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For triangle groups, the (quasi-)automorphic forms are known just
as explicitly as for the modular group PSL(2,Z). We collect these
expressions here, and then interpret them using the Halphen dif-
ferential equation. We study the arithmetic properties of their
Fourier coefficients at cusps and Taylor coefficients at elliptic fixed-
points — in both cases integrality is related to the arithmeticity
of the triangle group. As an application of our formulas, we pro-
vide an explicit modular interpretation of periods of 14 families of
Calabi–Yau three-folds over the thrice-punctured sphere.
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1. Introduction

Although modular forms for congruence subgroups of the modular group
PSL(2,Z) = Γ(1) go back to Euler, modular forms for more general Fuchsian
groups (usually called automorphic forms) go back to Poincaré. He proved
their existence by constructing functions (Fuchsian-theta series in his ter-
minology) which nowadays are known as Poincaré series. Independently of
Poincaré, Halphen in [20,21] introduced a differential equation in three vari-
ables and three parameters, which nowadays bears his name. His motivation
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was a particular case studied by Darboux in [13] and he proved that in such
a case the differential equation is satisfied by the logarithmic derivatives of
theta functions. Despite the fact that Poincaré and Halphen were contem-
poraries and compatriots, the main relation between these works was not
clearly understood, and Halphen’s contribution was largely forgotten, only
to be rediscovered several times.

The modular forms and functions for the modular group Γ(1) have of
course been well understood for many decades. What is less well known is
that there is a natural infinite class of Fuchsian groups — the so-called trian-
gle groups — where the automorphic forms and functions can be determined
just as explicitly, even though all but a few are incommensurable with Γ(1).

Let Γ ≤ PSL(2,R) be any genus-0 finitely generated Fuchsian group of
the first kind.1 (See the following section for the definitions of these and other
technical terms.) This means that Γ\HΓ is topologically a sphere, where
HΓ denotes the upper half-plane H extended by the cusps of Γ (if any).
Let ncp be the number of cusps and nel be the number of elliptic fixed-
points, and write 2 ≤ ni ≤ ∞ for the orders of their stabilizers. Then Gauss–
Bonnet implies 2 <

∑ncp+nel

j=1 (1 − 1/nj) (see, e.g., Theorem 2.4.3 of [32] for
a generalization) and hence we have the inequality ncp + nel ≥ 3. The field
of automorphic functions of Γ is C(JΓ) where the generator JΓ maps Γ\HΓ

bijectively onto the Riemann sphere P
1. Knowing such a uniformizer JΓ

determines explicitly (in principle) all automorphic and quasi-automorphic
forms. If Γ is commensurable with Γ(1) (i.e., when Γ ∩ Γ(1) has finite index
in both Γ and Γ(1)), then (in principle) a generator JΓ can be determined
from, e.g., the Hauptmodul j(τ) = q−1 + 196884q + · · · of Γ(1), where q =
e2πiτ , τ ∈ H. When Γ is not necessarily commensurable, it is useful to recall
that JΓ will satisfy a nonlinear third-order differential equation

(1.1) −2
J ′′′

Γ (τ)
J ′

Γ(τ)
+ 3

J ′′
Γ(τ)2

J ′
Γ(τ)2

= J ′
Γ(τ)2QΓ(JΓ(τ))

coming from the Schwarzian derivative, where the prime here denotes d
dτ

and QΓ is a rational function depending only on Γ (for triangle groups it is
given in (2.16)).

The Schwarzian equation (1.1) is rather complicated. It can be replaced
by a much simpler system of first-order differential equations in ncp + nel

variables, subject to ncp + nel − 3 quadratic (nondifferential) constraints. In

1Since we only deal with subgroups of PSL(2,R) and not SL(2,R) all the corre-
sponding automorphic forms will be of even weight.
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this generality, the result is due to Ohyama [37], but the key ideas go back
to the 19th century. In particular, Halphen [21] associated the system

(1.2)

⎧
⎪⎨

⎪⎩

t′1 = (a− 1)(t1t2 + t1t3 − t2t3) + (b+ c− 1)t21,
t′2 = (b− 1)(t2t1 + t2t3 − t1t3) + (a+ c− 1)t22,
t′3 = (c− 1)(t3t1 + t3t2 − t1t2) + (a+ b− 1)t23,

where the prime denotes d/dτ , to Gauss’ hypergeometric equation

(1.3) z(1 − z)y′′ + (a+ c− (a+ b+ 2c)z)y′ − (a+ b+ c− 1)cy = 0,

where now the prime denotes d/dz, and Brioschi [10] showed its equivalence
to the corresponding version of (1.1) (namely (2.16) below). The Halphen
system (1.2) has been rediscovered several times (including by one of the
authors of this paper!), and over the past century has appeared in the study
of monopoles, self-dual Einstein equations, WDVV equations, mirror maps,
etc. In [23], the authors have used solutions of Halphen equation for many
particular cases, including those with an arithmetic triangle group, to obtain
replicable uniformizations of punctured Riemann surfaces of genus zero. Fur-
ther particular cases of Halphen equation solved by classical theta series or
modular forms are discussed in [1]. The idea to use Halphen equation and
find new automorphic forms seems to be neglected in the literature.

Now, QΓ(z) in (1.1) is a rational function depending on ncp + nel − 2
parameters. Unfortunately, these parameters depend on Γ in a very com-
plicated nonalgebraic way and in general closed formulae for them cannot
be found (see, e.g., [47] for an analysis of this question). However, when
ncp + nel = 3 (the minimum value possible), this single parameter can be
determined explicitly, using classical results on hypergeometric functions.
In this case — where Γ is a triangle group — JΓ(τ) and hence all quasi-
automorphic forms for Γ can be explicitly determined.

One of the purposes of this paper is to write these explicit expressions
down, both for arithmetic and nonarithmetic triangle groups. Special cases
and partial results (mainly for arithmetic groups) are scattered throughout
the literature, see for instance [5, 7, 52] and references therein, but to our
knowledge these expressions have not appeared in the literature with this
explicitness and in this generality, and certainly not all in one place and
not including nonarithmetic triangle groups. Therefore, the intersection of
our work with those in the literature is mainly limited to Takeuchi’s 85
arithmetic triangle groups, see [45].
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We do this in two ways. We begin with the classical approach, because
of its familiarity: the multivalued ratio τ(z) of two solutions to the hyperge-
ometric equation can in certain circumstances be regarded as the functional
inverse of an automorphic function z(τ) for a triangle group. This determines
z(τ) completely, but it is convenient to use (1.1) to recover its q-expansion.
Differentiating z(τ) once yields all automorphic forms; differentiating it a
second time yields all quasi-automorphic forms. For subgroups of PSL(2,R)
there are no automorphic forms of odd weight, see Theorem 2. Although the
basic ideas of this derivation are classical, going back to Fuchs and Poincaré,
the details are unpleasant. Our second approach, using the Halphen equation,
is independent and turns this on its head, even though the underlying math-
ematics is again that of the hypergeometric equation. We interpret solutions
of Halphen’s equation, when lifted to H, as quasi-automorphic forms for a
triangle group. Taking differences yields all automorphic forms, and ratios
then yield all automorphic functions.

We suggest that in most respects, the (quasi-)automorphic forms of the
triangle groups are close cousins of those of the modular group and can
be studied analogously, even though these groups are (usually) not com-
mensurable with Γ(1) (and so, e.g., Hecke operators cannot be applied). In
particular, everything is as explicit for arbitrary triangle groups as it is for
the modular group.

Now, when the group contains a congruence subgroup Γ(n) of Γ(1), such
modular forms have many arithmetic properties. It is natural to ask whether
any such arithmeticity survives for general triangle groups. We explore the
arithmeticity of both the local expansions at cusps and at elliptic fixed-
points. The latter expansions are far less familiar, even though they were
familiar to, e.g., Petersson in the 1930s [38], but they deserve more attention
than they have received. For example, Rodriguez Villegas and Zagier [41]
interpret the expansion coefficients of the Dedekind eta η(τ) at ω = e2πi/3

in terms of central values of Hecke L-functions.
The triangle groups are extremely special among the Fuchsian groups

for a number of reasons, for instance:

(i) One is a consequence of Belyi’s theorem. A Fuchsian group is a sub-
group of finite index in a triangle group, iff for each weight k ∈ 2Z,
there is a basis of the C-space of weight-k holomorphic automor-
phic forms whose expansion coefficients are all algebraic numbers (see,
e.g., [42]). Of course, these coefficients are the primary reason for the
importance of any automorphic forms.

(ii) The complement of a knot in S3 has universal cover S̃L(2,R) (the uni-
versal cover of SL(2,R)), iff the knot is a torus knot [40]. In particular,
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the (p, q)-torus knot is diffeomorphic to S̃L(2,R)/G for a certain lift of
the (p, q,∞)-triangle group. For example, the complement of the trefoil
is S̃L(2,R)/S̃L(2,Z). The relevance to this here is that an automorphic
form, of arbitrary weight, for Γ lifts to a function on S̃L(2,R)/Γ̃. The
relevance to torus knots of the automorphic forms of the (p, q,∞)-
triangle group is developed in [46], following [31] and Section 2.4.3
of [16]. Now, recall that Gopakumar–Vafa duality would imply that
the Chern–Simons knot invariants arise as Gromov–Witten invariants.
This has been verified explicitly in [9] for the torus knots, by inde-
pendently computing the two sets of invariants and showing they are
equal. It seems very possible that reinterpreting [9] using automorphic
forms for triangle groups would at least simplify their calculation, and
could lead to a more conceptual explanation of the equality.

(iii) We see below that periods of some Calabi–Yau three-folds with one-
dimensional (1D) moduli spaces can be interpreted as vector-valued
automorphic forms (vvaf’s) for certain triangle groups (e.g., (5,∞,∞)
for the dual of the quintic). Independently, all 26 sporadic finite simple
groups are quotients of certain triangle groups [49], e.g., the Monster
is a quotient of (2, 3, 7) (and hence Γ(1)). This implies that, for each
sporadic group G, there will exist vvaf’s for some triangle group, whose
multiplier ρ factors through to a faithful representation of G.

In [33], the author (HM) derived the Halphen differential equation using
the inverse of a period map. One advantage of this point of view is the intro-
duction of modular-type forms for finitely generated subgroups of PSL(2,C)
which may not be even discrete, something which must sound dubious to
most number theorists. Since Movasati [33] focusses on the differential and
geometric aspects of such modular-type forms, we felt that we should now
look at number theoretic aspects. The triangle groups provide interesting but
nontrivial toy models, where the group is discrete but the automorphic forms
are not so well-studied. This text is partly a result of this effort. We find it
remarkable how naturally the (quasi-)automorphic forms for triangle groups
arise in the Halphen system (1.2). We believe this observation is new (at least
in this generality). In this case, the parameters a, b, c must be rational —
in fact the combinations 1 − a− b, 1 − c− b, 1 − a− c will equal the angular
parameters vi = 1/mi, for i = 1, 2, 3, respectively, where mi ∈ Z>0 ∪ {∞}.
However, some sort of modularity appears to persist though even when these
angular parameters are complex.

Our main motivation for writing this paper is to establish the background
needed to understand the modularity of the mirror map for examples such
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as the Calabi–Yau quintic, by relating the Halphen approach of one of the
authors with that of vvaf’s of another author. This required having com-
pletely explicit descriptions of the automorphic forms for the triangle group
(5,∞,∞), and as we could not find this adequately treated in the literature
we did the calculations ourselves. The application to mirror maps will be
forthcoming, although an initial step is provided in Section 6.

The outline of the paper is as follows. Section 2 provides the classical
(i.e., hypergeometric) calculation of all data for the automorphic forms of
the triangle groups. Section 3 recovers this data using solutions to Halphen’s
equation; we believe this approach is new. Section 4 specializes to the tri-
angle groups commensurable with the modular group. Section 5 explores
the arithmeticity of the Fourier and Taylor coefficients. Section 6 applies
this material to periods of Calabi–Yau three-folds. Our proofs are collected
in Section 7. Relevant facts on hypergeometric functions are collected in
Appendix A.

The purpose of this paper is, firstly, to establish that the theory of
automorphic forms for any triangle group with cusps is every bit as explicit
as is that of SL2(Z). We do this in two complementary ways: the classical
argument from the hypergeometric equation, and a new approach using the
Halphen equation. Some aspects of this lengthy calculation are scattered
throughout the literature (see for instance [7,52] and references therein) and
some seem missing (as we will explain in later sections), and we wanted to
complete it and collect it all in one place. Moreover, we initiate a study of the
arithmeticity of the coefficients of these automorphic forms; it appears that
little work has been done on this, in particular for nonarithmetic groups and
for Taylor expansion coefficients at elliptic points, but there are questions
worth exploring. Finally, we explain the hidden modularity of Calabi–Yau
periods.

