
Foliated Neighborhoods of Exceptional
Submanifolds
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ABSTRACT. The present article deals with the classification of
neighborhoods of negatively embedded submanifolds A of a com-
plex manifold X. The main tools we use are one-dimensional
foliations whose set of singularities is A and which are normally
attracting at A. The linearization of these foliations is provided
under general cohomological conditions. As a consequence, an ex-
tension of the classical embedding theorem of Grauert is obtained.

1. INTRODUCTION

In this paper, we consider a complex compact projective manifold A of dimension
n negatively embedded in an (n+m+ 1)-dimensional complex manifold X. We
denote by (X,A) the germ of the neighborhood of A in X. Our purpose is to
establish a linearization theorem for one-dimensional foliations on (X,A) whose
set of singularities is A and which are normally attracting at A. On the other
hand, we will use these foliations as a tool for the classification of neighborhoods
of negatively embedded compact submanifolds of a complex manifold, extending
a classical theorem of Grauert [6]. More precisely, a one-dimensional foliation
on (X,A) is defined by a collection of nontrivial local vector fields Vi defined on
open subsets Ui ⊂ X, i ∈ I, which are part of a covering (Ui)i∈I of A, in such a
way that, for each nonempty intersection Ui ∩ Uj ≠ ∅, we have Vi = fijVj with
fij ∈ O

∗(Ui ∩Uj). The foliation is singular at A, if Vi|A∩Ui = 0, for each i ∈ I.
Let F1 be a complex one-dimensional foliation on (X,A), singular at A. We

say that F1 is normally attracting at A if, for each i ∈ I, the linear part of Vi at each
p ∈ Ui∩A, DVi(p), is a linear operator whose action splits into two invariant sub-
spaces TpX = TpA+Np, and if DVi(p)|Np has eigenvalues {λ1, . . . , λm+1} ⊂ C

whose convex hull does not contain 0 ∈ C. Clearly, this concept depends only
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on the foliation and not on the local vector fields. The linear part is defined by
local expressions DVi(p),p ∈ A ∩ Ui, and DVi(p) = fij(p)DVj(p) (whenever
p ∈ Ui ∩ Uj) on the normal bundle N of rank m + 1 over A. The key question
for the classification of these foliations is: Under which conditions is F1 holomor-
phically equivalent to its linear part? The case in which A is a point is classical.
A resonance among the eigenvalues {λ1, ..., λm+1} ⊂ C is a relation of the kind
λi =

∑
mjλj where mj ≥ 0 and

∑
mj ≥ 2. The theorem of Poincaré (see, e.g.,

[9] or [4]) states that if 0 ∈ Cm+1 is an attracting singularity of F1 and there are
no resonances among the eigenvalues of the linear part of F1 at 0 ∈ Cm+1, then
there is an analytic change of coordinates around 0 ∈ Cm+1 taking F1 to its linear
part. This theorem can be extended in the presence of resonances to show the
existence of a holomorphic change of coordinates taking F1 to a polynomial fo-
liation in normal form, and involving only the terms in resonance (see, e.g., [9]).
We consider the case in which A is exceptional in X, that is, in which there exist
an analytic variety X′ and a proper surjective holomorphic map Φ : X → X′ such
that the following hold:

(1) ϕ(A) = {p} is a single point;
(2) ϕ : X −A→ X′ − {p} is an analytic isomorphism;
(3) For small neighborhoods U ′ and U of p and A, respectively, OX′(U ′) →

OX(U) is an isomorphism, whereOX(U) is the ring of holomorphic func-
tions in U .

We also say that A can be blown down to a point, or that it is contractible or
negatively embedded. A vector bundle V → A over a complex manifold A is called
negative (in the sense of Grauert) if its zero section is an exceptional variety in
V . Naturally, V → A is called positive if its dual is negative. Let X be a smooth
variety, and let A be a smooth subvariety. We say that the germ (X,A) is strongly
exceptional if it is exceptional and the normal bundle of A in X is negative. The
following gives us a generalization of Poincaré’s theorem to the global situation,
that is, when A is not a point.

