 
with 2m1m2. We have

D
(
δp(a), δp(b)|zp

)
≡ pD(a, b|z)

(
mod pZp[[z]]

)
.

As a remark we mention that the original Dwork’s theorem is valid not only for 
arbitrary a, b ∈ Zp but also for generalized hypergeometric series. For a proof see [4].

Corollary 4. If

{
δp(a), δp(b)

}
= {a, b} or {1 − a, 1 − b} (13)

holds then q(a, b|z) is p-integral.

Proof. For {δp(a), δp(b)} = {a, b}, the statement is an immediate consequence of Dwork’s 
theorem and Lemma 1 with u(z) = D(a, b|z) and the fact that ordp(n!) < n. For the 
second case, thanks to the Euler identity

F (a, b|z) = (1 − z)1−a−bF (1 − a, 1 − b|z),

one can easily check that the logarithmic solution of (8) and so G satisfy the same 
identity. Then the result follows from the first case. �

Corollary 4 gives a sufficient condition for p-integrality of q(a, b|z). In order to proof 
Theorem 1 we need also a necessary condition. The following corollary is a step toward 
this goal.
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Corollary 5. Let p and q(a, b|z) as before. If the function q(a, b|z) is p-integral, then

D
(
δp(a), δp(b)|z

)
≡ D(a, b|z)

(
mod pZp[[z]]

)
, (14)

and vice versa.

Proof. If q(a, b|z) is p-integral, from Lemma 1 we have

D
(
a, b|zp

)
− pD(a, b|z) = log

(
1 + ph(z)

)
,

for some h(z) ∈ zZp[[z]]. But

log
(
1 + ph(z)

)
=

∞∑
n=1

(−1)n p
nh(z)n

n
∈ pzZp[[z]].

Hence

D
(
a, b|zp

)
≡ pD(a, b|z)

(
mod pZp[[z]]

)
.

Combining with the congruence of Theorem 2 the result follows. The other side is simi-
lar. �

In the continuation we will determine complete conditions such that the congruency 
(14) holds. We will prove that it is equivalent to (13) in Corollary 4.

Lemma 2. Let k be a field of characteristic p = 2 and a1, a2, b1, b2 ∈ k. The coefficients 
of zi, i = 1, 2, in

D(a2, b2|z) and D(a1, b1|z) (15)

are equal if and only if

{a2, b2} = {a1, b1} or {1 − a1, 1 − b1}. (16)

Note that in general G(a1, b1|z), a1, b1 ∈ k (consequently D(a1, b1|z)), is not well-
defined because in its expression we have division by primes. However, it makes sense to 
talk about the coefficients of z and z2 in characteristic p = 2.

Proof. Let σ = a + b, τ = ab. The coefficients of D(a, b|z) can be written in terms 
of the symmetric polynomials σ, τ . Let Ck(σ, τ) be the k-th coefficient of D(a, b|z). By 
definition we have C1(σ, τ) = σ − 2τ , so the assumption implies that

σ1 − 2τ1
p≡ σ2 − 2τ2. (17)
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Now for C2(σ, τ) we have

4C2(σ1, τ1) − 4C2(σ2, τ2) = σ2
1 − 5σ1τ1 + 5τ2

1 − σ2
2 + 5σ2τ2 − 5τ2

2 + σ1 − τ1 − σ2 + τ2

= (σ1 − 2τ1)2 − (σ2 − 2τ2)2 + τ2(σ2 − 2τ2)

− τ1(σ1 − 2τ1) + τ2
2 − τ2

1 + τ1 − τ2

≡ (τ2 − τ1)(σ1 − 2τ1 + τ1 + τ2 − 1) (mod p).

In the above we have used the congruence (17) in the last line. Hence from the last 
congruence we conclude that either τ1

p≡ τ2 or σ1
p≡ τ1 − τ2 + 1. The first (second) case 

together with the equation (17) gives the first (second) possibility mentioned in (16). �
3. Proofs

In this section we give a proof of Theorem 1 and its corollaries announced in the 
Introduction.