Here is some notations used throughout the text.

• t = (m1,m2,m3): triangle group type;

• H resp. Ht: the upper half-plane resp. extended upper half-plane;

• Γt ⊂ PSL(2,R): the realization of the triangle group of type t;

• γi, i = 1, 2, 3: matrix generators of Γt (see (2.10));

• ζi, i = 1, 2, 3: fixed-points of γi (see (2.9));

• qi resp. q̃i: the local coordinate resp. normalized local coordinate,
at ζi;

• Jt: the normalized Hauptmodul associated to the group Γt (see (2.12));
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• vi = 1
mi
, i = 1, 2, 3: the angular parameters;

• (a, b, c) resp. (ã, b̃, c̃): parameters of the Halphen resp. hypergeometric
systems; and

• (t1, t2, t3): the solution of the Halphen system, defined in Section 3.

2. Classical computation of (quasi-)automorphic forms

In this section, we give the classical approach for computing automorphic
forms through the Schwarzian and hypergeometric differential equations.

2.1. Background

See, e.g., [32] for the basics of Fuchsian groups and their automorphic forms.
A Fuchsian group Γ is a discrete subgroup of PSL(2,R) = SL(2,R)/{±1},
the group of orientation-preserving isometries of the upper half-plane H :=
{x+ iy | y > 0}. Γ is called of first class (the class of primary interest) if
its fundamental domains in H have finite hyperbolic area. γ ∈ Γ is called
parabolic if γ has precisely one fixed-point on the boundary ∂H = RP

1 =
R ∪ {i∞}; x ∈ R ∪ {i∞} is called a cusp of Γ if it is fixed by some parabolic
γ ∈ Γ. The extended half-plane together with all cusps; then for Γ of first
class, the orbits Γ\HΓ naturally form a compact surface. The genus of this
surface is called the genus of Γ.

If i∞ is a cusp of Γ, we call the smallest h > 0 with γ∞;h :=
(

1
0
h
1

)
∈ Γ

the cusp-width h∞. If x ∈ R is a cusp, its cusp-width hx is the smallest h > 0

for which γx;h :=
(

0
1
−1
−x
)−1 (

1
0
h
1

)(
0
1
−1
−x
)
∈ Γ. The other special points in HΓ

are the elliptic fixed-points, which are z ∈ H stabilized by a nontrivial γ ∈ Γ.
For each z = x+ iy ∈ H, the stabilizer in Γ is finite cyclic, generated by

γz;n :=

(
y−1/2

0
−y−1/2x

y1/2

)−1(
cos(π/n)
− sin(π/n)

sin(π/n)
cos(π/n)

)(
y−1/2

0
−y−1/2x

y1/2

)

for a unique positive integer n = nz called the order of z. Write nx = ∞ for
a cusp x.

These numbers hx, nz are clearly constant along Γ-orbits. Let nel denote
the number of Γ-orbits of elliptic fixed-points and ncp the number of Γ-
orbits of cusps. Both nel and ncp must be finite, but can be zero; moreover,
nel + ncp ≥ 3.
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For z ∈ HΓ, define Möbius transformations τ 	→ τz, local coordinates qz
and automorphy factors jz(k; τ) as follows. Choose τ∞ = τ , q∞ = e2πiτ/h∞

and j∞(k; τ) = 1; for x ∈ R choose τx = −1/(τ − x), qx = e2πiτx/hx and
jx(k; τ) = τkx ; while for z ∈ H choose τz = (τ − z)/(τ − z), qz = τnzz and
jz(k; τ) = (1 − τz)k. This factor jz is, up to a constant, the standard weight-k
automorphy factor associated to the transformation τ 	→ τz.

The point is that any meromorphic function f(τ) invariant under the
slash operator

(2.4) (f |kγz;h)(τ) := (cτ + d)−kf
(
aτ + b

cτ + d

)

for some z ∈ HΓ, where we write γz;h =
(
a
c
b
d

)
, will have a local expansion

(2.5) f(τ) = jz(k; τ)
∑

n∈Z

f

[

n+
k

nz

]

z

q
n+ k

nz
z .

The order ordz(f) of an automorphic form f at a point z ∈ HΓ is defined
to be the smallest r ∈ Q such that f [r]z �= 0. Here, f [r]z is the coefficient of
qrz in the Fourier expansion of f .

A quasi-automorphic form f of weight k ∈ 2Z and depth ≤ p for Γ can
be defined [11] as a function meromorphic on HΓ (meromorphicity at the
cusps is defined shortly), satisfying the functional equation

(2.6) (f |kγ)(τ) =
p∑

r=0

fr(τ)
(

c

cτ + d

)r
∀γ =

(
a

c

b

d

)

∈ Γ

for some functions fr meromorphic in HΓ and independent of
(
a
c
b
d

)
. We say

f is meromorphic at the cusp z ∈ {i∞} ∪ R if all but finitely many coeffi-
cients f [n]z vanish for n < 0, and holomorphic at z if f [n]z = 0 whenever the
relevant power of qz, namely n+ k/hz, is negative. When p = 0, f is called
an automorphic form; when p = k = 0, it is called an automorphic function.
When Γ is commensurable with Γ(1), it is typical to replace “automorphic”
with “modular.”

This definition can be extended to any weight k ∈ C using the notion of
automorphy factor, but we do not need it (though see the end of Section 2.4).
It is elementary to verify that the orders ordz(f) of an automorphic form f
are constant on Γ-orbits Γz.
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Suppose f is an automorphic function, not constant. Then f ′ = d
dτ f

will be an automorphic form of weight 2 and e2,f = 1
f ′

d2

dτ2 f will be quasi-
automorphic of weight 2 and depth 1. In this case, the Serre derivative Dk =
d
dτ − kβe2,f (τ), for some constant β ∈ C independent of f and k (computed
for triangle groups in Theorem 2(ii) below), takes automorphic forms of
weight k to those of weight k + 2.

The automorphic functions form a field; when the genus of Γ\HΓ is zero,
this field can be expressed as the rational functions C(f) in some generator
f . By a Hauptmodul we mean any such generator. These Hauptmoduls f
are mapped to each other by the Möbius transformations PSL(2,C), and
therefore are determined by three complex parameters.

For example, for Γ(1) = PSL(2,Z), recall the classical Eisenstein series
Ek given by

(2.7) Ek(τ) = 1 +
2

ζ(1 − k)

∞∑

n=1

nk−1qn

1 − qn

k ∈ 2Z>0, where q = qi∞ = exp(2πiτ). The holomorphic modular forms and
quasi-modular forms yield the polynomial rings C[E4, E6] and C[E2, E4, E6].
The classical Hauptmodul is

(2.8) j(τ) =
1728E4(τ)3

E4(τ)3 − E6(τ)2
= q−1 + 744 + 196884q + · · · .

Throughout this paper, by Ek(τ) and j(τ) we mean these modular forms
for Γ(1).

2.2. Triangle groups

In this paper, we focus on the triangle groups. These by definition are those
genus-0 Fuchsian groups Γ of the first kind with nel + ncp = 3 (the minimal
value possible). This means that there are exactly three Γ-orbits of cusps
and elliptic fixed-points, in some combination. Let 2 ≤ m1 ≤ m2 ≤ m3 ≤ ∞
be the orders of the stabilizers of those three orbits. No Fuchsian group of
the first kind can have types (2, 2,m) ∀m ≤ ∞, (2, 3, n) for n ≤ 6, (2,4,4)
and (3,3,3); the remainder are called the hyperbolic types. We are primarily
interested in the case where m3 = ∞ — for m3 <∞ see Appendix B. As
an abstract group, a triangle group has presentation 〈g1, g2, g3 | gmi

i = 1 =
g1g2g3〉; when m3 = ∞ this is isomorphic to the free product Zm1 ∗ Zm2 ,
where we write Zk for the cyclic group with k elements.
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Given one such triangle group, we can find another by conjugating by any
g ∈ PSL(2,R). The triangle group of a given type t = (m1,m2,∞) is unique
up to this conjugation [38], and so is determined by three real parameters. As
the automorphic functions of Γ and gΓg−1 are related by f(τ) ↔ f(g−1τ), it
is not so significant which realization is chosen. Of course, this conjugation
will in general affect the integrality of Fourier coefficients, so in that sense
some choices are better than others.

Write vi = 1/mi for the angular parameters. A fundamental domain for
a triangle group will be the double of a hyperbolic triangle in Ht; we fix the
triangle group by fixing the location of the corners of the triangle, which we
take to be

(2.9) ζ1 = −e−πiv1 , ζ2 = eπiv2 , ζ3 = i∞.

A fundamental domain for Γt is the union of this triangle and its image
under τ 	→ τ + h3

2 , where h3 := 2 cos(πv1) + 2 cos(πv2). The Fuchsian group
Γt for this choice has generators

γ1 =
(

2 cos(πv1) 1
−1 0

)

, γ2 =
(

0 1
−1 2 cos(πv2)

)

,(2.10)

γ3 =
(

1 2 cos(πv1) + 2 cos(πv2)
0 1

)

stabilizing the three corners ζ1, ζ2, ζ3, where

(2.11) γ1γ2γ3 = γm1
1 = γm2

2 = −I2×2.

Thus, the cusp i∞ has cusp-width h3; when m2 = ∞, ζ2 = 1 is also a cusp,
with cusp-width h2 = 1. Of course the groups Γ(mπ1,mπ2,mπ3) are conjugate
for any permutation π ∈ Sym(3).

The prototypical example is the modular group Γ(2,3,∞) = Γ(1). More
generally, the Hecke groups Γ(2,m,∞), m > 2, have attracted a fair amount
of attention.

2.3. Hauptmoduls for triangle groups

Given a type t = (m1,m2,∞), fix the triangle group Γt as in (2.10). A Haupt-
modul Jt(τ) for Γt is determined by three independent complex parameters,
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which we fix by demanding

(2.12) Jt(ζ1) = 1, Jt(ζ2) = 0, Jt(i∞) = ∞.

(We make this choice because 1728J(2,3,∞) then equals the classical choice
(2.8) for Γ(1).) We call the unique Hauptmodul satisfying (2.12) the nor-
malized Hauptmodul for Γt. To find it, given any other Hauptmodul J , first
note that J(ζi) must be distinct points in CP

1 (since J is a Hauptmodul) so
there will be a unique Möbius transformation mapping those three points to
1, 0,∞, respectively, and Jt is the composition of that transformation with
J . Note that J(m1,∞,m2) = J−1

(m1,m2,∞), J(m2,∞,m1) = (1 − J(m1,m2,∞))−1, etc.
In the following theorem, we explicitly compute Jt, and in the following
section do this in a different way.

Theorem 1. Fix any hyperbolic type t = (m1,m2,∞), m1 ≤ m2 ≤ ∞. Let
qi be the local coordinates about the points ζi ∈ Ht in (2.9), and write q̃i =
αiqi for αi defined by: if mi = ∞

αi = b′d′
b′−1∏

k=1

(

2 − 2 cos
(

2π
k

b′

))− 1
2

cos(2π ka′b′ )
(2.13)

×
d′−1∏

l=1

(

2 − 2 cos
(

2π
l

d′

))− 1
2

cos(2π lc′d′ )
,

where we define positive integers a′, b′, c′, d′ by a′/b′ = (1 + v1 − v2)/2,
c′/d′ = (1 + v1 + v2)/2, g.c.d.(a′, b′) = g.c.d.(c′, d′) = 1; if mi <∞

(2.14) αi =
cos(π(v1 + v2)/2)
cos(π(v1 − v2)/2)

Γ(1 + vi)Γ((1 − vi + v3−i)/2)2

Γ(1 − vi)Γ((1 + v1 + v2)/2)2
.

The normalized Jt in (2.12) has local expansions

(2.15) Jt(τ) = 1 + q̃1 +
∞∑

k=2

akq̃
k

1 = q̃2 +
∞∑

k=2

bkq̃
k

2 = q̃−1
3 +

∞∑

k=0

ckq̃
k

3 .

These (normalized) coefficients ak, bk, ck are uniquely determined by

(2.16) −2
...
J t J̇t + 3J̈2

t − n−2
z J̇2

t = J̇4
t

(
1 − v2

2

J2
t

+
1 − v2

1

(Jt − 1)2
+
v2
1 + v2

2 − 1
Jt(Jt − 1)

)
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2for the choice z = ζ1, ζ2, ζ3, respectively, where each dot denotes q̃j d
dq̃j

, and
where nz is the order of the stabilizer at z. The coefficients ak, bk, ck are uni-
versal (i.e., type-independent) polynomials in Q[v1, v2], and are also
unchanged if we replace Γt by any conjugate.