Theorem 1.1. Let F1 be a normally attracting one-dimensional foliation in a
germ of strongly exceptional manifold (X,A). Assume that there are no resonances
among the eigenvalues of the linear part of F1 along the normal direction of A. If

H1(A,N−ν) = 0, ν = 1,2,3, . . . ,

then there is a biholomorphic map (X,A) → (N,A), where N is the normal bundle
of A in X, which is a conjugacy between F1 and its linear part in (N,A).

For a vector bundle N on A, and µ ∈ N, we write Nµ to denote the symmetric
µ-th power of N. Theorem 1.1 generalizes the linearization theorem proved in [2]
where A is a one-dimensional compact curve embedded in a complex surface.

Of particular importance is the case where the germ ofF1 at a point p ∈ A is a
radial singularity at p, that is, where all the normal eigenvalues of the linear part of
F1 are equal—which means that, after a blow up normal to A, the lifted foliation
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of F1 becomes a transverse foliation to the blow-up divisor. We call F1 a radial
foliation. In order to state our next results, we need the following cohomological
conditions:

(I) Vanishing of cohomologies for arbitrary codimension of A on X:

H1(A,N−ν) = 0 and H1(A, TA⊗N−ν) = 0, ν = 1,2, . . .

(II) If the codimension of A in X is greater than one, then we have

H2(A,OA) = 0, and H1(A,N ⊗N−ν) = 0, ν = 1,2, . . . .

The following theorem gives cohomological conditions for the existence of radial
foliations.

Theorem 1.2. Let (X,A) be a germ of strongly exceptional manifold satisfying
the cohomological conditions (I) and (II). Then, there exists a germ of radial foliation
in (X,A).

The embedding theorem of Grauert [6] states that, under cohomological con-
dition (I) on a codimension-one strongly exceptional embedding, there is a neigh-
borhood of A ⊂ X which is biholomorphically equivalent to a neighborhood of
the zero section in the normal bundle N to A in X. Combining Theorem 1.1 and
Theorem 1.2, we obtain the following generalization to any codimension of the
embedding theorem of Grauert in [6].

Theorem 1.3. Let (X,A) be a germ of strongly exceptional manifold satisfying
cohomological conditions (I) and (II). Then, the germ of embedding of A in X is
biholomorphic to the germ of embedding of A in N.

As an example, let us restrict our focus to the case in which A is a Riemann
surface and N is a direct sum ofm+1 line bundles N = L1⊕L2⊕· · ·⊕Lm+1. In
this case, the Serre duality implies that cohomological condition (I) is equivalent
to saying that Ω1⊗Nν and Ω1⊗Ω1⊗Nν have no global sections, where Ω1 is the
cotangent bundle of A. We have

Nν = ⊕i1+i2+···+im+1=ν, ij≥0 L
i1
1 ⊗ L

i2
2 ⊗ · · · ⊗ L

im+1
m+1,

and so (I) together with the strongly exceptional property follows from

c(Li) < 0, c(Li) < 4− 4g, i = 1,2, . . . ,m+ 1.

In a similar way, condition (II) is equivalent to saying that A ≅ P1, and

|c(Li)− c(Lj)| ≤ 1, i, j = 1,2, . . . ,m+ 1.

In this case, the decomposition of the normal bundle is automatic, and it is called
the Birkhoff theorem. From this, we obtain as a corollary the following result of
Laufer [8].
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Corollary 1.4. If P1 ⊂ X is strongly exceptional, and if

c(Li) < 0, |c(Li)− c(Lj)| ≤ 1, i, j = 1,2, . . .m+ 1,

where the Li are line bundles which appear in the decomposition of the normal bundle
of A in X, then the germ (X,P1) is biholomorphic to the germ (N,P1).