3.1. Proof of Theorem 1

First we show that for p > 2m1m2, the p-integrality of q(a, b|z) is equivalent to 
condition (13). In fact if q(a, b|z) is p-integral, then equation (14) holds. In particular 
we can apply Lemma 2 for {a1, b1} = {a, b}, {a2, b2} = {δp(a), δp(b)} and the finite field 
k = Z

pZ . It follows that {δp(a), δp(b)} congruent to {a, b} or {1 − a, 1 − b} modulo k. 
But p > 2m1m2, in particular it is greater than the denominators of a, b < 1. Since 
the action of δp does not change the denominator, so the above congruence is indeed an 
equality in Z. Hence the only thing to complete the proof is to show that the conditions 
of Theorem 1 are equivalent to equation (13). In order to do this we analyze the equality 
(13) case by case.

Recall that

a = a1

a2
= m1m2 −m1 + m2

2m1m2
, b = b1

b2
= m1m2 −m1 −m2

2m1m2
.

1. δp(a) = a, δp(b) = b or δp(a) = 1 − a, δp(b) = 1 − b. By definition of the Dwork 

map in (7), in this case we have p−1a1
a2≡ εa1 and p−1b1

b2≡ εb1, where ε = 1 corresponds 
to the first case and ε = −1 corresponds to the second case. Since p is odd, the above 
congruences are equivalent to

p(m1 + m2) ≡ ε(m1 + m2) (mod 2m1m2)

p(m1 −m2) ≡ ε(m1 −m2) (mod 2m1m2). (18)

Once adding and subtracting of congruences in (18) we find that p 
mi≡ ε for both i = 1, 2. 

From this fact one can easily check that (18) is equivalent to
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(
p

2m1≡ ε, p
2m2≡ ε

)
or

(
p

2m1≡ m1 + ε, p
2m2≡ m2 + ε

)
.

2. The case δp(a) = b and δp(b) = a or δp(a) = 1 −b, δp(b) = 1 −a. Again by definition 

of the Dwork map we have p−1a1
a2≡ εb1 and p−1b1

b2≡ εa1, where ε = 1 corresponds to 
the first case and ε = −1 corresponds to the second case. Like the previous case these 
congruences are equivalent to

p(m1 + m2) ≡ ε(m1 −m2) (mod 2m1m2)

p(m1 −m2) ≡ ε(m1 + m2) (mod 2m1m2), (19)

and one can check that this is equivalent to

(
p

2m1≡ ε, p
2m2≡ −ε

)
or

(
p

2m1≡ m1 + ε, p
2m2≡ m2 − ε

)
.

Now for (m, ∞, ∞), from (9) we see that a = b = m−1
2m . Then Condition (13) is equivalent 

to p(m −1) 2m≡ ε(m −1), canceling m −1 and the fact that p is odd proves the statement.

3.2. Proof of Corollary 1

We see that if one of mi, i = 1, 2, does not belong to the set {2, 3, 4, 6, ∞}, then there 
is a residue like r = ε, mi + ε with (r, 2mi) = 1. Then by Dirichlet theorem there are 

infinitely many primes p 
2mi≡ r and by Theorem 1, J is not p-integral for such primes, 

which is a contradiction. Now checking all possibilities we find the list given in the 
statement of the corollary.

3.3. Proof of Corollary 2

We note that the first condition in Theorem 1, namely p modulo 2m1 automatically 
holds for m1 = 2 and every prime greater than 3. Hence J for Hecke group Γ(2,n,∞) is p
integral if and only if p 

2n≡ ±1 or n ± 1. This is equivalent to p 
n≡ ±1.

3.4. Proof of Corollary 3

Let m2 be finite (the case m2 = ∞ resolves in a similar way). Let also m be the 
algebra of automorphic forms for Γt. Using Theorem 1, it is enough to prove that J is 
p-integral if and only if m is p-integral. Let E4 = E

(2)
4 and E6 = E

(2)
6 , where E(2)

k are 
defined in (6). We have

J = E3
4

3 2 .
E4 −E6
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If J is not p-integral then one of the functions E4 or E6 is not p-integral and hence m is 
not p-integral (E4 and E6 are members of this algebra and we use the convention that 
the p-integrality property is defined up to multiplication by a constant). Now from the 
Halphen system one can check that

t1 − t2 = J̇

J
, t3 − t2 = J̇

J − 1 ,

and so

E
(1)
2k = J − 1

J

(
J̇

J − 1

)k

, E
(2)
2k =

(
J̇

J

)k
J

J − 1 .