The key to this calculation, which we describe in Section 7.1, is the
expression (using ratios of hypergeometric functions) of the uniformizing
Schwarz map from the upper hemisphere in CP

1 to a hyperbolic triangle in
the Poincaré disc. Analytically continuing the (multivalued) hypergeomet-
ric functions amounts to reflecting in the sides of that triangle, resulting
in a multivalued map from the thrice-punctured sphere to the disc. The
(single-valued) functional inverse of this Schwarz map is a Hauptmodul; its
automorphy traces back to the monodromy of the hypergeometric equation.
The most convenient way to obtain (most of) the local expansion of that
Hauptmodul is through the Schwarzian equation (2.16).

For instance we have

c0 = (1 − γ−)/2, c1 = (5 − 2γ+ − 3γ2
−)/64, c2 = (−γ3

− − γ+γ− + 2γ−)/54,

c3 = (−31 + 76γ+ − 28γ2
+ + 690γ2

− − 404γ+γ
2
− − 303γ4

−)/32768,

c4 = (−274γ− + 765γ+γ− − 314γ2
+γ− + 2807γ3

− − 1865γ+γ
3
− − 1119γ5

−)/
216000,

c5 = (19683 − 121770γ+ + 199044γ2
+ − 1909439γ2

− + 5990732γ+γ
2
−

− 68472γ3
+ + 12854105γ4

− − 2699804γ2
+γ

2
− − 9509386γ+γ

4
−

− 4754693γ6
−)/1528823808,

c6 = (341510γ− − 2360379γ+γ− − 13805911γ3
− + 4269300γ2

+γ−
− 1587244γ3

+γ− + 48264782γ+γ
3
− + 70933968γ5

− − 23644656γ2
+γ

3
−

− 57687959γ+γ
5
− − 24723411γ7

−)/12644352000,

where γ± = v2
1 ± v2

2. To our knowledge, these formulas in this generality have
not appeared in the literature, although Wolfart [51] computed (2.13) and
(2.14). Replacing Γt with any conjugate (using an element of PSL(2,R))
affects Jt by changing the value of α3, the value of cusp-width h3, and the
choice of i∞ as a cusp. The only subtlety here is which α3 corresponds to
our choice (2.10) of Γt. We find that once one has chosen i∞ to be a cusp (it
could have been anywhere in R ∪ {i∞}) and has fixed the cusp-width h3 (it

2The left-hand side of (2.16) is derived from the left-hand side of (1.1) using
classical properties of the Schwarzian derivative and the fact that derivation here
is with respect to ln(τnz

z ) which is no more compatible with weights.
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could have been any positive real number), then the modulus |α3| is fixed
for any conjugate; our choice (2.10) of generators then corresponds to α3

being positive.

2.4. Automorphic forms for triangle groups

Knowing a Hauptmodul J for any genus-0 Fuchsian group — e.g., any tri-
angle group — determines by definition all automorphic functions. It is less
well known that from a Hauptmodul, all holomorphic (quasi-)automorphic
forms can be quickly read off. We restrict here to triangle groups, although
the argument works for any genus-0 group.

The following theorem constructs an automorphic form whose divisor is
supported at the cusps, the analog here of the discriminant form Δ = η24 for
Γ(1). It constructs from this a “rational” basis for the space of automorphic
forms (rational in a sense described after the theorem), and gives the analog
here of E2, and hence all quasi-automorphic forms. In Section 4, we compare
this basis with more classical ones, for the nine triangle groups related to
Γ(1).

Theorem 2. (i) For each k ∈ Z, write d2k = k − �k/m1� − �k/m2� and
let

(2.17) f2k = (−1)kJ̇kt J
� k

m2
�−k

t (Jt − 1)�
k

m1
�−k = q̃d2k

3 +O(q̃d2k+1
3 ),

where the dot denotes q̃3d/dq̃3. Then a basis for the C-vector space
m2k(Γt) of holomorphic automorphic forms of weight 2k for Γt is
f2k(τ)Jt(τ)l for each 0 ≤ l ≤ d2k. In particular

(2.18) dim(m2k(Γt)) =
{
d2k + 1 if k ≥ 0,

0 if k < 0.

The algebra m(Γt) of holomorphic automorphic forms of even weight
has the following minimal set of generators:

when t = (∞,∞,∞), {f2, Jtf2};
when t = (m,∞,∞) for m <∞, {f2, . . . , f2m};
when t = (m1,m2,∞) for m1 ≤ m2 <∞, {f2l}|2≤l≤m2 ∪

{Jd2l
t f2l}|3≤l≤m1.

(ii) Define L to be the least common multiple lcm(m1,m2) where we write
lcm(m1,∞) = m1 and lcm(∞,∞) = 1. Then Δt(τ) := f2L(τ) is a holo-
morphic automorphic form of weight 2L, nonzero everywhere in Ht
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except in the Γt-orbit [i∞], where Δt has a zero of order nΔ = L (1 −
m−1

1 −m−1
2 ). Define E2;t = 1

2πiΔ
−1
t dΔt/dτ . Then E2;t is holomorphic

in Ht, E2;t vanishes at any cusp ζmj
�∈ [i∞], and E2;t(i∞) = nΔ. More-

over, E2;t is quasi-automorphic of weight 2 and depth 1 for Γt: i.e., for
all
(
a
c
b
d

)
∈ Γt

(2.19) E2;t

(
aτ + b

cτ + d

)

=
nΔc

2πi
(cτ + d)E2;t(τ) + (cτ + d)2E2;t(τ).

The derivation

Dk =
1

2πi
d

dτ
− k

L
E2;t

sends weight k automorphic forms to weight k + 2 ones. The space of
all holomorphic quasi-automorphic forms of Γt is m(Γt)[E2;t].

The f2k defined above is the unique holomorphic weight-2k automorphic
form with maximal order at the cusp i∞ and with the monic leading coeffi-
cient in the q̃3-expansion. The weights of generators for m(Γ) for any Fuch-
sian group of the first kind, are given in [48] and references therein; what
we provide in Theorems 1 and 2 are explicit formulas and expansions for
those generators, in the special case of triangle groups. Provided we expand
in q̃i = αiqi instead of qi, Jt has rational coefficients; in this same sense, our
bases for each m2k also has rational coefficients. Incidentally, according to
Wolfart [51], α3 is transcendental except for the types listed in table 1 below.

Although every triangle group shares many properties with Γ(1), one
difference is that m(Γt) will rarely be a polynomial algebra: in fact, m(Γt)
is polynomial iff t = (2, 3,∞), (2,∞,∞) or (∞,∞,∞). On the other hand,
Milnor [31] and Wolfart [50] consider the ring of holomorphic automorphic
forms of Γt for a root-of-unity-valued multiplier (which allows certain weights
k �∈ 2Z), and find that larger ring always generated by three forms f1, f2, f3

satisfying an identity of the form fe11 + fe22 + fe33 = 0.
Incidentally, Δt can identify all automorphic forms with multiplier of

arbitrary complex weight k ∈ C. In particular, for any w ∈ C define Δ(w)
t to

be any nontrivial solution to

(2.20)
1

2πi
d

dτ
f = wE2;tf.
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T
ab

le
1:

T
he

tr
ia

ng
le

gr
ou

ps
co

m
m

en
su

ra
bl

e
w

it
h

Γ
(1

).

(m
1
,m

2
,m

3
)

g
Γ

tg
−1

g
ζ 1

γ
1

ζ 2
γ

2
ζ 3

γ
3

α
3

(2
,3
,∞

)
Γ
(1

)
1

i
S

ω
(

0 −1
1 1

)
∞

T
17

28

(2
,4
,∞

)
Γ

+ 0
(2

)
(

2 0
0 1

)
i/
√ 2

W
2

(−
1

+
i)
/2

1 √
2

(
2 −2

1 0

)
∞

T
25

6

(2
,6
,∞

)
Γ

+ 0
(3

)
(

3 1
0 1

)
i/
√ 3

W
3

(−
3

+
i√ 3)

/6
1 √
3

(
3 −3

1 0

)
∞

T
10

8

(2
,∞

,∞
)

Γ
0
(2

)
(

1 0
1 2

)
(1

+
i)
/2

(
1 2
−1 −1
)

0
U

2
∞

T
64

(3
,3
,∞

)
Γ
(1

)∗
1

ω
2

(
1 −1

1 0

)
ω

(
0 −1

1 1

)
∞

T
2

48
√ 3

(3
,∞

,∞
)

Γ
0
(3

)
(

1 0
−1 3

)
(3

+
i√ 3)

/6
(

1 3
−1 −2
)

0
U

3
∞

T
27

(4
,4
,∞

)
Γ

+ 0
(2

)∗
(

2 1
0 1

)
(i
−

1)
/2

1 √
2

(
2 −2

1 0

)
(1

+
i)
/2

1 √
2

(
0 −2

1 2

)
∞

T
2

32

(6
,6
,∞

)
Γ

+ 0
(3

)∗
(

3 1
0 1

)
(−

3
+

i√ 3)
/6

1 √
3

(
3 −3

1 0

)
(3

+
i√ 3)

/6
1 √
3

(
0 −3

1 3

)
∞

T
2

12
√ 3

(∞
,∞

,∞
)

Γ
(2

)
(

1 0
1 2

)
0

U
2

1
(
−1 −2

2 3

)
∞

T
2

16
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First note from the theory of ordinary differential equations (see, e.g., [25]),
Δ(w)

t exists and is holomorphic throughout H. Locally, it corresponds to
some branch of the power Δw

t ; that it transforms under Γt like (and there-
fore is) a holomorphic automorphic form of weight w · lcm{m1,m2} follows
directly from (2.20). Then some f is a (meromorphic) automorphic form
for Γt with arbitrary weight k ∈ C automorphy factor, iff f/Δ(k/lcm{m1,m2})

t

is an automorphic function for Γt with the appropriate automorphy factor
(namely some character of Γt).

3. Quasi-automorphic forms via Halphen’s equation

In this section, we realize the (quasi-)automorphic forms of the triangle
groups, using the Halphen differential equation. This material should be
completely new; see [33] for some of the detailed calculations which are
omitted here. For simplicity, we again require m3 = ∞ — see Appendix B
for some remarks on the generalization to finite m3.

Fix any hyperbolic type t = (m1,m2,∞). Recall the angular parameters
vi = 1/mi. Consider the Halphen differential equation (1.2), where a, b, c are
the parameters

a =
1
2
(1 + v2 − v1 − v3),(3.21)

b =
1
2
(1 + v3 − v1 − v2),

c =
1
2
(1 + v1 − v2 − v3).

In the original Halphen equation, the right-hand side of (1.2) is divided by
a+ b+ c− 2.

Recall the normalized Hauptmodul Jt. We are interested in the particular
solution of (1.2) given in Theorem 3(i) below. Because v3 = 0 (i.e., a+
c = 1), the Halphen vector field has the 1D singular locus t1 = t3 = 0; the
solution of part (i) is a perturbation of this singular locus. The relation of
the Halphen equation with hypergeometric functions goes back to Halphen,
who is therefore ultimately responsible for parts (i) and (iii). Part (ii) follows
from recursions coming from (1.2) (see Section 7.3 below), and is new. The
automorphy of the Halphen solutions arises from the SL(2,C) action in part
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(iii), and can be also proved using generalizations of period maps, see Section
10 of [33].

Theorem 3. (i) A solution to (1.2) is

t1(τ) = (a− 1)z Q(z)F (1 − a, b, 1; z)F (2 − a, b, 2; z),

t2(τ) = Q(z)F (1 − a, b, 1; z)2 + t1(τ),

t3(τ) = Q(z) z F (1 − a, b, 1; z)2 + t1(τ),

where F = 2F1 is the hypergeometric function and

Q(z) =
πi (1 − b)

2 sin(πb) sin(πa)
(1 − z)b−a , z = (1 − Jt(τ))−1.

(ii) Write q̂ = νe2πiτ/h3 where h3 = 2 cos(πv1) + 2 cos(πv2) and

(3.22) ν =

⎧
⎪⎨

⎪⎩

1
2v

2
1v

2
2α3 v1 �= 0, v2 �= 0,

1
2v

2
1α3 v2 = 0, v1 �= 0,

8 v1 = 0, v2 = 0.