In the case in which the codimension of A in X is greater than one, condition
(II) seems to be necessary for our theorem. It imposes conditions on the subman-
ifold A itself apart from negativity conditions on the normal bundle N. It would
be of interest to show that, for instance, the Grauert theorem does not hold for
Riemann surfaces of genus greater than zero and codimension greater than one.
On the other hand, we may relax the negativity condition and ask for counter ex-
amples. Arnold in [1] constructs an elliptic curve embedded in a two-dimensional
complex manifold and with zero self-intersection, such that Grauert’s linearization
theorem fails. Other counter examples to the linearization problem in the case of
codimension-one embeddings can be found in [2].

The existence of a one-dimensional foliation F1, singular at A and normally
attracting at A, implies, by the invariant manifold theorem [6], the existence of
a regular foliation F2 in (X,A), transverse to A, whose leaves have dimension
m + 1 and are invariant by F1. We call the pair (F1,F2) a bifoliation. Recipro-
cally, we will establish in the proof of Theorem 4 cohomological conditions under
which there exists a normally attracting foliation F1 tangent to a given (m + 1)-
dimensional foliation transverse to A. This will give the following refinement of
the theorem of Grauert.

Theorem 1.5. Let F2 be a transverse regular foliation of dimension m + 1 in a
germ of strongly exceptional manifold (X,A). Assume that (I) and (II) hold. Then,
there is a biholomorphic map (X,A) → (N,A), where N is the normal bundle of A
in X, which conjugates F2 with the foliation in (N,A) given by the fibers of N.

The paper is organized as follows. In Section 2, we review some facts about
exceptional varieties. In Section 3, we prove the key Proposition of the present
text, which establishes cohomological conditions under which the restriction of
line bundles from X to A is injective. The blow-up process along A reduces our
problems in an arbitrary codimension to the codimension-one case. This is ex-
plained in Section 4. Then, Section 5 is dedicated to the proof of Theorem 1.1,
while in Sections 6 and 7, we prove Theorem 1.2. Finally, in section 8, we prove
Theorem 1.5.

2. GRAUERT ’S VANISHING THEOREM

Let A be a complex compact manifold, andN be a negative line bundle onA. This
is equivalent to saying that N−1 is a positive line bundle in the sense of Kodaira.
The Kodaira vanishing theorem says that, for any coherent sheaf S on A, there is
ν0 ∈ N such that

(2.1) Hµ(A,S ⊗N−ν) = 0, ν ≥ ν0, µ = 1,2, . . . .
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Let us now be given a subvariety A of a variety X. Let M be the sheaf of holo-
morphic functions in (X,A) which vanish at A, and let S be a coherent sheaf in
(X,A). For ν ∈ N, the sheaf S(ν) := SMν/SMν+1 is a coherent sheaf with
support A, and in fact,

S(ν) ≅ S̃ ⊗N−ν ,

where S̃ = S(0) is the structural restriction of S to A. If there is no danger of
confusion, we will also use S to denote S̃, since it is clear from the text which one
we mean.

Theorem 2.1 (Grauert [6], Satz 2, p. 357). Given a strongly exceptional
submanifold A of a manifold X, there exists a positive integer ν0 such that

Hµ(U,SMν) = 0, µ ≥ 1, ν ≥ ν0,

where U is a small, strongly pseudoconvex neighborhood of A in X. Moreover, ν0 in
the above theorem can be taken to be smaller than the same number ν0 in (2.1).

3. RESTRICTION OF LINE BUNDLES

First, we consider the case in which A is a hypersurface in X.

Proposition 3.1. Let A be a strongly exceptional complex manifold of dimension
n embedded in a manifold X of dimension n+ 1. Moreover, suppose that

H1(A,N−ν) = 0, ν = 1,2,3, . . . ,

where N is the normal bundle of the embedding, and N−1 is the dual bundle. The
restriction map

r : H1(U,O∗U)→ H
1(A,O∗A)

is injective for some small neighborhood U of A in X.

Proof. The submanifold A is strongly exceptional in X, and so by Theorem
2.1 applied to S = OX , we have H1(U,M) = 0, where U is a strongly pseudo-
convex neighborhood of A in X. The diagram

(3.1)

0
↓

M

↓

0 → Z → OX → O∗X → 0
↓ ↓ ↓

0 → Z → OA → O∗A → 0
↓

0
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gives us

(3.2)

H1(U,M) = 0
↓

H1(U,Z) → H1(U,OX) → H1(U,O∗X) → H
2(U,Z)

↓ ↓ ↓ ↓

H1(A,Z) → H1(A,OA) → H1(A,O∗A) → H
2(A,Z)

.