If J is p-integral then all its derivatives are p-integral, and so, all the above elements are 
p-integral. A subset of these functions form a basis for m. Note that if an algebra m is 
p-integral and we have a basis A of m then after multiplication of the elements of A by 
proper constants, A turns to be a basis of m with p-integral elements.

3.5. Final remarks

We expect that Theorem 1 to be true for primes p less than and coprime to 2m1m2. 
This is equivalent to say that Corollary 4 is “if and only if”. If q(a, b|z) is p-integral, 
then q(δnp (a), δnp (b)|z) is p-integral for all n ∈ N and hence we can use Corollary 5 and 
Lemma 2 and conclude that

{
δnp (a), δnp (b)

} p≡ {a, b} or {1 − a, 1 − b}. (20)

This does not seem to be sufficient in order to conclude the true equality. In order 
to further investigate the p-integrality of q(a, b|z) we need to use more data from the 
congruency (14).

Unfortunately, in the literature there are no applications for the q-expansion of auto-
morphic forms for non-arithmetic triangle groups. The main reason is the lack of Hecke 
theory for such automorphic forms. The rationality of coefficients is one of the main 
obstacles. We saw that for a class of primes the integrality in the level of p-adic inte-
gers holds. One question here is whether this integrality has distinguished enumerative 
properties.

The hypergeometric functions F, F log(z) +G up to some Γ -factors are periods of the 
following family of curves

Ca,b,c
z : y = xa(x− 1)b(x− z)c,

where a, b, c are give in (2). Another interesting problem is to find a geometric description 
for the result of Theorem 1 using the above family of curves. This curve and its Jacobian, 
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are extensively studied by Wolfart et al. in connection with the algebraic values of the 
Schwarz map, see [10,13] and references therein.

Another interesting problem which we would like to address here is the p-integrality 
for generalized hypergeometric equations of order n whose local exponents at z = 0 are 
all zero. As we mentioned before, Dwork’s theorem is valid in this general case. The Gauss 
hypergeometric equation corresponds to n = 2. We obtain in a similar way p-integrality 
results for the mirror map (the analog of q(a, b|z) for arbitrary n). For n > 2 in the 
absence of the Euler identity, the only sufficient condition for p-integrality of the mirror 
map is that δp acts as a permutation on the local exponents of the differential equation 
at ∞ (an analog of Corollary 4). Then an interesting question is the converse, as we did 
in this article for n = 2. An important situation with applications in algebraic geometry 
and mathematical physics is the case in which the mirror map is almost integral. Then 
a simple observation shows that in Lemma 5, the congruence (14) is indeed an equality. 
In [7], the author, using differential Galois theory, showed that, this equality holds if 
and only if δp acts as a permutation for almost all p This fact establishes the problem 
of classification of all hypergeometric equations with maximal unipotent monodromy 
and with integral mirror map. As a corollary for n = 4, which is important in mirror 
symmetry, the well-known 14 cases is obtained.

As a final remark we would like to mention the possible relationship between almost 
integrality and arithmeticity of the monodromy groups. The coincidence of the Takeuchi 
list and the list of Corollary 1 does not seem to be casual. However the intrinsic connec-
tion between these two different worlds is not yet clear. Despite the existence of Dwork’s 
method for non-unipotent cases, this method does not determine the rest of the Takeuchi 
list, i.e., arithmetic triangle groups without cusp. The situation for n > 2 is more ob-
scure. For example for n = 4 even in the case with maximal unipotent monodromy it 
has been shown that among the 14 cases some of them are arithmetic and some of them 
are not (see for instance [11]). For a nice discussion in this subject we refer the reader 
to [8].
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