Then the solution of (i) has the expansion

(3.23) ti =
2πi
h3

ti,0 + κi

∞∑

j=1

t̃i,j q̂
j ,

where [t1,0, t2,0, t3,0] = [0,−1, 0] and

[κ1, κ2, κ3] =
2πi
h3

[−m2
1m

2
2 −m2

2m1 +m2m
2
1, m2m1 +m2 +m1,

m2
1m

2
2 −m2

2m1 +m2m
2
1

]

t̃i,j ∈ Q[m1,m2].(3.24)
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(iii) If ti(τ), i = 1, 2, 3, are the coordinates of any solution of the Halphen
differential equation, then so are

1
(c′τ + d′)2

ti

(
a′τ + b′

c′τ + d′

)

− c′

c′τ + d′
, ∀

(
a′ b′

c′ d′

)

∈ SL(2,C).

For example, t̃1,1 = t̃3,1 = 1, t̃2,1 = m1 −m2,

t̃1,2 =
1
4
(2m1m

2
2 −m2

1m
2
2 − 7m2

1 + 7m2
2),

t̃3,2 =
1
4
(m2

1m
2
2 − 7m2

1 + 7m2
2 − 2m2

1m2),

t̃2,2 =
1
8
(−m3

1m
3
2 + 6m2

1m
2
2 − 11m3

1 + 11m2
1m2 −m3

1m
2
2 − 3m3

1m2

− 11m3
2 −m2

1m
3
2 + 11m1m

2
2 − 3m1m

3
2),

t̃1,3 =
1
48

(3m4
1m

4
2 − 14m2

1m
4
2 − 64m3

1m
2
2 + 64m1m

4
2 + 50m4

1m
2
2

+ 139m4
1 + 139m4

2 − 278m2
1m

2
2),

t̃3,3 =
1
48

(3m4
1m

4
2 − 14m4

1m
2
2 + 64m4

1m2 + 139m4
1 − 64m2

1m
3
2

+ 139m4
2 − 278m2

1m
2
2 + 50m2

1m
4
2).

Recall the triangle group Γt of type t = (m1,m2,∞) generated by the
matrices (2.10). We focus in this section on q̂-expansions around the cusp
i∞. The renormalization by ν of α3 is natural from the point of view of the
recursion coming from (1.2). For each k ≥ 2, we set

E
(1)
2k,t :=

(
h3

2πi

)k
(t1 − t2) (t3 − t2)k−1 ∈ 1 + q̂Q[[q̂]],

E
(2)
2k,t :=

(
h3

2πi

)k
(t1 − t2)k−1 (t3 − t2) ∈ 1 + q̂Q[[q̂]],

E4,t := E
(1)
4,t = E

(2)
4,t ,

E6,t := E
(2)
6,t .

Define E2,t using Theorem 4(iii). The notation and normalization is chosen
so that when t = (2, 3,∞), Ek,t for k = 4, 6 coincide with the classical series
for Γ(1). From now on we regard all ti’s as functions of τ . The convention
throughout this paper is that the value of a polynomial P (x) for x = ∞ is
the coefficient of the monomial xn of highest degree in P (x).
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Theorem 4. Assume as usual that 2 ≤ m1 ≤ m2 ≤ ∞ and t = (m1,m2,∞)
is hyperbolic. Then

(i) The ti(τ) are quasi-automorphic. More precisely, they are meromor-
phic functions of τ ∈ Ht, and satisfy the following functional equation:

(3.25) (c′τ + d′)−2ti(γ(τ)) − c′(c′τ + d′)−1 = ti(τ) ∀γ =
(
a′

c′
b′

d′

)

∈ Γt.

(ii) The field generated by all meromorphic automorphic forms for Γt con-
sists of all rational functions in t1 − t2 and t3 − t2.

(iii) The relation with Theorems 1 and 2 is: t1 − t2 = 2πi
h3

J ′
t

Jt
and t3 − t2 =

2πi
h3

J ′
t

(Jt−1)

1
nΔ

E2;t =
b− a

b
t1 − t2 +

a+ b− 1
b

t3,

f4 = E4,t, f6 =

{
E6,t if m1 = 2,
E6,t/(Jt − 1) otherwise,

Jt =
t3 − t2
t3 − t1

=
E3

4,t

E3
4,t − E2

6,t

.

Moreover, the function jt = 2m2
2m

2
1Jt + (−m2

2m
2
1 +m2

2 −m2
1) is the

unique Hauptmodul for Γt normalized so that jt(τ) = 1
q̂ +O(q̂1).

(iv) When m2 �= ∞, the algebra m(Γt) of holomorphic automorphic forms
of even weight is generated by

E
(2)
2k,t, 2 ≤ k ≤ m2, E

(1)
2k,t, 3 ≤ k ≤ m1.

When m1 <∞ = m2, m(Γt) is generated by

E
(1)
2k,t, 1 ≤ k ≤ m1.

The case m1 = m2 = m3 = ∞ corresponds to the classical Darboux–
Halphen differential equation, see Section 4.2.

It should be emphasized that, although ultimately the approaches in
Sections 2 and 3 both reduce to hypergeometric calculations, the approaches
are independent in the sense that their outputs (a Hauptmodul in Section 2
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compared with three quasi-automorphic forms in Section 3) are different.
Both approaches are complete in the sense that all (quasi-)automorphic
forms for the given triangle group Γt can be obtained from their outputs by
standard operations.

4. The modular triangle groups

By a modular triangle group Γ we mean a triangle group commensurable
with Γ(1) (i.e., Γ ∩ Γ(1) has finite index in both Γ and Γ(1)). There are
precisely nine Γt conjugate to a modular triangle group [45]. Such Fuchsian
groups are called arithmetic (the definition of arithmetic Fuchsian groups
can be extended to the case where there are no cusps, and Takeuchi [45] also
identifies these). In this section, we show how our expressions for modular
forms recover the classical ones in these nine cases.

In table 1, we list these nine types, together with one of the modular
triangle groups which realizes it. We include the basic data for that con-
jugate gΓtg

−1. In the table and elsewhere, we write ω = e2πi/6, S =
(

0
1
−1
0

)
,

T =
(

1
0

1
1

)
and U =

(
1
−1

0
1

)
. The matrix WN = 1√

N

(
0

−N
1
0

)
is called a Fricke

involution. As usual, Γ(N) consists of all A ∈ Γ(1) with A ≡ ±I (mod N),
Γ0(N) consists of all A ∈ Γ(1) with entry A2,1 divisible by N , and Γ+

0 (N) :=
〈Γ0(N),WN 〉. Given any triangle group Γ of type (2, n,∞), by Γ∗ we mean
the subgroup generated by the squares γ2 of all elements γ ∈ Γ, together
with any element in Γ of order n; then Γ∗ has index 2 in Γ, and is a triangle
group of type (n, n,∞). Table 1 is largely taken from [7].

In this section, we recover explicitly the classical result that:

Proposition 1. The algebra of holomorphic modular forms for each mod-
ular triangle group has a basis in Z[[Q]], where Q is some rescaling of q or
q1/2.

Indeed, by Lemma 3 of [17], 1728J(2,3,∞), 256J(2,4,∞), 108J(2,6,∞),
16J(∞,∞,∞), 64J(2,∞,∞) and 27J(3,∞,∞) all have integer q- or q1/2-coefficients
(whichever is appropriate), and leading term ±q−1 or ±q−1/2. 144J(3,3,∞),
32J(4,4,∞) and 36J(6,6,∞) have q1/2-coefficients in the Eisenstein Z[ω] or
Gaussian Z[i] integers, but if Q is chosen to be iq1/2/

√
3, iq1/2 or iq1/2/

√
3,

respectively, then these functions lie in Q−1 + Z[[Q]]. This information is
enough to verify that the basis given in Theorem 2 has integer coefficients.
The exact rescaling of q or q1/2 depends on the choice of realization of Γt.
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4.1. Type tm = (2, m, ∞) for m = 3, 4, 6

For type t = (2, 3,∞), the triangle group Γt is the full modular group Γ(1) =
PSL(2,Z). Its algebra of holomorphic quasi-modular forms is generated by
the classical Eisenstein series E2, E4, E6 in (2.7). Their relation with the
quasi-modular forms coming from the Halphen system are

E2;t = E2, E4,t = E4, E6,t = E6, Jt = j/1728.

More generally, for any Hecke group Γ(2,m,∞) (any m ≥ 3), Eisenstein
series Ek,tm(τ) can be analogously defined (see, e.g., Section 4 of [28]). The
spaces of holomorphic automorphic forms of weights 4 and 6 are both 1D,
spanned by what we call f4(τ) = E4,tm(τ) = 1 + · · · and f6(τ) = E6,tm(τ) =
1 + · · · , respectively. The normalized Hauptmodul is

(4.26) Jt(τ) =
f4(τ)3

f4(τ)3 − f6(τ)2

in perfect analogy with Γ(1). In the special cases m = 2p = 4, 6 we are inter-
ested in here, we determine from Section 4.3.2 of [28] that for any k ≥ 2

(4.27) E2k,t2p(τ) = (E2k(τ) + pkE2k(pτ))/(pk + 1)

and we find

J(2,4,∞) =
1

256
q−1 +

13
32

+
1093
64

q + 376q2 +
620001

128
q3 + 41792q4 + · · · ,

J(2,6,∞) =
1

108
q−1 +

1
3

+
371
36

q +
3643
54

q2 +
20713

36
q3 − 34396q4 + · · · .

4.2. Type (∞, ∞, ∞)

The most natural realization of t = (∞,∞,∞) is as Γ(2), which has cusps at
i∞, 0, 1. The local parameter at the infinite cusp is q1/2 = eπiτ (the square-
root of the parameter for Γ(1)). Recall the Jacobi theta functions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ2(τ) :=
∞∑

n=−∞
q

1
2
(n+ 1

2
)2 ,

θ3(τ) :=
∞∑

n=−∞
q

1
2
n2
,

θ4(τ) :=
∞∑

n=−∞
(−1)nq

1
2
n2
.
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It is well known that θ4
2, θ

4
3 and θ4

4 = θ4
3 − θ4

2 are modular forms for Γ(2)
of weight 2, and that they generate the ring of holomorphic modular forms.
A Hauptmodul is

J(∞,∞,∞)(τ) =
θ3(τ)4

θ2(τ)4
=

1
16
q−1/2 +

1
2

+
5
4
q1/2 − 31

8
q3/2 +

27
2
q5/2 + · · ·

which maps i∞ to ∞, cusp 0 to 1 and cusp 1 to 0. The normalized quasi-
modular form is e2 = E2/6.

In 1878, G. Darboux studied the system of differential equations

(4.28)

⎧
⎪⎨

⎪⎩

u̇1 + u̇2 = 2u1u2,

u̇2 + u̇3 = 2u2u3,

u̇1 + u̇3 = 2u1u3

in connection with triply orthogonal surfaces in R
3. Later Halphen in [21]

found a solution of (4.28) in terms of theta series

u1 = 2(ln θ4(τ))′, u2 = 2(ln θ2(τ))′, u3 = 2(ln θ3(τ))′.

The differential equation (4.28) after the change of variables ti := −2ui turns
to be (1.2). The relations between the series ti in Section 3 and theta series
are given by

−1
4
ti(8q

1
2 ) = 2q

d

dq
ln θji ,

where (j1, j2, j3) = (3, 2, 4).

4.3. Types tm = (m, ∞, ∞), m = 2, 3

It is well known that a Hauptmodul for Γ0(N) when N − 1 divides 24 is
J(N)(τ) = (η(τ)/η(Nτ))24/(N−1), which for N = 2, 3 rescales to the normal-
ized Hauptmoduln

J(2,∞,∞)(τ) = − 1
64
q−1 +

3
8
− 69

16
q + 32q2 − 5601

32
q3

+ 768q4 − 23003
8

q5 + · · · ,

J(3,∞,∞)(τ) = − 1
27
q−1 +

4
9
− 2q +

76
27
q2 + 9q3 − 44q4 +

1384
27

q5 + · · · .
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For any N (and in particular N = 2, 3)

q
d

dq
log
(
η(τ)
η(Nτ)

)

= E2(τ) −NE2(Nτ)

is a holomorphic weight-2 modular form for Γ0(N). For Γ0(2), the algebra
of holomorphic modular forms is generated by E2(τ) − 2E2(2τ) and E4(τ),
while that for Γ0(3) is generated by E2(τ) − 3E2(3τ), E4(τ) and E6(τ).