By considering a smaller neighborhood U , if necessary, we can assume that A is
a retraction of U , and so the maps induced in the homologies by the inclusion
A֓ U are all isomorphisms. In particular, the first and fourth vertical morphisms
in the above diagram are isomorphisms. In the argument we consider now, we do
not mention the name of mappings, since it is clear from the above diagram which
mapping we mean.

Let us consider x1 ∈ H
1(U,O∗X) which is mapped to the trivial bundle in

H1(A,O∗A). Since the fourth vertical map is an isomorphism, x1 maps to zero in
H2(U,Z). This means that there is a x2 ∈ H

1(U,OX) which maps to x1. Let x3

be the image of x2 in H1(A,OA). Since the above diagram is commutative, x3

maps to the trivial bundle inH1(A,O∗A). Therefore, there exists an x4 inH1(A,Z)

which maps to x3. Since the first vertical map is an isomorphism and the second
vertical map is injective, we conclude that x4 ∈ H

1(U,Z) ≅ H1(A,Z) maps to
x2, and so x2 maps to x1 = 0 in H1(U,O∗X). ❐

Now, we give some applications of Proposition 3.1. We assume that (X,A)
has a transverse foliation, namely, F . The normal bundle N of A in X has a
meromorphic global section, namely, s. Let

div(s) =
∑
niDi, ni ∈ Z.

We define the divisor D in X as follows:

(3.3) D = A−
∑
niD̃i,

where D̃i is the saturation of Di by F . The line bundle LD associated with D re-
stricted toA is the trivial line bundle, becauseN ≅ OX(A) |A; thus, by Proposition
3.1, LD is trivial. Equivalently, we have the following proposition.

Proposition 3.2. Under the hypothesis of Proposition 3.1, there exists a mero-
morphic function g on (X,A) with div(g) = D, where D is given by (3.3).

We now give an application of Proposition 3.2.

Theorem 3.3. Let A be a strongly exceptional codimension-one submanifold of
X. Further, assume that

(3.4) H1(A,N−ν) = 0, ∀ν = 1,2, . . . .
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Any transverse holomorphic foliation in (X,A) is biholomorphic to the canonical trans-
verse foliation of (N,A) by the fibers of N. In particular, the germs of any two holo-
morphic transverse foliations in (X,A) are equivalent.

For the case in which A is a Riemann surface, the theorem is proved in [2].

Proof. LetF be the germ of a transverse foliation in (X,A), and N the normal
bundle of A in X. Let also F ′ be the canonical transverse foliation of (N,A), and
let g (respectively, g′) be the meromorphic function constructed in Proposition
3.2 for the pair (X,A) (respectively, (N,A)). We claim that at each point a ∈ A
there exists a unique biholomorphism

ψa : (X,A,a)→ (N,A,a)

with the following properties:

(1) ψ induces the identity map on A;
(2) ψ sends F to F ′;
(3) The pullback of g′ by ψ is g.

The uniqueness property implies that these local biholomorphisms are restrictions
of a global biholomorphism ψ : (X,A)→ (N,A) which sends F to F ′.

We now prove our claim. Fix a coordinate system x = (x1, x2, · · · , xn) in
a neighborhood of a in A. We extend x to a coordinate system (x,xn+1) of a
neighborhood of a in X such that A (respectively, F) in these coordinates is given
by xn+1 = 0 (respectively, dxi = 0, i = 1,2, . . . , n). We can write

g(x,xn+1) = Q(x)xn+1f (x,xn+1),

where Q(x) is a meromorphic function in a neighborhood of a in A. We can
take Q and the coordinate system x independent of the choice of an embedding
of A. Here, f is a holomorphic function in (X,a) without zeros. By changing
the coordinates in xn+1, we can assume that f = 1. Now, the coordinate system
(x,xn+1) such that g = Q(x)xn+1 is unique, and it gives us the local biholomor-
phism ψa. ❐

4. BLOW-UP ALONG A SUBMANIFOLD

Let N be a vector bundle of rank m + 1 over A, and let Ã := P(N) be the
projectivization of the fibers of N. We have a canonical projection map π : Ã→ A
with fibers isomorphic to Pm. The space Ã carries a distinguished line bundle Ñ
which is defined by

Ñx = the line representing x in the vector space Nπ(x), x ∈ Ã.

In some books, the notation OÃ(−1) is used to denote the sheaf of sections of Ñ,
because the line bundle Ñ is the tautological bundle restricted to the fibers of π .
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It has the following properties:

π∗(O(Ñ
−ν)) ≅ O(N−ν), ν = 0,1,2, . . .

π∗(O(Ñ
ν)) = 0, ν = 1,2, . . .

(4.1) Hq(Ã,π∗(S)⊗O(Ñ−ν)) ≅ Hq(A,S ⊗O(N−ν)), ν = 1,2, . . .

for every locally free sheaf S on A (see [5], p. 178). Here, O of a bundle means
the sheaf of its sections. When there is no ambiguity between a bundle and the
sheaf of its sections, we do not write O. We also use the following: if, for a sheaf
of abelian groups S on Ã, we have Riπ∗(S) = 0 for all i = 1,2, . . ., then

Hi(Ã,S) ≅ Hi(A,π∗S), i = 0,1,2, . . . .

We will apply this for the sheaf of sections of TPm ⊗ Ñ−ν , ν = 1,2, . . ., where
TPm is the subbundle of TÃ corresponding to vectors tangent to the fibers of π .

By definition, Ñ is a subbundle of π∗N, and we have the short exact sequence

(4.2) 0 → Ñ → π∗N → TPm → 0.

We then take O of the above sequence, make a tensor product with O(Ñ−ν), ν =
1,2, . . ., and apply π∗; we get

(4.3) 0 → N−ν+1 → N ⊗N−ν → π∗(TP
m ⊗ Ñ−ν)→ 0

(for simplicity we have not written O(· · · )). Note that R1π∗O(Ñ
−ν+1) = 0, for

ν = 1,2, . . . . Note also that if N is not a line bundle, then N ⊗N−1 may not be
the trivial bundle.

The vector bundle TPm appears also in the short exact sequence

(4.4) 0 → O(TPm)→ O(T Ã)→ π∗O(TA)→ 0,

where O(T Ã) → π∗O(TA) is the map obtained by derivation of Ã → A, and by
considering the pull-back of O(TA).

Let A be a compact submanifold of X with

n = dim(A), m+ 1 = dim(X)−n,

and let N = TX |A /TA be the normal bundle of A in X. We make the blow-up
of X along A:

π : X̃ → X, Ã := π−1(A) = P(N).
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The normal bundle of Ã in X̃ is, in fact,

Ñ = NX̃/Ã ≅ OÃ(−1).

We will need all these facts, as well as the following proposition, in the next sec-
tions.

Proposition 4.1. Let A be a strongly exceptional complex submanifold of X.
Moreover, suppose that H1(A,N−ν) = 0, ν = 1,2,3, . . . , where N is the normal
bundle of the embedding, and N−1 is the dual bundle. The restriction map

r : H1(U,O∗U)→ H
1(A,O∗A)

is injective for a small strongly pseudoconvex neighborhood U of A in X.

Proof. Take U to be any strongly pseudoconvex neighborhood of A which
can be contracted topologically to A. The proposition then follows from Propo-
sition 3.1 and from the isomorphism (4.1). Note that the map H1(U,O∗U) →

H1(π−1(U),O∗π−1(U)) is injective. Let L be a line bundle in U such that π∗L is
trivial in π−1(U) and so that there is a global section f of π∗L which vanishes
nowhere. For local nowhere vanishing sections fi of L, we have the holomorphic

functions gi := f
π∗fi

, which are non-zero constants along the fibers of Ã → A.