4.4. Type t′
m = (m, m, ∞) for m = 3, 4, 6

Write tm = (2,m,∞) as before. Recall from the beginning of this section
that a Fuchsian group of type t′m (for any m ≥ 3) can be chosen to be the
index 2 subgroup Γ∗

tm of the Hecke group Γtm . The normalized Hauptmodul
for any t′m is

J(m,m,∞)(τ) =
1
2

(
E6,tm(τ)

√
E6,tm(τ)2 − E4,tm(τ)3

+ 1

)

,

where Ek,tm = fk here are the (normalized) Eisenstein series discussed in Sec-
tion 4.1. The holomorphic modular forms are generated by

√
E2

6,tm
− E3

4,tm

together with those for tm (since Γt′m is a subgroup of Γtm). From this point
of view, the only thing special about m = 3, 4, 6 is that we can easily express
E4,tm , E6,tm in terms of classical modular forms, as was done in (4.27) above.
We find

J(3,3,∞)(τ) = − i
√

3
144

q−1/2 +
1
2

+
41 i

√
3

12
q1/2 +

1255 i
√

3
8

q3/2

+
45925 i

√
3

18
q5/2 + · · · ,

J(4,4,∞)(τ) = − i
32
q−1/2 +

1
2

+
19 i
8
q1/2 +

351 i
16

q3/2 +
653 i

4
q5/2

+
23425 i

32
q7/2 + · · · ,

J(6,6,∞)(τ) =
−i

√
3

36
q−1/2 +

1
2

+
11 i

√
3

12
q1/2 +

17 i
√

3
4

q3/2

+
713 i

√
3

36
q5/2 + · · · .
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5. Observations and conjectures concerning coefficients

The raison d’être of modular forms is their q-expansions, i.e., the local
(Fourier) expansions about the cusp i∞. Expansions about other cusps have
the same familiar feel (although are usually ignored). The avoidance of con-
siderations of (Taylor) expansions at points in H, in particular at the elliptic
fixed-points, is almost complete.

It is hard to justify this focus on the expansion at i∞, other than that
it is exceedingly rich. However, a triangle group say has three special Γt-
orbits, perhaps the other two may also prove interesting. For example, in
the vvaf’s of Section 6.3 below, it seems artificial to expand only about the
large complex structure point (which corresponds to a cusp) but to refuse
to expand about say the Landau–Ginzburg point (which corresponds to an
elliptic fixed-point). For another example, consider the characters χM (τ) =∑

r a(M)rqr of irreducible modules M of rational vertex operator algebras.
These χM s are modular functions for some Γ(N). A surprise happens at their
expansions χM (τ) =

∑
r a(M)x;rqrx about certain cusps x ∈ Q (which x to

choose depends only on N): there are signs εx(M) and another irreducible
module Mx such that the coefficients at x of χM equal those at i∞ of
εx(M)χMx , that is, a(M)x;r = εx(M) a(Mx)r. In other words, expanding
one character about a different cusp can recover a different character at
the usual cusp i∞. (This property of vertex operator algebra characters is
implicit in Section 6.3.3 of [16].)

In any case, the Halphen or Schwarz differential equations can be used
to compute arbitrarily many terms of Fourier or Taylor expansions of auto-
morphic forms (on the third author’s homepage one can find computer code
written in singular [19] and the first few coefficients of t1, t2, t3, Jt at i∞).
From these expansions, we are led to the conjectures (and results) gathered
below.

We will find a deep connection to the arithmeticity (or otherwise) of
Γt, and the integrality of those coefficients. This is hardly surprising. If a
Fuchsian group has at least one cusp (as we have been assuming), then
the definition of arithmeticity can be taken to be that it contains some
conjugate of some congruence subgroup Γ(N). By a theorem of Margulis [30],
a Fuchsian group is arithmetic iff the commensurator

comm(Γ) := {γ ∈ PSL(2,R) : γΓγ−1 is commensurable with Γ}

is dense (recall that Γ1,Γ2 are commensurable iff Γ1 ∩ Γ2 has finite index
in both Γi). More precisely, when Γ is nonarithmetic, comm(Γ) is itself a
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Fuchsian group of the first kind, in fact the largest containing Γ. On the
other hand, if Γ contains some Γ(N) then any γ ∈ GL+(2,Q) (or rather its
projection to PSL(2,R)) will lie in comm(Γ). The relevance of the commen-
surator is that γ ∈ comm(Γ) directly yields Hecke operators for Γ. Given
enough Hecke operators, the arithmeticity of coefficients will follow.

It is easy to see directly that, for the nonarithmetic triangle groups,
something goes wrong with standard Hecke theory. Recall that the basis of
Theorems 2 and 4 look like

f(τ) =
∞∑

n=0

an q
n
3 , an = rn α

n
3 ,

where rn ∈ Q and q3 = e
2πiτ
h . Wolfart [51] proved that α3 is transcenden-

tal, but that implies that anam �= amn whenever m,n > 2. Nor can we get
multiplicativity if we absorb the α3 into q3. For weight k cusp forms for
any Fuchsian group, we have the bound an = O(nk/2) [32]. But this means
that the rn increase or decrease exponentially (depending on whether or not
|α3| < 1), which is again incompatible with rnrm = rnm for sufficiently large
m,n.

5.1. Coefficients at the cusps

Fix a hyperbolic type t = (m1,m2,∞). We do not require here that m1 ≤
m2; the case where m1 or m2 is infinite is included in the formulas below
using the aforementioned convention about the value of polynomials at ∞.
Consider first the Fourier coefficients cn = cn;t of (2.15). Note that the
Euclidean types (2, 2,∞) and (formally) (1,∞,∞) correspond to polyno-
mial solutions q̃−1

3 + 1
2 + 1

16 q̃3 and q̃−1
3 , respectively, of (2.16). This means

that cn vanishes when m1 = m2 = 2 ∀n ≥ 2, and also cn vanishes at m1 = 1,
m2 = ∞ ∀n ≥ 0, and hence

cn =
(m2

1 − 4)P1;n(m2
1,m

2
2) + (m2

2 − 4)P2;n(m2
1,m

2
2)

(m2
1m

2
2)n+1Qn

, n ≥ 2,(5.29)

cn =
(m2

1 − 1)P ′
1;n(m

2
1,m

2
2) +m2

2P
′
2;n(m

2
1,m

2
2)

(m2
1m

2
2)n+1Q′

n

, n ≥ 1,(5.30)

where Qn, Q′
n ∈ N and Pi;n, P ′

i;n are type-independent polynomials with inte-
gral coefficients and total degree ≤ n− 1. The format (5.29) of cn generalizes
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to any type (m1,m2,∞) the observation of Akiyama [3] for Hecke groups
described below, and (5.30) seems completely new. Note that it would be
reasonable to absorb (m2

1m
2
2)
n into q̃3, at least when m1,m2 are both finite,

and indeed this gives the q̂ used in Section 3.
A more interesting symmetry is that for n ≥ 1

(5.31) cn;(m1,m2,∞) = (−1)n+1cn;(m2,m1,∞).

To prove this, first identify Γ(m2,m1,∞) as a conjugate of Γ(m1,m2,∞), and then
use this to express J(m2,m1,∞) in terms of J(m1,m2,∞).

Some of this had already been worked out for the Hecke groups Γ(2,m,∞).
In particular, Lehner [27] and especially Raleigh [39] worked from the
Schwarz equation, obtaining (2.13) in this special case as well as (5.29)
without the m2 − 4 factor. For n ≥ 2 and again only for the Hecke groups,
Akiyama [3] showed that cn is a polynomial divisible by m2 − 4. He also
showed that the prime divisors of Qn are not greater that n+ 1. This fol-
lows immediately from the recursion given by the Halphen differential equa-
tion, where at the nth step of the recursion we divide by n2(n− 1), see
Section 7.3. Leo [28] in his PhD thesis proved that cn can be written as

Cn
Dn(26m2)n+1 , where Cn, Dn ∈ Z are coprime and Dn has no prime factor
of the form p ≡ 1 (mod 4m). He made also a precise conjecture about the
prime factors of Dn. As with all these people, he focussed exclusively on the
Hecke groups Γ(2,m,∞).

A major conjecture, now attributed to Atkin and Swinnerton-Dyer [4],
states that if f is a modular form of weight k ∈ 1

2Z for some subgroup
Γ of Γ(1), and the Fourier coefficients are algebraic integers, then Γ (if it
is chosen maximally) contains a congruence subgroup. See, e.g., [29] for a
review. Scholl [42] has proved that when Γ is a subgroup of Γ(1), there is an
integer N and a scalar multiple q̃ of q = e2πiτ such that the space of modular
forms for Γ of each weight k ∈ 1

2Z has a basis with q̃-expansion coefficients
which are algebraic integers when multiplied by some power of N . We have
N = 1 if (and conjecturally only if) Γ contains a congruence subgroup, i.e.,
is arithmetic. In other words, we know that at most finitely many distinct
primes can appear in the denominators of modular forms for subgroups of
Γ(1). On the other hand, when Γ is not commensurable with Γ(1), one would
expect infinitely many distinct primes in the denominators.

Our observations are compatible with these conjectures. Recall from
Section 4 the nine arithmetic triangle groups with at least one cusp: namely
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those of type

(5.32) (∞,∞,∞), (2, 3,∞), (3, 3,∞), (m,∞,∞), (2, 2m,∞), (2m, 2m,∞)

for m = 2, 3. This also coincides with the list of all triangle groups conjugate
to a group commensurable with Γ(1). All nine of those (up to conjugation)
contain a congruence subgroup, as they must. In Section 4, we recovered
the classical result that in these cases the algebra of modular forms for Γt

is defined over Z. By that we mean that there is a rescaling Q of q3, and
some modular forms fi ∈ Z[[Q]], i = 1, 2, . . ., such that the algebra of all
holomorphic modular forms for Γt is C[fi, i = 1, 2, . . .].

The algebra of automorphic forms for the hyperbolic triangle group
Γ(m1,m2,∞) is defined over Z if and only if the triangle group is arithmetic.
The only if part of this affirmation is classical, and was reproved in Section 4.
The other direction has been recently proved by the last two authors. For
the nonarithmetic case, we are also able to prove that infinitely many primes
do not appear in any denominators of the coefficients of ti, i = 1, 2, 3 and
Jt. We are led to the following conjecture experimentally:

Conjecture 1. For any nonarithmetic hyperbolic triangle group of type
(m1,m2,∞), infinitely many primes appear in the denominators of the coef-
ficients of ti, i = 1, 2, 3 and Jt at the infinite cusp.

For nonarithmetic Γt with 2 ≤ m1 ≤ m2 ≤ 30 (and several other mi cho-
sen randomly), we looked at all denominators for terms up to q182. The dis-
tribution of primes which appear, compared with those which do not, seem
to be similar. We also observe that for each prime p �= 2, ti(pq̂), i = 1, 2, 3
has no p in the denominators of its coefficients. This can be easily seen
from the recursion given by the Halphen differential equation, see Sec-
tion 7.3. More precisely, let p be a prime and f be an automorphic form
for Γ(m1,m2,∞). Define mn,p(f) to be the power of p in the denominator of
an, where f =

∑
anq̂

n. Our data suggest the conjecture limn→∞
mn,p

n = 0.
The main thing responsible for this nonintegrality is the coefficient Qn in

the denominator of (5.29). We suspect that each prime appears in the prime
decomposition of some Qn. The reason is that in the recursion for calculating
the coefficients of q̃n we divide by n2(n− 1). Although a priori a prime p
could appear at n = p, we observe that it appears first at n = p+ 1. Note
that this observation does not imply Conjecture 1, since the denominator
and numerator of cn in (5.29) may have common factors.

The much simpler case of Hecke groups is extensively analyzed by Leo
in [28]. For completeness we review his findings. Consider the triangle group
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of type (2,m,∞). Write

cn =
Cn

Dn26n+6m2n+2
,

where Cn, Dn ∈ Z and gcd(Cn, Dn) = 1. Leo [28] conjectured that a prime
p divides some Dn for n ≥ 1, iff p �= 2, p does not divide m, and p �≡ ±1
(mod m). Moreover, he conjectures that the smallest n for which such a
prime p divides Dn, is n = pk − 1 for some k.

5.2. Integrality at elliptic fixed-points

Again, we propose studying these expansions because every triangle group
has three special Γt-orbits, most of which are elliptic fixed-points. As already
mentioned, Rodriguez Villegas and Zagier [41] have found some of these
coefficients to be interesting.

Consider first Γ(2,3,∞) = Γ(1). Recall the expansion (2.15). The coeffi-
cients at τ = i are

a2 =
23
54
, a3 =

6227
58320

, a4 =
3319

174960
,(5.33)

a5 =
263489

97977600
, a6 =

1693777
5290790400

, . . . .

Not only are these nonintegral, but also the denominator seems to be growing
without bound! But as we shall see shortly, there is a simple explanation for
this.

The coefficients at elliptic fixed-points are more accessible than the coef-
ficients at cusps. In particular, choose any point z = x+ iy ∈ H of order
m ≥ 1 and let f(τ) = jz(k; τ)q

k/m
z
∑
cnq

n
z be a weight-k automorphic form

(recall (2.5)). Note that qz is not rescaled here, so that series will have radius
of convergence exactly 1 (provided f is holomorphic). Incidentally, Cauchy–
Hadamard constrains the growth of these cn: lim supn→∞|cn|1/n = 1, so they
grow roughly like the usual (unscaled) Fourier coefficients.

These coefficients cn are then computed by Bruinier et al. [11] and
Rodriguez Villegas and Zagier [41]

(5.34) cn = ∂nmk f(z)
(4πy)mn

(mn)!
,

where z = x+ iy and ∂nk = ∂k+n−2 ◦ · · · ◦ ∂k+2 ◦ ∂k, for the nonholomorphic
modular derivative ∂kf = 1

2πi
df
dτ − kf(z)

4πy . The mn arises because qz = τmz is
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a power. Hence in this sense we can think of these cn as Taylor coefficients.
The reason for the terrible denominators in (5.33) is the n! in (5.34).

The important quantities should be the derivatives of f , in other words
we should multiply the an by n! (and rescale qz). We find for Γ(1) at z = i
that an(2n)!3n are positive integers, with a single 3 in the denominators. The
analogous calculation for the other elliptic fixed-point yields only positive
integers. We expect:

Conjecture 2. Consider any arithmetic triangle group Γ(m1,m2,∞) and any
elliptic fixed-point z ∈ H. Then, the sequence (m1n)!mn

2an are strictly posi-
tive algebraic numbers with bounded denominators. There should exist a basis
for the space of weight k holomorphic automorphic forms whose coefficients
at z are algebraic integers when rescaled in this way.

For t = (3, 3,∞), the denominator for Jt is bounded by 8, while for
(4, 4,∞) and (6, 6,∞) the denominators are all 1. For (2, 4,∞), the adjusted
an have denominators bounded by 2, while the adjusted bn have at most 3
in the denominators. For (2, 6,∞), the adjusted an have at most a 3 in
the denominator, while the adjusted bn is integral. The larger the order of
the fixed-point, the greater the chance for integers, because the multipliers
become so big. Note that for an arithmetic triangle group (m1,m2,∞) it
suffices to compute the values ∂nmk f(z) for the generators f , as ∂k is a
derivation.

For nonarithmetic types, the situation is less clear. For example, for
t = (2, 5,∞), the adjusted an has 5’s appearing in the denominators to arbi-
trarily high powers, and the only other prime appearing in a denominator
is 2, with power at most 3. In this case, an(2n)!52n has bounded denom-
inators. On the other hand, the adjusted bn is integral. For (m1,m2) =
(2, 7), (2, 8), (3, 7), an(m1n)!mn

2 has unbounded denominator but
an(m1n)!m2n

2 and bn(m2n)!m2n
1 both have bounded denominators. All of

these were verified up to n = 35, but because of recursive formulas for these
coefficients, it should not be difficult to prove this.

6. Periods and automorphic functions

The Gauss hypergeometric functions are periods up to some Γ-factors. This
means that we can write them as integrals of algebraic differential forms
over topological cycles. Looking in this way we can generalize automorphic
functions beyond their classical context of Hermitian symmetric domains
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and action of groups, see for instance Section 6.2. In this section, we explain
this idea.

6.1. Periods and Halphen

In [33], the third author has used integrals of the form
∫

xidx
(x−t1)a(x−t2)b(x−t3)c ,

in order to establish various properties of Halphen differential equations so
that generalizations, for instance for arbitrary number of x− ti factors in the
integrand, become realizable. We can view these integrals as periods in the
following sense. We define a new variable y and consider the family of alge-
braic curves C : y = (x− t1)a(x− t2)b(x− t3)c for rational numbers a, b, c.
In this way hypergeometric functions up to some Γ factors can be written
as periods

∫
δ ω, where ω is a differential form on C with zero residues at

poles and δ ∈ H1(C,Z), see [43]. Now, one can use the algebraic geometry
machinery in order to study the coefficients of q-expansions of automorphic
functions, see for instance [26], or the arithmetic of hypergeometric func-
tions, see [43]. In the next subsection, we describe a similar situation with
Calabi–Yau periods.

6.2. Hypergeometric Calabi–Yau equations

Let X̃ be a Calabi–Yau three-fold, and M its moduli space of complex
structures. The (complex) dimension of M equals the Hodge number h2,1.
We are interested here in h2,1 = 1, in which we can, in the simplest cases,
identify M with CP

1 \ {0, 1,∞}, where the large complex structure point
corresponds to z = 0, the conifold point to z = 1, and the Landau–Ginzburg
point to z = ∞, see for instance [14]. The simplest example is the mirror
family of the generic quintic hypersurface in CP

4, which can be parametrized
by x5

1 + x5
2 + x5

3 + x5
4 + x5

5 − 5z−1/5x1x2x3x4x5 = 0 for z ∈ M.
A holomorphic family �(z) of holomorphic 3-forms will satisfy the

Picard–Fuchs equation. This implies, for any topological 3-cycle γ ∈
H3(X̃; Z), the period

∫
γ �(z) will satisfy a generalized hypergeometric equa-

tion of order 2h2,1 + 2 = 4, also called the Picard–Fuchs equation. Note that
the topological cycle γ in X̃ is fixed and the complex structure on X̃, and
hence �(z), is varying. Periods provide a (redundant) parametrization of
M. See, e.g., [35] for a systematic treatment of periods, Picard–Fuchs and
related concepts.

There are precisely 23 integral variations of Hodge structure which can
come from such X̃ with h2,1 = 1, corresponding to 14 different Picard–Fuchs
equations [14]. For simplicity we have selected in table 2 one representative
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Table 2: Monodromy data of one-parameter models.

(a1, a2) (n1, n2) Type

(1
5 ,

2
5) (−4,−5) (5,∞,∞)

(1
6 ,

1
3) (−3,−3) (6,∞,∞)

(1
8 ,

3
8) (−3,−2) (8,∞,∞)

( 1
10 ,

3
10) (−2,−1) (10,∞,∞)

(1
4 ,

1
3) (−4,−6) (12,∞,∞)

(1
6 ,

1
4) (−2,−2) (12,∞,∞)

( 1
12 ,

5
12) (−3,−1) (12,∞,∞)

(1
4 ,

1
2) (−5,−8) (∞,∞,∞)

(1
3 ,

1
2) (−6,−12) (∞,∞,∞)

(1
6 ,

1
2) (−4,−4) (∞,∞,∞)

(1
3 ,

1
3) (−5,−9) (∞,∞,∞)

(1
4 ,

1
4) (−3,−4) (∞,∞,∞)

(1
6 ,

1
6) (−1,−1) (∞,∞,∞)

(1
2 ,

1
2) (−7,−16) (∞,∞,∞)

for each equation. The Picard–Fuchs equation satisfied by the periods is

(6.35) δ4 − z

4∏

i=1

(δ + ai) = 0,

where we write δ = zd/dz, a3 = 1 − a2 and a4 = 1 − a1. Periods are subject
to monodromy as we circle the special points in M, and these can be worked
out explicitly.

In particular, fix an integral basis γ1, . . . , γ4 of H3(X̃; Z). This is done
in [2, 18] using Meijer functions. Collect the periods into a column vector
Π(z) = [

∫
γ1
�(z), . . . ,

∫
γ4
�(z)]tr. Then Π(z) is a fundamental solution of

(6.35). In terms of the Meijer basis, the monodromy matrices are
(6.36)

M0 =

⎛

⎜
⎜
⎝

1 0 0 0
−1 1 0 0
1 −1 1 0
0 0 −1 1

⎞

⎟
⎟
⎠ , M∞ =

⎛

⎜
⎜
⎝

n1 1 − n1 n2 1 − n2

−1 1 0 0
1 −1 1 0
0 0 −1 1

⎞

⎟
⎟
⎠
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and M1 = M−1
0 M−1∞ , using the parameters ni of table 2, where M0 is the

monodromy picked up along a small counterclockwise circle going around
z = 0, etc. In [12], the authors give a different presentation of the monodromy
groups. The advantage of their approach is that the auxiliary parameters,
which are related to (n1, n2), have explicit geometric interpretation.

Of course, these monodromy matrices together define a representation
of π1(M) ∼= Γ(∞,∞,∞). In seven of the models, we can do better though. The
orders of M0 and M1 will always be infinite, but those of M∞ can sometimes
be finite. If we letm be the order ofM∞, then this representation of Γ(∞,∞,∞)

factors through to a representation of Γ(m,∞,∞). This type (m,∞,∞) is col-
lected in the final column of table 2. What we lose in going to a less familiar
triangle group, we gain in getting a much tighter representation. Indeed,
Brav and Thomas [8] show that for the first model in table 2, and a few
others, the monodromy representation of Γ(m,∞,∞) is faithful; by contrast,
the kernel of the natural surjection Γ(∞,∞,∞) → Γ(m,∞,∞) is a free group
of infinite rank for any m <∞. After a conjugation of all the monodromy
group in table 2, they become subgroups of Sp(4,Z). It is a remarkable fact
that seven of the cases in table 2 are of infinite index and are triangle groups
(see [8]) and three cases are of finite index, see [44].

6.3. Vector-valued automorphic forms

A solution to a Fuchsian differential equation over a compact surface, can
be interpreted as a vvaf simply by lifting the surface minus singularities
(CP

1 \ {0, 1,∞} here) to its universal cover H. This is not a completely
trivial statement — see [6] for the general argument — but in the special
case of these models this will be made manifest shortly.

Definition. Let k ∈ 2Z, Γ be a Fuchsian group, and ρ a group homomor-
phism Γ → GL(d,C). A vvaf X(τ) of weight k and rank d on Γ with multi-
plier ρ is a meromorphic map X : H → C

d, meromorphic also at the cusps,
obeying the functional equation

(6.37) (cτ + d)−k X

(
aτ + b

cτ + d

)

= ρ

(
a b
c d

)

X(τ), ∀
(
a b
c d

)

∈ Γ.

Choosing t = (m,∞,∞) for either m = ∞ or any m > 0 with γm3 = 1,
and the corresponding period vector Π(z) in Section 6.2, X(τ) := Π(Jt(τ))
is a vvaf of weight 0 for Γt, for multiplier which can be identified with the
monodromy of the Picard–Fuchs differential equation. This gives a modular
interpretation for periods.
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Let us be more explicit. Perhaps, the simplest way to describe a vvaf X

of weight k and rank d is to state a differential equation

(6.38) Dd
k + fd−1D

d−1
k + · · · + f0 = 0

satisfied by all components of X, together with enough information to iden-
tify which solution corresponds to each component. Here, fj is an automor-
phic form for Γt of weight 2j, Dk is the differential operator of Theorem 2(ii),
and Dj

k = Dk+2j−2 ◦ · · · ◦Dk+2 ◦Dk.
Recall the data for (∞,∞,∞) collected in Section 4.2. We have D2θ

4
2 =

(2θ4
3 − θ8

2)/3, D2θ
4
3 = (2θ4

3θ
4
2 − θ8

3)/3, D0Jt = θ4
4Jt, Δt = θ4

2θ
4
3θ

4
4. Recall the

parameters a1, a2 collected in table 2. The vvaf X(τ) has rank 4 and weight
0 and corresponds to the differential equation (6.38) with

f3 =
10B + 8C

3
, f2 =

20B2

9
+BC

(

a2
1 + a2

2 − a2 − a1 +
41
9

)

+
11C2

9
,

f1 = −20B3

27
+B2C

−2 − 2a2 − 2a1 + 2a2
1 + 2a2

2

3

+BC2 1 + 12a2
2 + 12a2

1 − 12a2 − 12a1

9
− C3

27
,

f0 = C3B(a2
1a2 − a2

1a
2
2 − a1a2 + a1a

2
2),

where we write A = θ4
3, B = θ4

2, C = θ4
4 = A−B. This looks more compli-

cated because it is a uniform formula for all ai.
The solutions all have an expansion

∑
n cn(τ)q

n/2 and each coefficient
cn(τ) is a polynomial of degree at most 3 in τ . We can identify which solu-
tion to call X1,X2,X3,X4 — these form a basis of the solution space, and
the components of a vvaf of weight 0 for Γ(2). We know everything about
these vvaf, e.g., their multiplier (i.e., to which representation of Γ(2) they
correspond), their local expansions at each of the three cusps 0,1,∞, etc. The
components lie in Q[[

√
q]] but not Z[[

√
q]]. So what we lose in the simplicity

of the local expansions, we gain in the simplicity of the functional equations
(which just involve the usual Möbius transformations defining Γ(2)).