Therefore, the gi come from holomorphic nowhere-vanishing functions in U ,
namely, g̃i. Multiplying these g̃i by the fi, we get the trivialization of L. ❐

5. PROOF OF THEOREM 1.1

First, we prove that there is a holomorphic vector field V on (X,A) tangent to
the foliation F1 and singular at A. Indeed, by our hypothesis, such a vector field
exists locally. Thus, there is a finite covering (Ui)i∈I of (X,A); moreover, for each
i ∈ I, there is a vector field Vi on Ui such that, at any p ∈ A∩Ui, DVi(p) has n
eigenvalues equal to zero (along the direction of A) and eigenvalues {λ1, ..., λm+1}

whose convex hull does not contain 0 ∈ C. On each nonempty intersection
Ui ∩ Uj ≠ ∅, we have Vi = fijVj , where the cocycle L = {fij} is a line bundle.
We write the linear part of Vi = fijVj , and conclude that fij|A = 1. This means
that the restriction of L to A is the trivial bundle. The collection of vector fields
Vi, i ∈ I, defines a global section of TX ⊗ L, and by Proposition 3, L is a trivial
bundle.

On the other hand, if V and Ṽ are vector fields tangent to F1 on (X,A)
and to its linear part F̃1 on (N,A), respectively, by the Poincaré linearization
theorem (see, e.g., [3]), we know that locally there exists a unique biholomorphism
fp : (X,A,p) → (N,A,p) conjugating V to Ṽ . Since the fp are unique, we
conclude that they coincide in their common domains of definition; hence, they
give us a biholomorphism f : (X,A)→ (N,A) conjugating V to Ṽ .
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6. PROOF OF THEOREM 1.2, CODIMENSION ONE

In this section, A is a codimension-one submanifold of X, N is the normal bundle
of A in X, and TA is the tangent bundle of A.

Proposition 6.1. Assume that

(6.1) H1(A,N−1 ⊗ TA) = 0.

Then, the pair (TA ⊂ TX|A) is split, that is, TX|A ≅ N ⊕ TA.

Proof. It is enough to construct a vector bundle morphism Y : N → TX|A
with the image transverse to TA. First, we construct Y locally; that is, we find
Yi : N|Ui → TX|Ui with the desired property for an open covering Ui, i ∈ I of
A. Let Ỹi be the composition N|Ui → TX|Ui → N|Ui . Then, Ỹi = aijỸj , where
{aij} ∈ H

1(A,O∗A) is a line bundle. Now, the Ỹi are sections of the trivial bundle
N−1 ⊗N with no zeros; thus, {aij} is a trivial bundle, and so we can assume that
Ỹi = Ỹj . Now,

{Yij} := {Yi − Yj} ∈ H
1(A,Hom(N, TA)).

Since Hom(N, TA) ≅ N−1⊗TA, our assertion follows by the vanishing hypothesis
(6.1). ❐

If A is a curve, we then can use the Serre duality, and thus the cohomological
condition (6.1) follows from the fact that A·A < 4−4g. Let F be a non-singular
transverse foliation by curves in (X,A). We have the canonical embedding

TF|A ≅ N ֓ TX|A.

In Proposition 6.1 we constructed a transverse embedding N → TX|A, and it is
natural to ask whether it comes from a holomorphic foliation as above.

Proposition 6.2. Assume that A is a strongly exceptional codimension-one sub-
manifold of X, and that

(6.2) H1(A,N−ν ⊗ TX |A) = 0, ν = 2,3, . . . .

Any transverse embedding N → TX|A is associated with a non-singular transverse
foliation F defined in a neighborhood of A.

Proof. We take local sections of N which trivialize N and have no zero point.
The images of these sections under N ⊂ TX|A can be extended to vector fields Xi
defined in Ui, i ∈ I, where {Ui}i∈I is a covering of (X,A). Therefore,

Xi|A = fijXj|A, N
−1 = {fij}.
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The normal bundle N of A in X extends to a line bundle Ñ in (X,A) as follows.
We take local holomorphic functions fi in (X,A) such that A = {fi = 0}. Now,

fi = f̃ijfj, and Ñ = {f̃ij} is a line bundle in (X,A) which, being restricted to A,
is the normal bundle. Now,

{Θij} = {Xi − f̃ijXj} ∈ H1(X,MA ⊗ TX ⊗N
−1).