The Γ(m,∞,∞) expressions should have some advantages, since that is
really the group doing the acting — Γ(2) is a bit of a formal trick. We will
provide those expressions elsewhere. But the uniformity and familiarity of
Γ(2) of course has its advantages too. This gives an answer to the question:
what is a modular interpretation for the Calabi–Yau three-fold periods? An
alternate answer to this question generalizes the algebraic geometric defini-
tion of (quasi-)modular forms and the relation of the Halphen differential
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equation with the Gauss–Manin connection to the families of Calabi–Yau
varieties, see [36]. The relation between these two approaches is discussed in
the next subsection. In future work, we will reinterpret questions involving
periods into the automorphic language and explore whether this sheds any
new light on them.

6.4. Periods and modular-type functions

The most important modular object arising from the periods of Calabi–Yau
varieties is the Yukawa coupling. Let ψ0 = 1 +O(z) and ψ1 := ψ0 ln(z) +
O(z) be, respectively, the holomorphic and logarithmic solutions of the
hypergeometric equation (6.35). The Yukawa coupling Y :=
n0

ψ4
0

(ψ0δψ1−ψ1δψ0)3(1−z) , where δ = z ∂
∂z , is holomorphic at z = 0 and so it can

be written in the Calabi–Yau mirror map q = e
ψ1
ψ0

Y = n0 +
∞∑

d=1

ndd
3 qd

1 − qd
.

Here, n0 :=
∫
X̃ ω

3, where X̃ is the A-model Calabi–Yau three-fold of mirror
symmetry and ω is the Kähler 2-form of X̃ (the Picard–Fuchs equation (6.35)
is satisfied by the periods of the B-model Calabi–Yau three-fold). The num-
bers nd are supposed to count the number of rational curves of degree d in
a generic X̃. For the first item in table 2 the first coefficients nd are given
by nd = 5, 2875, 609250, 317206375, . . ..

The field generated by z, δiψ0, i = 0, 1, 2, 3, δψ1 − ψ1δψ0, ψ0δ
2ψ1 −

ψ1δ
2ψ0 over C and written in the coordinate q, has many common features

with the field of classical quasi-automorphic forms for triangle groups. This
includes functional equations, the corresponding Halphen equation and so
on. However, note that the former field is of transcendental degree 3, whereas
this new field is of transcendental degree 7. This gives a second modular
interpretation of the periods of Calabi–Yau varieties. For more details on
this topic, see [36].

7. Proofs

This section contains the proof of the theorems announced earlier.
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7.1. Proof of Theorem 1

Fix any hyperbolic t = (m1,m2,∞) �= (∞,∞,∞) (the extreme case (∞,∞,
∞) can be verified using case ∞4 in the appendix or by recalling familiar
facts from the Fuchsian group Γ(2)). The hypergeometric parameters ã, b̃, c̃
are related to the angular ones vi = 1/mi via

(7.39) ã = b̃ = (1 − v1 − v2)/2, c̃ = 1 − v1.

Let us begin with the derivation of the fundamental domain and gener-
ators of Γt. Define the Schwarz function

(7.40) φ(z) = μ
u2(z)
u1(z)

= μ
z1−c̃ F (ã− c̃+ 1, b̃− c̃+ 1, 2 − c̃; z)

F (ã, b̃, c̃; z)
,

where ui are the independent solutions (A.49) to the hypergeometric equa-
tion given in (A.46) and the scale factor μ is [22]

(7.41) μ =
sin(π (c̃− ã))

sin(π ã)
Γ(ã− c̃+ 1)2 Γ(c̃)

Γ(ã)2 Γ(2 − c̃)

and is chosen to fit the target into the unit disc. Then φ(z) maps the upper
hemisphere of CP

1 \ {0, 1,∞} biholomorphically onto the (open) hyperbolic
triangle in the Poincaré unit disc with vertices φ(0) = 0, φ(1) = ξ2, φ(∞) =
eπiv1 = −ζ−1

1 , where ξ2 = sin(πã)/ sin(π(c̃− ã)). These values are calculated
directly from the data in Appendix A. We can extend φ to all of CP

1 by
reflecting in the real axis (so the triangle becomes a quadrilateral), and
we can make φ into a multivalued function onto the full Poincaré disc by
reflecting in the sides of that quadrilateral. The local expansion of φ about
z = 0 of course is obtained from (A.45), while those about z = 1 and ∞ are
obtained from the formulas in cases ∞0,∞1,∞2 of Appendix A.

We can map the unit disc to the upper half-plane via

(7.42) τ(z) =
φ(z) + ζ1
ζ1φ(z) + 1

.
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It is easy to verify that τ(z) maps the unit disc to H, and sends z = 0, 1,∞
to ζ1, ζ2, i∞. This means the normalized Hauptmodul Jt(τ) is related to the
inverse map z(τ) by Jt = 1 − z. The monodromy of (1.3) with parameters
computed from (7.39) and (3.21), directly yields the action

(
α
γ
β
δ

)
.φ = (δφ+

γ)/(βφ+ α), which up to conjugation reduces to the action of Γt on τ . The
values of αi (and h3) can be computed from the z = 1, 0,∞ asymptotics
given in Appendix A, but were already computed in [51]. Equation (2.16) is
simply the Schwarz equation (1.1) expressed in local coordinates.

7.2. Proof of Theorem 2

Now turn to Theorem 2. Write mk for the space of holomorphic automorphic
forms of weight k.

The divisor div f of a meromorphic automorphic form f (f not identi-
cally 0) is defined to be the formal (and finite) sum

∑
ord[z](f) [z] where

[z] denotes the orbit Γtz. The degree of div f for any such f of weight k
for a triangle group of type (m1,m2,m3) is (see Theorem 2.3.3 of [32] for a
generalization)

(7.43) deg(div f) =
k

2

(

1 − 1
m1

− 1
m2

− 1
m3

)

.

By the classical argument, J̇t is an automorphic form for Γt of weight 2,
since Jt has weight 0. Clearly, the only poles of J̇t are at the points in [i∞],
where we have a simple pole. Also, J̇t has zeros at any other cusp (with order
≥ 1) and at elliptic points ζi (with order ≥ 1 − 1/mi). That these orders are
equalities, and that J̇t has no other zeros, follows from the formula for the
degree of the divisor.

It is manifest from the formula for fk that is an automorphic form of
weight k, holomorphic everywhere in Ht except possibly at [i∞]. Note that
for automorphic forms f, g of fixed weight, the orders of f and g at any point
will differ by an integer, and thus the order of fk at each point �∈ [i∞] is the
minimum possible for f ∈ mk.

The quantity dk equals the order of fk at i∞. If dk ≥ 0 then for each
0 ≤ l ≤ dk, fkJ lt is holomorphic at i∞ (hence lies in mk). In this case, for
any g ∈ mk, g/fk will be an automorphic function holomorphic everywhere
in Ht except possibly at i∞. This means g/fk must equal some polynomial
in Jt of degree ≤ dk. Thus, the fkJ lt span mk. On the other hand, if dk < 0,
then mk = 0 (again, look at g/fk for any g ∈ mk).
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Consider now the generators of the algebra of holomorphic modular
forms. Type (∞,∞,∞) can be obtained by recalling what is known for Γ(2).
Suppose first that m1 < m2 = ∞. Choose any k ≥ 0 and write k = k′ + lm1

for 0 ≤ k′ < m1 and l ∈ Z. Note that f2k′ f l2m1
has weight 2k and has order

1 − k′/m1 (the smallest possible in m2k) at ζ1. Then, given f ∈ m2k, a con-
stant c can be found so that f − c f2k′ f j2m1

will have order ≥ 1 at ζ1. Since
f2 has order 1 − 1/m1, 0, 0 at ζ1, ζ2, ζ3, respectively, (f − c f2k′ f j2m1

)/f2 ∈
m2k−2. Thus by induction, f2, . . . , f2m1 generate all of m2k, for any k.

The proof for m2 <∞ is similar. Define f (1)
2l := f2lJ

d2l
t (minimal possible

order at ζ1 and i∞, maximal at ζ2, in m2l). Choose any f ∈ m2k for k ≥ 0,
and write k = ki + limi for i = 1, 2 where 0 ≤ ki < mi and li ∈ Z. Then it is
possible to find constants ci so that g := f − c2 (f2m2)l2 f2k2 − c1 (f2m1)l1 f

(1)
2k1

has order ≥ 1 at both ζ1, ζ2. This means g/f4 ∈ mk−4, so the result follows
by induction on k.

As defined, Δt is manifestly a weight 2L automorphic form with no zeros
or poles anywhere except possibly at [i∞]. In fact, since Jt is a Hauptmodul,
the order of Jt(τ) − Jt(ζi) at ζi equals 1, which gives us the formula for nΔ.
That value is proportional to the area of a fundamental domain of Γt (see,
e.g., [32]), and so is strictly positive. Hence Δt vanishes at i∞.

The statement about holomorphicity of E2;t is immediate from the prop-
erties of Δt. The functional equation for E2;t follows directly from that of
Δt, and the vanishing of E2;t(ζj) at cusps ζj is a consequence of Δt(ζj) being
finite and nonzero there.

7.3. Proof of Theorem 3

The only new part of Theorem 3 is (ii). Write h = h3. Many of their prop-
erties can be easily determined from those of the hypergeometric functions
collected in Appendix A. In particular, they are meromorphic functions in
H with possible poles only at the Γt-orbits of ζ2 and ζ1. Now, each ti is a
function of q̂, because Jt is. Write ti =

∑∞
n=0 ti,nq̂

n. We see directly from (i)
that, in vector form

[t1,0, t2,0, t3,0] = [0,−2πi/h, 0]

(these are normalized differently in Theorem 3). Comparing q̂n coefficients,
for n ≥ 1, we get a recursion

(7.44) (M − nI3×3)[t1,n, t2,n, t3,n]tr ∈ Q
3[a, b, c][ti,m]1≤i≤3,0≤m<n,
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where tr denotes transpose and

M :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

m1m2 +m2 −m1

2m1m2
0 −m1m2 +m2 −m1

2m1m2

m1m2 +m1 +m2

2m1m2
0

m1m2 +m1 +m2

2m1m2

−m1m2 −m2 +m1

2m1m2
0

m1m2 −m2 +m1

2m1m2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Note that

(M − I3×3)[t1,1, t2,1, t3,1]tr = 0

and so up to a constant ν ′

[t1,1, t2,1, t3,1] = ν ′
[−m2

1m
2
2 −m2

2m1 +m2m
2
1,

−m2
2m1 −m2

2 +m2m
2
1 +m2

1, m
2
1m

2
2 −m2

2m1 +m2m
2
1

]

when m2 <∞, while

[t1,1, t2,1, t3,1] =

{
ν ′
[−m2

1 −m1, −m1 − 1, m2
1 −m1

]
if m1 <∞ = m2,

ν ′
[− 1, 0, 1

]
if m1 = m2 = ∞.

(The rule is that the value of a polynomial P (x) for x = ∞ is the coefficient
of the monomial xn of highest degree in P (x).) We chose the constant ν′

here so that these expressions are polynomial in m2 and m1. That ν ′ = ν
follows by computing the leading term of t1.

Note that det(M − nI3×3) = −n2(n− 1) so the nth coefficients of ti are
well-defined polynomials in mj for n > 1. The factor of 2πi/h and power
of ν in (3.23) follows from easy inductions. In order to see (3.24), we write
(1.2) in the variables x1 = (m1m2)−2(t1 − t3), x2 = κ−1

2 (t2 + 1) and x3 =
κ−1

3 t3, and we get a similar recursion as in (7.44) with different M such that
det(M − nI3×3) �= 0 even for m2 = 0 and m1 = 0.

7.4. Proof of Theorem 4

That the ti obey (3.25) follows from its expression in terms of hypergeometric
functions in Theorem 3 and the analytic continuation of such functions in
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Appendix A. automorphy of Jt. We obtain from Appendix A that, when
m2 �= ∞, the zero and pole orders of the ti’s at the ζj ’s are given in the
table below:

ζ1 ζ2 ζ3
t2 − t1 m1 − 1 −1 0
t3 − t2 −1 m2 − 1 0
t1 − t3 −1 −1 1
t1 −1 −1 1
t2 −1 −1 0
t3 −1 −1 1

while if m1 <∞ = m2, the table becomes

ζ1 ζ2 ζ3
t2 − t1 m1 − 1 0 0
t3 − t2 −1 1 0
t1 − t3 −1 0 1
t1 −1 0 1
t2 −1 1 0
t3 −1 1 1

(Note however that the orders of zeros for quasi-automorphic forms like ti
are not constant along orbits.) This table makes it easy to verify the auto-
morphic form identities given in Theorem 4(iii). For the identity involving
E2;t, t1, t2, t3 we must further calculate the residues of ti’s at elliptic points
ζi’s. Theorem 4(iv) follows by similar pole order arguments as in the proof
of Theorem 2 and the above tables.

Appendix A. Hypergeometric functions: basic formulas

In this appendix, we review some classical facts about the Gauss hypergeo-
metric function (or series)
(A.45)

F (ã, b̃, c̃; z) = 2F1(ã, b̃, c̃; z) =
∞∑

n=0

(ã)n(b̃)n
(c̃)nn!

zn, c̃ �∈ {0,−1,−2,−3, . . .},
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where (x)n := x(x+ 1)(x+ 2) · · · (x+ n− 1), and its differential equation

(A.46) z(1 − z)y′′ + (c̃− (ã+ b̃+ 1)z)y′ − ãb̃y = 0

which is called the hypergeometric or Gauss equation. A very complete ref-
erence is [15], though it has typos. In the following and throughout this
paper, Γ(z) denotes the gamma function and the digamma ψ(z) denotes its
logarithmic derivative. The values of ψ at rational z (the only ones we need)
were calculated by Gauss to be

ψ(m/n) = −γ − ln n− π

2
cot(πm/n)(A.47)

+
n/2∑

k=1

′ cos(2πmk/n) ln(2 − 2 cos(2πk/m)),

where γ is Euler’s constant and the prime means that for even n the last
term (namely, k = n/2) should be divided by 2. Another identity is useful

(A.48) ψ(1 − x) = ψ(x) + π cotπx.

The values ã, b̃, c̃ of interest here are given at the beginning of Section 7.1
and (more generally) Appendix B. As long as c̃ �∈ Z (i.e., except for case ∞3

below), the solution space to (A.46) is spanned by

(A.49) u1(z) = F (ã, b̃, c̃; z), u2(z) = z1−c̃F (ã− c̃+ 1, b̃− c̃+ 1, 2 − c̃; z).

We need to understand what ui(z) looks like about z = 1 and ∞, in order
to understand the local expansions of the automorphic forms of Γ(m1,m2,m3)

about all cusps and elliptic fixed-points. Closely related to this, we need
to understand the monodromy of (A.46) in order to explicitly identify the
automorphic forms associated to Γ(m1,m2,m3) (it is easy to identify them up
to a conjugate of Γ(m1,m2,m3), but we want to pin down that conjugate).
These formulas only depend on the number of cusps, i.e., the number of
mi which equal ∞. We will require here (without loss of generality) that
m1 ≤ m2 ≤ m3 ≤ ∞.

Case ∞0: No cusps, i.e., m3 <∞.
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This corresponds to all of ã, b̃, c̃, c̃− ã− b̃, ã− b̃ being nonintegral.
Analytic continuation for | arg(1 − z)| < π resp. | arg(−z)| < π is

u1(z) =
Γ(c̃)Γ(c̃− ã− b̃)
Γ(c̃− ã)Γ(c̃− b̃)

F (ã, b̃, ã+ b̃− c̃+ 1; 1 − z)

+
Γ(c̃)Γ(ã+ b̃− c̃)

Γ(ã)Γ(b̃)
(1 − z)c̃−ã−b̃F (c̃− ã, c̃− b̃, c̃− ã− b̃+ 1; 1 − z)

=
Γ(c̃)Γ(b̃− ã)
Γ(b̃)Γ(c̃− ã)

(−z)−ãF (ã, 1 − c̃+ ã, 1 − b̃+ ã; z−1)

+
Γ(c̃)Γ(ã− b̃)
Γ(ã)Γ(c̃− b̃)

(−z)−b̃F (b̃, 1 − c̃+ b̃, 1 − ã+ b̃; z−1),

u2(z) =
Γ(2 − c̃)Γ(c̃− ã− b̃)

Γ(1 − ã)Γ(1 − b̃)
F (ã, b̃, ã+ b̃− c̃+ 1; 1 − z)

+
Γ(2 − c̃)Γ(ã+ b̃− c̃)

Γ(ã− c̃+ 1)Γ(b̃− c̃+ 1)
(1 − z)c̃−ã−b̃

× F (c̃− ã, c̃− b̃, c̃− ã− b̃+ 1; 1 − z)

= −e−πic̃ Γ(2 − c̃)Γ(b̃− ã)
Γ(b̃− c̃+ 1)Γ(1 − ã)

(−z)−ãF (ã− c̃+ 1, ã, 1 − b̃+ ã; z−1)

− e−πic̃ Γ(2 − c̃)Γ(ã− b̃)
Γ(ã− c̃+ 1)Γ(1 − b̃)

(−z)−b̃F (b̃− c̃+ 1, b̃, 1 − ã+ b̃; z−1).

From this, we obtain the monodromy matrices (in terms of the basis u1, u2)
for small counterclockwise circles about z = 0, 1 and ∞

(A.50) M0 =
(

1 0
0 e−2πic̃

)

,

M1 =

⎛

⎜
⎝

ξs(ã) s(b̃)−s(c̃−ã) s(c̃−b̃)
s(c̃) s(c̃−ã−b̃)

π (ξ−1)Γ(1−c̃)Γ(2−c̃)
s(c̃−ã−b̃)Γ(1−ã)Γ(1−b̃)Γ(ã−c̃+1)Γ(b̃−c̃+1)

π (ξ−1)Γ(c̃−1) Γ(c̃)

s(c̃−ã−b̃) Γ(c̃−ã) Γ(c̃−b̃) Γ(ã) Γ(b̃)

s(ã) s(b̃)−ξs(c̃−ã) s(c̃−b̃)
s(c̃) s(c̃−ã−b̃)

⎞

⎟
⎠

(A.51)

and M∞ = M−1
1 M−1

0 , where here ξ = eπi(c̃−ã−b̃) and s(x) = sin(πx).

Case ∞1: Exactly one cusp, i.e., m2 < m3 = ∞.
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This means ã = b̃, and all of ã, c̃, c̃− 2ã are nonintegral. Analytic con-
tinuation to z = 1 is as in case ∞0, but to z = ∞ is given by

u1(z) =
(−z)−ãΓ(c̃)
Γ(ã)Γ(c̃− ã)

∞∑

n=0

(ã)n(1 − c̃+ ã)n
n!n!

(ln(−z) + 2ψ(1 + n) − ψ(ã+ n)

− ψ(c̃− ã− n))z−n,

u2(z) =
−e−πic̃(−z)−ãΓ(2 − c̃)
Γ(1 − ã)Γ(ã− c̃+ 1)

∞∑

n=0

(ã)n(1 − c̃+ ã)n
n!n!

(ln(−z) + 2ψ(1 + n)

− ψ(ã− c̃+ n+ 1) − ψ(1 − ã− n))z−n.

Monodromy is given by the same matrices as in case ∞0.

Case ∞2: Exactly two cusps, i.e., m1 < m2 = m3 = ∞.

This means ã = b̃ and c̃ = 2ã, and both of c̃, ã are nonintegral. Analytic
continuation to z = ∞ is as in case ∞1, but to z = 1 is given by

u1(z) =
Γ(2ã)

Γ(ã)Γ(c̃)

∞∑

n=0

(ã)n(ã)n
n!n!

(2ψ(n+ 1) − 2ψ(ã+ n) − ln(1 − z)) (1 − z)n,

u2(z) =
z1−2ãΓ(2 − 2ã)

Γ(1 − ã)Γ(1 − ã)

∞∑

n=0

(1 − ã)n(1 − ã)n
n!n!

(2ψ(n+ 1) − 2ψ(1 − ã)

− ln(1 − z)) (1 − z)n.

Monodromy is again given by the same matrices as in case ∞0.

Case ∞3: Three cusps, i.e., m1 = m2 = m3 = ∞.

Then ã = b̃ = 1/2, c̃ = 1. Take u1(z) = F (1/2, 1/2, 1; z) and

u2(z) = iF (1/2, 1/2, 1; 1 − z)

=
i
π

∞∑

n=0

(1/2)n(1/2)n
n!n!

(2ψ(1 + n) − 2ψ(1/2 + n) − ln(z))zn,

where the second equality is valid for −π < arg(z) < π. Analytic continua-
tion of u1 is as in case ∞2, but for u2 is given by

u2(z) = iF (1/2, 1/2, 1; 1 − z)

=
i
π
z−1/2

∞∑

n=0

(1/2)n(1/2)n
n!n!

(2ψ(1 + n) − 2ψ(1/2 + n) − ln(z−1))z−n.
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The monodromy is

(A.52) M0 =
(

1 2
0 1

)

, M1 =
(

1 0
−2 1

)

, M∞ =
(

1 −2
2 −3

)

.

Appendix B. Triangular groups without cusps

In this paper (and the applications we have in mind), we are interested in tri-
angle groups with cusps, but the same calculations work (though are messier)
when there are no cusps, i.e., when all mi are finite. In this appendix, we
sketch the changes.

Equation (2.16) becomes
(B.53)

−2
...
J t J̇t + 3J̈2

t − n−2
z J̇2

t = J̇4
t

(
1 − v2

2

J2
t

+
1 − v2

1

(Jt − 1)2
+
v2
1 + v2

2 − v2
3 − 1

Jt(Jt − 1)

)

.

For example,

c0 =
−1 + γ− + v2

3

2(v2
3 − 1)

, c1 =
(5 − 2γ+ − 3γ2−) + (−6 + 2γ+)v2

3 + v4
3

16(v2
3 − 1)(v2

3 − 4)
,

c2 =
(−2γ− + γ+γ− + γ3−) + (2γ− − γ+γ−)v2

3

6(v2
3 − 9)(v2

3 − 1)2
,

c3 =
−31 + 76γ+ + 690γ2− − 28γ2

+ − 404γ2−γ+ − 303γ4−
128(v2

3 − 16)(v2
3 − 4)2(v2

3 − 1)3

+
100 − 244γ+ + 88γ2

+ − 1052γ2− + 660γ2−γ+ + 192γ4−
128(v2

3 − 16)(v2
3 − 4)2(v2

3 − 1)3
v2
3

+
−114 + 276γ+ − 96γ2

+ + 390γ2− − 288γ2−γ+ − 24γ4−
128(v2

3 − 16)(v2
3 − 4)2(v2

3 − 1)3
v4
3

+

(52 − 124γ+ + 40γ2
+ − 24γ2− + 32γ2−γ+)v6

3

+(−7 + 16γ+ − 4γ2
+ − 4γ2−)v8

3

128(v2
3 − 16)(v2

3 − 4)2(v2
3 − 1)3

,

where γ± = v2
1 ± v2

2.
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The table in Section 7.4, listing the orders of zeros and poles for the
solutions of the Halphen system, generalizes to:

ζ3 ζ2 ζ1
t2 − t1 −1 −1 m1 − 1
t3 − t2 −1 m2 − 1 −1
t1 − t3 m3 − 1 −1 −1
t1 −1 −1 −1
t2 −1 −1 −1
t3 −1 −1 −1

As before, a basis for the ring of automorphic forms consists of the
monomials of the form

(t1 − t2)p(t2 − t3)q(t3 − t1)r

and the pole condition on the vertices implies that p, q, r ≥ 1. The ring of
holomorphic automorphic forms for the hyperbolic triangle group Γ(m1,m2,m3)

with the condition m1 ≤ m2 ≤ m3 <∞ is generated by holomorphic
functions

E
(3)
p,q;t = (t1 − t2)p(t2 − t3)q(t3 − t1), k = p+ q,

E
(1)
q,r;t = (t1 − t2)(t2 − t3)q(t3 − t1)r, k = q + r,

E
(2)
p,r;t = (t1 − t2)p(t2 − t3)(t3 − t1)r, k = p+ r.

This list of generators is finite because for example holomorphicity at ζ3
for E(3)

p,q;t implies that p+ q ≤ m3 − 1 and similarly for the rest. The space
of automorphic forms of weight 2k is of dimension k + 1 − � k

m1
� − � k

m2
�

− � k
m3

�.
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