By our hypothesis and Theorem 2.1, the cohomology group on the right-hand
side is zero. ❐

Using the long exact sequence of

0 → TA⊗N−ν → TX|A ⊗N
−ν → N−ν+1 → 0,

one can see easily that the hypothesis (6.2) together with (6.1) follows from

(6.3) H1(A,N−v ⊗ TA) = 0, H1(A,N−v) = 0, ν = 1,2, . . . .

For the case in which A is a Riemann surface, we use Serre duality, and (6.3)
follows from

A ·A < 4− 4g for g ≥ 1 and A ·A < 2 for g = 0.

In this case, Propositions 6.1 and 6.2 and their generalization to foliations with
tangencies were proved in [10].

7. PROOF OF THEOREM 1.2, CODIMENSION GREATER THAN ONE

In this section, we perform blow-up along A. Recall the notation introduced
in Section 4. We would like to construct a transverse holomorphic foliation in
(X̃, Ã). This is already done in the previous section. We need the cohomological
conditions

(7.1) H1(Ã, Ñ−ν ⊗ TÃ) = 0, H1(Ã, Ñ−ν) = 0, ν = 1,2, . . . .

Now, we would like to translate all these in terms of the data of the embedding
A ⊂ X. First, note that

H1(Ã, Ñ−ν) ≅ H1(A,N−ν).

We make the tensor product of the sequence (4.4) with Ñν , and write the long
exact cohomology sequence. We conclude that if

H1(Ã, TPm ⊗ Ñ−ν) = 0, H1(A, TA⊗N−ν) = 0, ν = 1,2, . . . ,



1246 CÉSAR CAMACHO & HOSSEIN MOVASATI

then

H1(Ã, T Ã⊗ Ñ−ν) = 0, ν = 1,2, . . . .

Since R1π∗(TP
m ⊗ Ñ−ν) = 0, ν = 1,2, . . ., we have

H1(Ã, TPm ⊗ Ñ−ν) = H1(A,π∗(TP
m ⊗ Ñ−ν)).

We write the long exact sequence of (4.3), and conclude that if

H1(A,N ⊗N−ν) = 0, H2(A,N−ν+1) = 0, ν = 1,2, . . . ,

then

H1(Ã, TPm ⊗ Ñ−ν) = 0, ν = 1,2, . . . .

Finally, we conclude that if

H1(A,N⊗N−ν) = 0, H2(A,N−ν+1) = 0, H1(A, TA⊗N−ν) = 0, ν = 1,2, . . . ,

then

H1(Ã, T Ã⊗ Ñ−ν) = 0, ν = 1,2, . . . .

8. PROOF OF THEOREM 1.5

Using Theorem 1.1, it is enough to construct a second foliation F1 such that
(F1,F2) is a germ of radial bifoliation. In codimension one, we have F1 = F2,
and so we can assume that m > 0. After performing a blow-up along A, our
problem is reduced to the following.

We let Ã be a codimension-one submanifold of X̃, and we also let F̃2 be an
(m + 1)-dimensional regular foliation in X transverse to A. The transversality
implies that F̃2 ∩ Ã is a regular foliation of dimension m in Ã. In fact, it is the
foliation by the blow-up divisors Pm, and its tangent bundle is denoted by TPm in
Section 4. We would like to construct a transverse to Ã foliation F̃1 of dimension
one such that its leaves are contained in the leaves of F̃2. The proof is a slight
modification of Proposition 6.1 and Proposition 6.2. In both propositions, TX|A
is replaced with T F̃2|Ã, and TA is replaced with TPm. In Proposition 6.1, the
cohomological condition is

H1(Ã, Ñ−1 ⊗ TPm) = 0,

which follows from condition (II).
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